summaryrefslogtreecommitdiff
path: root/libgo/go/runtime/panic.go
blob: b76bb21191493e46177f27155bf2c0209fb20f4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"runtime/internal/atomic"
	"unsafe"
)

// For gccgo, use go:linkname to rename compiler-called functions to
// themselves, so that the compiler will export them.
//
//go:linkname deferproc runtime.deferproc
//go:linkname deferreturn runtime.deferreturn
//go:linkname setdeferretaddr runtime.setdeferretaddr
//go:linkname checkdefer runtime.checkdefer
//go:linkname gopanic runtime.gopanic
//go:linkname canrecover runtime.canrecover
//go:linkname makefuncfficanrecover runtime.makefuncfficanrecover
//go:linkname makefuncreturning runtime.makefuncreturning
//go:linkname gorecover runtime.gorecover
//go:linkname deferredrecover runtime.deferredrecover
// Temporary for C code to call:
//go:linkname throw runtime.throw

// Calling panic with one of the errors below will call errorString.Error
// which will call mallocgc to concatenate strings. That will fail if
// malloc is locked, causing a confusing error message. Throw a better
// error message instead.
func panicCheckMalloc(err error) {
	gp := getg()
	if gp != nil && gp.m != nil && gp.m.mallocing != 0 {
		throw(string(err.(errorString)))
	}
}

var indexError = error(errorString("index out of range"))

func panicindex() {
	panicCheckMalloc(indexError)
	panic(indexError)
}

var sliceError = error(errorString("slice bounds out of range"))

func panicslice() {
	panicCheckMalloc(sliceError)
	panic(sliceError)
}

var divideError = error(errorString("integer divide by zero"))

func panicdivide() {
	panicCheckMalloc(divideError)
	panic(divideError)
}

var overflowError = error(errorString("integer overflow"))

func panicoverflow() {
	panicCheckMalloc(overflowError)
	panic(overflowError)
}

var floatError = error(errorString("floating point error"))

func panicfloat() {
	panicCheckMalloc(floatError)
	panic(floatError)
}

var memoryError = error(errorString("invalid memory address or nil pointer dereference"))

func panicmem() {
	panicCheckMalloc(memoryError)
	panic(memoryError)
}

func throwinit() {
	throw("recursive call during initialization - linker skew")
}

// deferproc creates a new deferred function.
// The compiler turns a defer statement into a call to this.
// frame points into the stack frame; it is used to determine which
// deferred functions are for the current stack frame, and whether we
// have already deferred functions for this frame.
// pfn is a C function pointer.
// arg is a value to pass to pfn.
func deferproc(frame *bool, pfn uintptr, arg unsafe.Pointer) {
	n := newdefer()
	n.frame = frame
	n._panic = getg()._panic
	n.pfn = pfn
	n.arg = arg
	n.retaddr = 0
	n.makefunccanrecover = false
	n.special = false
}

// Allocate a Defer, usually using per-P pool.
// Each defer must be released with freedefer.
func newdefer() *_defer {
	var d *_defer
	gp := getg()
	pp := gp.m.p.ptr()
	if len(pp.deferpool) == 0 && sched.deferpool != nil {
		systemstack(func() {
			lock(&sched.deferlock)
			for len(pp.deferpool) < cap(pp.deferpool)/2 && sched.deferpool != nil {
				d := sched.deferpool
				sched.deferpool = d.link
				d.link = nil
				pp.deferpool = append(pp.deferpool, d)
			}
			unlock(&sched.deferlock)
		})
	}
	if n := len(pp.deferpool); n > 0 {
		d = pp.deferpool[n-1]
		pp.deferpool[n-1] = nil
		pp.deferpool = pp.deferpool[:n-1]
	}
	if d == nil {
		systemstack(func() {
			d = new(_defer)
		})
	}
	d.link = gp._defer
	gp._defer = d
	return d
}

// Free the given defer.
// The defer cannot be used after this call.
//
// This must not grow the stack because there may be a frame without a
// stack map when this is called.
//
//go:nosplit
func freedefer(d *_defer) {
	if d.special {
		return
	}

	// When C code calls a Go function on a non-Go thread, the
	// deferred call to cgocallBackDone will set g to nil.
	// Don't crash trying to put d on the free list; just let it
	// be garbage collected.
	if getg() == nil {
		return
	}

	pp := getg().m.p.ptr()
	if len(pp.deferpool) == cap(pp.deferpool) {
		// Transfer half of local cache to the central cache.
		//
		// Take this slow path on the system stack so
		// we don't grow freedefer's stack.
		systemstack(func() {
			var first, last *_defer
			for len(pp.deferpool) > cap(pp.deferpool)/2 {
				n := len(pp.deferpool)
				d := pp.deferpool[n-1]
				pp.deferpool[n-1] = nil
				pp.deferpool = pp.deferpool[:n-1]
				if first == nil {
					first = d
				} else {
					last.link = d
				}
				last = d
			}
			lock(&sched.deferlock)
			last.link = sched.deferpool
			sched.deferpool = first
			unlock(&sched.deferlock)
		})
	}
	*d = _defer{}
	pp.deferpool = append(pp.deferpool, d)
}

// deferreturn is called to undefer the stack.
// The compiler inserts a call to this function as a finally clause
// wrapped around the body of any function that calls defer.
// The frame argument points to the stack frame of the function.
func deferreturn(frame *bool) {
	gp := getg()
	for gp._defer != nil && gp._defer.frame == frame {
		d := gp._defer
		pfn := d.pfn
		d.pfn = 0

		if pfn != 0 {
			// This is rather awkward.
			// The gc compiler does this using assembler
			// code in jmpdefer.
			var fn func(unsafe.Pointer)
			*(**uintptr)(unsafe.Pointer(&fn)) = &pfn
			fn(d.arg)
		}

		gp._defer = d.link

		freedefer(d)

		// Since we are executing a defer function now, we
		// know that we are returning from the calling
		// function. If the calling function, or one of its
		// callees, panicked, then the defer functions would
		// be executed by panic.
		*frame = true
	}
}

// __builtin_extract_return_addr is a GCC intrinsic that converts an
// address returned by __builtin_return_address(0) to a real address.
// On most architectures this is a nop.
//extern __builtin_extract_return_addr
func __builtin_extract_return_addr(uintptr) uintptr

// setdeferretaddr records the address to which the deferred function
// returns.  This is check by canrecover.  The frontend relies on this
// function returning false.
func setdeferretaddr(retaddr uintptr) bool {
	gp := getg()
	if gp._defer != nil {
		gp._defer.retaddr = __builtin_extract_return_addr(retaddr)
	}
	return false
}

// checkdefer is called by exception handlers used when unwinding the
// stack after a recovered panic. The exception handler is simply
//   checkdefer(frame)
//   return;
// If we have not yet reached the frame we are looking for, we
// continue unwinding.
func checkdefer(frame *bool) {
	gp := getg()
	if gp == nil {
		// We should never wind up here. Even if some other
		// language throws an exception, the cgo code
		// should ensure that g is set.
		throw("no g in checkdefer")
	} else if gp.isforeign {
		// Some other language has thrown an exception.
		// We need to run the local defer handlers.
		// If they call recover, we stop unwinding here.
		var p _panic
		p.isforeign = true
		p.link = gp._panic
		gp._panic = &p
		for {
			d := gp._defer
			if d == nil || d.frame != frame || d.pfn == 0 {
				break
			}

			pfn := d.pfn
			gp._defer = d.link

			var fn func(unsafe.Pointer)
			*(**uintptr)(unsafe.Pointer(&fn)) = &pfn
			fn(d.arg)

			freedefer(d)

			if p.recovered {
				// The recover function caught the panic
				// thrown by some other language.
				break
			}
		}

		recovered := p.recovered
		gp._panic = p.link

		if recovered {
			// Just return and continue executing Go code.
			*frame = true
			return
		}

		// We are panicking through this function.
		*frame = false
	} else if gp._defer != nil && gp._defer.pfn == 0 && gp._defer.frame == frame {
		// This is the defer function that called recover.
		// Simply return to stop the stack unwind, and let the
		// Go code continue to execute.
		d := gp._defer
		gp._defer = d.link
		freedefer(d)

		// We are returning from this function.
		*frame = true

		return
	}

	// This is some other defer function. It was already run by
	// the call to panic, or just above. Rethrow the exception.
	rethrowException()
	throw("rethrowException returned")
}

// unwindStack starts unwinding the stack for a panic. We unwind
// function calls until we reach the one which used a defer function
// which called recover. Each function which uses a defer statement
// will have an exception handler, as shown above for checkdefer.
func unwindStack() {
	// Allocate the exception type used by the unwind ABI.
	// It would be nice to define it in runtime_sysinfo.go,
	// but current definitions don't work because the required
	// alignment is larger than can be represented in Go.
	// The type never contains any Go pointers.
	size := unwindExceptionSize()
	usize := uintptr(unsafe.Sizeof(uintptr(0)))
	c := (size + usize - 1) / usize
	s := make([]uintptr, c)
	getg().exception = unsafe.Pointer(&s[0])
	throwException()
}

// Goexit terminates the goroutine that calls it. No other goroutine is affected.
// Goexit runs all deferred calls before terminating the goroutine. Because Goexit
// is not panic, however, any recover calls in those deferred functions will return nil.
//
// Calling Goexit from the main goroutine terminates that goroutine
// without func main returning. Since func main has not returned,
// the program continues execution of other goroutines.
// If all other goroutines exit, the program crashes.
func Goexit() {
	// Run all deferred functions for the current goroutine.
	// This code is similar to gopanic, see that implementation
	// for detailed comments.
	gp := getg()
	for {
		d := gp._defer
		if d == nil {
			break
		}
		gp._defer = d.link

		pfn := d.pfn
		d.pfn = 0

		if pfn != 0 {
			var fn func(unsafe.Pointer)
			*(**uintptr)(unsafe.Pointer(&fn)) = &pfn
			fn(d.arg)
		}

		freedefer(d)
		// Note: we ignore recovers here because Goexit isn't a panic
	}
	goexit1()
}

// Call all Error and String methods before freezing the world.
// Used when crashing with panicking.
// This must match types handled by printany.
func preprintpanics(p *_panic) {
	defer func() {
		if recover() != nil {
			throw("panic while printing panic value")
		}
	}()
	for p != nil {
		switch v := p.arg.(type) {
		case error:
			p.arg = v.Error()
		case stringer:
			p.arg = v.String()
		}
		p = p.link
	}
}

// Print all currently active panics. Used when crashing.
func printpanics(p *_panic) {
	if p.link != nil {
		printpanics(p.link)
		print("\t")
	}
	print("panic: ")
	printany(p.arg)
	if p.recovered {
		print(" [recovered]")
	}
	print("\n")
}

// The implementation of the predeclared function panic.
func gopanic(e interface{}) {
	gp := getg()
	if gp.m.curg != gp {
		print("panic: ")
		printany(e)
		print("\n")
		throw("panic on system stack")
	}

	if gp.m.mallocing != 0 {
		print("panic: ")
		printany(e)
		print("\n")
		throw("panic during malloc")
	}
	if gp.m.preemptoff != "" {
		print("panic: ")
		printany(e)
		print("\n")
		print("preempt off reason: ")
		print(gp.m.preemptoff)
		print("\n")
		throw("panic during preemptoff")
	}
	if gp.m.locks != 0 {
		print("panic: ")
		printany(e)
		print("\n")
		throw("panic holding locks")
	}

	// The gc compiler allocates this new _panic struct on the
	// stack. We can't do that, because when a deferred function
	// recovers the panic we unwind the stack. We unlink this
	// entry before unwinding the stack, but that doesn't help in
	// the case where we panic, a deferred function recovers and
	// then panics itself, that panic is in turn recovered, and
	// unwinds the stack past this stack frame.

	p := &_panic{
		arg:  e,
		link: gp._panic,
	}
	gp._panic = p

	for {
		d := gp._defer
		if d == nil {
			break
		}

		pfn := d.pfn
		d.pfn = 0

		if pfn != 0 {
			var fn func(unsafe.Pointer)
			*(**uintptr)(unsafe.Pointer(&fn)) = &pfn
			fn(d.arg)

			if p.recovered {
				// Some deferred function called recover.
				// Stop running this panic.
				gp._panic = p.link

				// Unwind the stack by throwing an exception.
				// The compiler has arranged to create
				// exception handlers in each function
				// that uses a defer statement.  These
				// exception handlers will check whether
				// the entry on the top of the defer stack
				// is from the current function.  If it is,
				// we have unwound the stack far enough.
				unwindStack()

				throw("unwindStack returned")
			}

			// Because we executed that defer function by a panic,
			// and it did not call recover, we know that we are
			// not returning from the calling function--we are
			// panicking through it.
			*d.frame = false
		}

		gp._defer = d.link
		freedefer(d)
	}

	// ran out of deferred calls - old-school panic now
	// Because it is unsafe to call arbitrary user code after freezing
	// the world, we call preprintpanics to invoke all necessary Error
	// and String methods to prepare the panic strings before startpanic.
	preprintpanics(gp._panic)
	startpanic()
	printpanics(gp._panic)
	dopanic(0)       // should not return
	*(*int)(nil) = 0 // not reached
}

// currentDefer returns the top of the defer stack if it can be recovered.
// Otherwise it returns nil.
func currentDefer() *_defer {
	gp := getg()
	d := gp._defer
	if d == nil {
		return nil
	}

	// The panic that would be recovered is the one on the top of
	// the panic stack. We do not want to recover it if that panic
	// was on the top of the panic stack when this function was
	// deferred.
	if d._panic == gp._panic {
		return nil
	}

	// The deferred thunk will call setdeferretaddr. If this has
	// not happened, then we have not been called via defer, and
	// we can not recover.
	if d.retaddr == 0 {
		return nil
	}

	return d
}

// canrecover is called by a thunk to see if the real function would
// be permitted to recover a panic value. Recovering a value is
// permitted if the thunk was called directly by defer. retaddr is the
// return address of the function that is calling canrecover--that is,
// the thunk.
func canrecover(retaddr uintptr) bool {
	d := currentDefer()
	if d == nil {
		return false
	}

	ret := __builtin_extract_return_addr(retaddr)
	dret := d.retaddr
	if ret <= dret && ret+16 >= dret {
		return true
	}

	// On some systems, in some cases, the return address does not
	// work reliably. See http://gcc.gnu.org/PR60406. If we are
	// permitted to call recover, the call stack will look like this:
	//     runtime.gopanic, runtime.deferreturn, etc.
	//     thunk to call deferred function (calls __go_set_defer_retaddr)
	//     function that calls __go_can_recover (passing return address)
	//     runtime.canrecover
	// Calling callers will skip the thunks. So if our caller's
	// caller starts with "runtime.", then we are permitted to
	// call recover.
	var locs [16]location
	if callers(2, locs[:2]) < 2 {
		return false
	}

	name := locs[1].function
	if hasprefix(name, "runtime.") {
		return true
	}

	// If the function calling recover was created by reflect.MakeFunc,
	// then makefuncfficanrecover will have set makefunccanrecover.
	if !d.makefunccanrecover {
		return false
	}

	// We look up the stack, ignoring libffi functions and
	// functions in the reflect package, until we find
	// reflect.makeFuncStub or reflect.ffi_callback called by FFI
	// functions.  Then we check the caller of that function.

	n := callers(3, locs[:])
	foundFFICallback := false
	i := 0
	for ; i < n; i++ {
		name = locs[i].function
		if name == "" {
			// No function name means this caller isn't Go code.
			// Assume that this is libffi.
			continue
		}

		// Ignore function in libffi.
		if hasprefix(name, "ffi_") {
			continue
		}

		if foundFFICallback {
			break
		}

		if name == "reflect.ffi_callback" {
			foundFFICallback = true
			continue
		}

		// Ignore other functions in the reflect package.
		if hasprefix(name, "reflect.") {
			continue
		}

		// We should now be looking at the real caller.
		break
	}

	if i < n {
		name = locs[i].function
		if hasprefix(name, "runtime.") {
			return true
		}
	}

	return false
}

// This function is called when code is about to enter a function
// created by the libffi version of reflect.MakeFunc. This function is
// passed the names of the callers of the libffi code that called the
// stub. It uses them to decide whether it is permitted to call
// recover, and sets d.makefunccanrecover so that gorecover can make
// the same decision.
func makefuncfficanrecover(loc []location) {
	d := currentDefer()
	if d == nil {
		return
	}

	// If we are already in a call stack of MakeFunc functions,
	// there is nothing we can usefully check here.
	if d.makefunccanrecover {
		return
	}

	// loc starts with the caller of our caller. That will be a thunk.
	// If its caller was a function function, then it was called
	// directly by defer.
	if len(loc) < 2 {
		return
	}

	name := loc[1].function
	if hasprefix(name, "runtime.") {
		d.makefunccanrecover = true
	}
}

// makefuncreturning is called when code is about to exit a function
// created by reflect.MakeFunc. It is called by the function stub used
// by reflect.MakeFunc. It clears the makefunccanrecover field. It's
// OK to always clear this field, because canrecover will only be
// called by a stub created for a function that calls recover. That
// stub will not call a function created by reflect.MakeFunc, so by
// the time we get here any caller higher up on the call stack no
// longer needs the information.
func makefuncreturning() {
	d := getg()._defer
	if d != nil {
		d.makefunccanrecover = false
	}
}

// The implementation of the predeclared function recover.
func gorecover() interface{} {
	gp := getg()
	p := gp._panic
	if p != nil && !p.recovered {
		p.recovered = true
		return p.arg
	}
	return nil
}

// deferredrecover is called when a call to recover is deferred.  That
// is, something like
//   defer recover()
//
// We need to handle this specially.  In gc, the recover function
// looks up the stack frame. In particular, that means that a deferred
// recover will not recover a panic thrown in the same function that
// defers the recover. It will only recover a panic thrown in a
// function that defers the deferred call to recover.
//
// In other words:
//
// func f1() {
// 	defer recover()	// does not stop panic
// 	panic(0)
// }
//
// func f2() {
// 	defer func() {
// 		defer recover()	// stops panic(0)
// 	}()
// 	panic(0)
// }
//
// func f3() {
// 	defer func() {
// 		defer recover()	// does not stop panic
// 		panic(0)
// 	}()
// 	panic(1)
// }
//
// func f4() {
// 	defer func() {
// 		defer func() {
// 			defer recover()	// stops panic(0)
// 		}()
// 		panic(0)
// 	}()
// 	panic(1)
// }
//
// The interesting case here is f3. As can be seen from f2, the
// deferred recover could pick up panic(1). However, this does not
// happen because it is blocked by the panic(0).
//
// When a function calls recover, then when we invoke it we pass a
// hidden parameter indicating whether it should recover something.
// This parameter is set based on whether the function is being
// invoked directly from defer. The parameter winds up determining
// whether __go_recover or __go_deferred_recover is called at all.
//
// In the case of a deferred recover, the hidden parameter that
// controls the call is actually the one set up for the function that
// runs the defer recover() statement. That is the right thing in all
// the cases above except for f3. In f3 the function is permitted to
// call recover, but the deferred recover call is not. We address that
// here by checking for that specific case before calling recover. If
// this function was deferred when there is already a panic on the
// panic stack, then we can only recover that panic, not any other.

// Note that we can get away with using a special function here
// because you are not permitted to take the address of a predeclared
// function like recover.
func deferredrecover() interface{} {
	gp := getg()
	if gp._defer == nil || gp._defer._panic != gp._panic {
		return nil
	}
	return gorecover()
}

//go:linkname sync_throw sync.throw
func sync_throw(s string) {
	throw(s)
}

//go:nosplit
func throw(s string) {
	print("fatal error: ", s, "\n")
	gp := getg()
	if gp.m.throwing == 0 {
		gp.m.throwing = 1
	}
	startpanic()
	dopanic(0)
	*(*int)(nil) = 0 // not reached
}

//uint32 runtime·panicking;
var paniclk mutex

func startpanic() {
	_g_ := getg()
	// Uncomment when mheap_ is in Go.
	// if mheap_.cachealloc.size == 0 { // very early
	//	print("runtime: panic before malloc heap initialized\n")
	//	_g_.m.mallocing = 1 // tell rest of panic not to try to malloc
	// } else
	if _g_.m.mcache == nil { // can happen if called from signal handler or throw
		_g_.m.mcache = allocmcache()
	}

	switch _g_.m.dying {
	case 0:
		_g_.m.dying = 1
		_g_.writebuf = nil
		atomic.Xadd(&panicking, 1)
		lock(&paniclk)
		if debug.schedtrace > 0 || debug.scheddetail > 0 {
			schedtrace(true)
		}
		freezetheworld()
		return
	case 1:
		// Something failed while panicking, probably the print of the
		// argument to panic().  Just print a stack trace and exit.
		_g_.m.dying = 2
		print("panic during panic\n")
		dopanic(0)
		exit(3)
		fallthrough
	case 2:
		// This is a genuine bug in the runtime, we couldn't even
		// print the stack trace successfully.
		_g_.m.dying = 3
		print("stack trace unavailable\n")
		exit(4)
		fallthrough
	default:
		// Can't even print!  Just exit.
		exit(5)
	}
}

var didothers bool
var deadlock mutex

func dopanic(unused int) {
	gp := getg()
	if gp.sig != 0 {
		signame := signame(gp.sig)
		if signame != "" {
			print("[signal ", signame)
		} else {
			print("[signal ", hex(gp.sig))
		}
		print(" code=", hex(gp.sigcode0), " addr=", hex(gp.sigcode1), " pc=", hex(gp.sigpc), "]\n")
	}

	level, all, docrash := gotraceback()
	_g_ := getg()
	if level > 0 {
		if gp != gp.m.curg {
			all = true
		}
		if gp != gp.m.g0 {
			print("\n")
			goroutineheader(gp)
			traceback(0)
		} else if level >= 2 || _g_.m.throwing > 0 {
			print("\nruntime stack:\n")
			traceback(0)
		}
		if !didothers && all {
			didothers = true
			tracebackothers(gp)
		}
	}
	unlock(&paniclk)

	if atomic.Xadd(&panicking, -1) != 0 {
		// Some other m is panicking too.
		// Let it print what it needs to print.
		// Wait forever without chewing up cpu.
		// It will exit when it's done.
		lock(&deadlock)
		lock(&deadlock)
	}

	if docrash {
		crash()
	}

	exit(2)
}

//go:nosplit
func canpanic(gp *g) bool {
	// Note that g is m->gsignal, different from gp.
	// Note also that g->m can change at preemption, so m can go stale
	// if this function ever makes a function call.
	_g_ := getg()
	_m_ := _g_.m

	// Is it okay for gp to panic instead of crashing the program?
	// Yes, as long as it is running Go code, not runtime code,
	// and not stuck in a system call.
	if gp == nil || gp != _m_.curg {
		return false
	}
	if _m_.locks-_m_.softfloat != 0 || _m_.mallocing != 0 || _m_.throwing != 0 || _m_.preemptoff != "" || _m_.dying != 0 {
		return false
	}
	status := readgstatus(gp)
	if status&^_Gscan != _Grunning || gp.syscallsp != 0 {
		return false
	}
	return true
}