summaryrefslogtreecommitdiff
path: root/libgo/go/regexp/regexp.go
blob: e8d4c087cf8ec170b75b251276556510e5512aa8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package regexp implements a simple regular expression library.
//
// The syntax of the regular expressions accepted is:
//
//	regexp:
//		concatenation { '|' concatenation }
//	concatenation:
//		{ closure }
//	closure:
//		term [ '*' | '+' | '?' ]
//	term:
//		'^'
//		'$'
//		'.'
//		character
//		'[' [ '^' ] { character-range } ']'
//		'(' regexp ')'
//	character-range:
//		character [ '-' character ]
//
// All characters are UTF-8-encoded code points.  Backslashes escape special
// characters, including inside character classes.  The standard Go character
// escapes are also recognized: \a \b \f \n \r \t \v.
//
// There are 16 methods of Regexp that match a regular expression and identify
// the matched text.  Their names are matched by this regular expression:
//
//	Find(All)?(String)?(Submatch)?(Index)?
//
// If 'All' is present, the routine matches successive non-overlapping
// matches of the entire expression.  Empty matches abutting a preceding
// match are ignored.  The return value is a slice containing the successive
// return values of the corresponding non-'All' routine.  These routines take
// an extra integer argument, n; if n >= 0, the function returns at most n
// matches/submatches.
//
// If 'String' is present, the argument is a string; otherwise it is a slice
// of bytes; return values are adjusted as appropriate.
//
// If 'Submatch' is present, the return value is a slice identifying the
// successive submatches of the expression.  Submatches are matches of
// parenthesized subexpressions within the regular expression, numbered from
// left to right in order of opening parenthesis.  Submatch 0 is the match of
// the entire expression, submatch 1 the match of the first parenthesized
// subexpression, and so on.
//
// If 'Index' is present, matches and submatches are identified by byte index
// pairs within the input string: result[2*n:2*n+1] identifies the indexes of
// the nth submatch.  The pair for n==0 identifies the match of the entire
// expression.  If 'Index' is not present, the match is identified by the
// text of the match/submatch.  If an index is negative, it means that
// subexpression did not match any string in the input.
//
// There is also a subset of the methods that can be applied to text read
// from a RuneReader:
//
//	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
//
// This set may grow.  Note that regular expression matches may need to
// examine text beyond the text returned by a match, so the methods that
// match text from a RuneReader may read arbitrarily far into the input
// before returning.
//
// (There are a few other methods that do not match this pattern.)
//
package regexp

import (
	"bytes"
	"io"
	"os"
	"strings"
	"utf8"
)

var debug = false

// Error is the local type for a parsing error.
type Error string

func (e Error) String() string {
	return string(e)
}

// Error codes returned by failures to parse an expression.
var (
	ErrInternal            = Error("regexp: internal error")
	ErrUnmatchedLpar       = Error("regexp: unmatched '('")
	ErrUnmatchedRpar       = Error("regexp: unmatched ')'")
	ErrUnmatchedLbkt       = Error("regexp: unmatched '['")
	ErrUnmatchedRbkt       = Error("regexp: unmatched ']'")
	ErrBadRange            = Error("regexp: bad range in character class")
	ErrExtraneousBackslash = Error("regexp: extraneous backslash")
	ErrBadClosure          = Error("regexp: repeated closure (**, ++, etc.)")
	ErrBareClosure         = Error("regexp: closure applies to nothing")
	ErrBadBackslash        = Error("regexp: illegal backslash escape")
)

const (
	iStart     = iota // beginning of program
	iEnd              // end of program: success
	iBOT              // '^' beginning of text
	iEOT              // '$' end of text
	iChar             // 'a' regular character
	iCharClass        // [a-z] character class
	iAny              // '.' any character including newline
	iNotNL            // [^\n] special case: any character but newline
	iBra              // '(' parenthesized expression: 2*braNum for left, 2*braNum+1 for right
	iAlt              // '|' alternation
	iNop              // do nothing; makes it easy to link without patching
)

// An instruction executed by the NFA
type instr struct {
	kind  int    // the type of this instruction: iChar, iAny, etc.
	index int    // used only in debugging; could be eliminated
	next  *instr // the instruction to execute after this one
	// Special fields valid only for some items.
	char   int        // iChar
	braNum int        // iBra, iEbra
	cclass *charClass // iCharClass
	left   *instr     // iAlt, other branch
}

func (i *instr) print() {
	switch i.kind {
	case iStart:
		print("start")
	case iEnd:
		print("end")
	case iBOT:
		print("bot")
	case iEOT:
		print("eot")
	case iChar:
		print("char ", string(i.char))
	case iCharClass:
		i.cclass.print()
	case iAny:
		print("any")
	case iNotNL:
		print("notnl")
	case iBra:
		if i.braNum&1 == 0 {
			print("bra", i.braNum/2)
		} else {
			print("ebra", i.braNum/2)
		}
	case iAlt:
		print("alt(", i.left.index, ")")
	case iNop:
		print("nop")
	}
}

// Regexp is the representation of a compiled regular expression.
// The public interface is entirely through methods.
// A Regexp is safe for concurrent use by multiple goroutines.
type Regexp struct {
	expr        string // the original expression
	prefix      string // initial plain text string
	prefixBytes []byte // initial plain text bytes
	inst        []*instr
	start       *instr // first instruction of machine
	prefixStart *instr // where to start if there is a prefix
	nbra        int    // number of brackets in expression, for subexpressions
}

type charClass struct {
	negate bool // is character class negated? ([^a-z])
	// slice of int, stored pairwise: [a-z] is (a,z); x is (x,x):
	ranges     []int
	cmin, cmax int
}

func (cclass *charClass) print() {
	print("charclass")
	if cclass.negate {
		print(" (negated)")
	}
	for i := 0; i < len(cclass.ranges); i += 2 {
		l := cclass.ranges[i]
		r := cclass.ranges[i+1]
		if l == r {
			print(" [", string(l), "]")
		} else {
			print(" [", string(l), "-", string(r), "]")
		}
	}
}

func (cclass *charClass) addRange(a, b int) {
	// range is a through b inclusive
	cclass.ranges = append(cclass.ranges, a, b)
	if a < cclass.cmin {
		cclass.cmin = a
	}
	if b > cclass.cmax {
		cclass.cmax = b
	}
}

func (cclass *charClass) matches(c int) bool {
	if c < cclass.cmin || c > cclass.cmax {
		return cclass.negate
	}
	ranges := cclass.ranges
	for i := 0; i < len(ranges); i = i + 2 {
		if ranges[i] <= c && c <= ranges[i+1] {
			return !cclass.negate
		}
	}
	return cclass.negate
}

func newCharClass() *instr {
	i := &instr{kind: iCharClass}
	i.cclass = new(charClass)
	i.cclass.ranges = make([]int, 0, 4)
	i.cclass.cmin = 0x10FFFF + 1 // MaxRune + 1
	i.cclass.cmax = -1
	return i
}

func (re *Regexp) add(i *instr) *instr {
	i.index = len(re.inst)
	re.inst = append(re.inst, i)
	return i
}

type parser struct {
	re    *Regexp
	nlpar int // number of unclosed lpars
	pos   int
	ch    int
}

func (p *parser) error(err Error) {
	panic(err)
}

const endOfText = -1

func (p *parser) c() int { return p.ch }

func (p *parser) nextc() int {
	if p.pos >= len(p.re.expr) {
		p.ch = endOfText
	} else {
		c, w := utf8.DecodeRuneInString(p.re.expr[p.pos:])
		p.ch = c
		p.pos += w
	}
	return p.ch
}

func newParser(re *Regexp) *parser {
	p := new(parser)
	p.re = re
	p.nextc() // load p.ch
	return p
}

func special(c int) bool {
	for _, r := range `\.+*?()|[]^$` {
		if c == r {
			return true
		}
	}
	return false
}

func ispunct(c int) bool {
	for _, r := range "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" {
		if c == r {
			return true
		}
	}
	return false
}

var escapes = []byte("abfnrtv")
var escaped = []byte("\a\b\f\n\r\t\v")

func escape(c int) int {
	for i, b := range escapes {
		if int(b) == c {
			return i
		}
	}
	return -1
}

func (p *parser) checkBackslash() int {
	c := p.c()
	if c == '\\' {
		c = p.nextc()
		switch {
		case c == endOfText:
			p.error(ErrExtraneousBackslash)
		case ispunct(c):
			// c is as delivered
		case escape(c) >= 0:
			c = int(escaped[escape(c)])
		default:
			p.error(ErrBadBackslash)
		}
	}
	return c
}

func (p *parser) charClass() *instr {
	i := newCharClass()
	cc := i.cclass
	if p.c() == '^' {
		cc.negate = true
		p.nextc()
	}
	left := -1
	for {
		switch c := p.c(); c {
		case ']', endOfText:
			if left >= 0 {
				p.error(ErrBadRange)
			}
			// Is it [^\n]?
			if cc.negate && len(cc.ranges) == 2 &&
				cc.ranges[0] == '\n' && cc.ranges[1] == '\n' {
				nl := &instr{kind: iNotNL}
				p.re.add(nl)
				return nl
			}
			// Special common case: "[a]" -> "a"
			if !cc.negate && len(cc.ranges) == 2 && cc.ranges[0] == cc.ranges[1] {
				c := &instr{kind: iChar, char: cc.ranges[0]}
				p.re.add(c)
				return c
			}
			p.re.add(i)
			return i
		case '-': // do this before backslash processing
			p.error(ErrBadRange)
		default:
			c = p.checkBackslash()
			p.nextc()
			switch {
			case left < 0: // first of pair
				if p.c() == '-' { // range
					p.nextc()
					left = c
				} else { // single char
					cc.addRange(c, c)
				}
			case left <= c: // second of pair
				cc.addRange(left, c)
				left = -1
			default:
				p.error(ErrBadRange)
			}
		}
	}
	panic("unreachable")
}

func (p *parser) term() (start, end *instr) {
	switch c := p.c(); c {
	case '|', endOfText:
		return nil, nil
	case '*', '+', '?':
		p.error(ErrBareClosure)
	case ')':
		if p.nlpar == 0 {
			p.error(ErrUnmatchedRpar)
		}
		return nil, nil
	case ']':
		p.error(ErrUnmatchedRbkt)
	case '^':
		p.nextc()
		start = p.re.add(&instr{kind: iBOT})
		return start, start
	case '$':
		p.nextc()
		start = p.re.add(&instr{kind: iEOT})
		return start, start
	case '.':
		p.nextc()
		start = p.re.add(&instr{kind: iAny})
		return start, start
	case '[':
		p.nextc()
		start = p.charClass()
		if p.c() != ']' {
			p.error(ErrUnmatchedLbkt)
		}
		p.nextc()
		return start, start
	case '(':
		p.nextc()
		p.nlpar++
		p.re.nbra++ // increment first so first subexpr is \1
		nbra := p.re.nbra
		start, end = p.regexp()
		if p.c() != ')' {
			p.error(ErrUnmatchedLpar)
		}
		p.nlpar--
		p.nextc()
		bra := &instr{kind: iBra, braNum: 2 * nbra}
		p.re.add(bra)
		ebra := &instr{kind: iBra, braNum: 2*nbra + 1}
		p.re.add(ebra)
		if start == nil {
			if end == nil {
				p.error(ErrInternal)
				return
			}
			start = ebra
		} else {
			end.next = ebra
		}
		bra.next = start
		return bra, ebra
	default:
		c = p.checkBackslash()
		p.nextc()
		start = &instr{kind: iChar, char: c}
		p.re.add(start)
		return start, start
	}
	panic("unreachable")
}

func (p *parser) closure() (start, end *instr) {
	start, end = p.term()
	if start == nil {
		return
	}
	switch p.c() {
	case '*':
		// (start,end)*:
		alt := &instr{kind: iAlt}
		p.re.add(alt)
		end.next = alt   // after end, do alt
		alt.left = start // alternate brach: return to start
		start = alt      // alt becomes new (start, end)
		end = alt
	case '+':
		// (start,end)+:
		alt := &instr{kind: iAlt}
		p.re.add(alt)
		end.next = alt   // after end, do alt
		alt.left = start // alternate brach: return to start
		end = alt        // start is unchanged; end is alt
	case '?':
		// (start,end)?:
		alt := &instr{kind: iAlt}
		p.re.add(alt)
		nop := &instr{kind: iNop}
		p.re.add(nop)
		alt.left = start // alternate branch is start
		alt.next = nop   // follow on to nop
		end.next = nop   // after end, go to nop
		start = alt      // start is now alt
		end = nop        // end is nop pointed to by both branches
	default:
		return
	}
	switch p.nextc() {
	case '*', '+', '?':
		p.error(ErrBadClosure)
	}
	return
}

func (p *parser) concatenation() (start, end *instr) {
	for {
		nstart, nend := p.closure()
		switch {
		case nstart == nil: // end of this concatenation
			if start == nil { // this is the empty string
				nop := p.re.add(&instr{kind: iNop})
				return nop, nop
			}
			return
		case start == nil: // this is first element of concatenation
			start, end = nstart, nend
		default:
			end.next = nstart
			end = nend
		}
	}
	panic("unreachable")
}

func (p *parser) regexp() (start, end *instr) {
	start, end = p.concatenation()
	for {
		switch p.c() {
		default:
			return
		case '|':
			p.nextc()
			nstart, nend := p.concatenation()
			alt := &instr{kind: iAlt}
			p.re.add(alt)
			alt.left = start
			alt.next = nstart
			nop := &instr{kind: iNop}
			p.re.add(nop)
			end.next = nop
			nend.next = nop
			start, end = alt, nop
		}
	}
	panic("unreachable")
}

func unNop(i *instr) *instr {
	for i.kind == iNop {
		i = i.next
	}
	return i
}

func (re *Regexp) eliminateNops() {
	for _, inst := range re.inst {
		if inst.kind == iEnd {
			continue
		}
		inst.next = unNop(inst.next)
		if inst.kind == iAlt {
			inst.left = unNop(inst.left)
		}
	}
}

func (re *Regexp) dump() {
	print("prefix <", re.prefix, ">\n")
	for _, inst := range re.inst {
		print(inst.index, ": ")
		inst.print()
		if inst.kind != iEnd {
			print(" -> ", inst.next.index)
		}
		print("\n")
	}
}

func (re *Regexp) doParse() {
	p := newParser(re)
	start := &instr{kind: iStart}
	re.add(start)
	s, e := p.regexp()
	start.next = s
	re.start = start
	e.next = re.add(&instr{kind: iEnd})

	if debug {
		re.dump()
		println()
	}

	re.eliminateNops()
	if debug {
		re.dump()
		println()
	}
	re.setPrefix()
	if debug {
		re.dump()
		println()
	}
}

// Extract regular text from the beginning of the pattern,
// possibly after a leading iBOT.
// That text can be used by doExecute to speed up matching.
func (re *Regexp) setPrefix() {
	var b []byte
	var utf = make([]byte, utf8.UTFMax)
	var inst *instr
	// First instruction is start; skip that.  Also skip any initial iBOT.
	inst = re.inst[0].next
	for inst.kind == iBOT {
		inst = inst.next
	}
Loop:
	for ; inst.kind != iEnd; inst = inst.next {
		// stop if this is not a char
		if inst.kind != iChar {
			break
		}
		// stop if this char can be followed by a match for an empty string,
		// which includes closures, ^, and $.
		switch inst.next.kind {
		case iBOT, iEOT, iAlt:
			break Loop
		}
		n := utf8.EncodeRune(utf, inst.char)
		b = append(b, utf[0:n]...)
	}
	// point prefixStart instruction to first non-CHAR after prefix
	re.prefixStart = inst
	re.prefixBytes = b
	re.prefix = string(b)
}

// String returns the source text used to compile the regular expression.
func (re *Regexp) String() string {
	return re.expr
}

// Compile parses a regular expression and returns, if successful, a Regexp
// object that can be used to match against text.
func Compile(str string) (regexp *Regexp, error os.Error) {
	regexp = new(Regexp)
	// doParse will panic if there is a parse error.
	defer func() {
		if e := recover(); e != nil {
			regexp = nil
			error = e.(Error) // Will re-panic if error was not an Error, e.g. nil-pointer exception
		}
	}()
	regexp.expr = str
	regexp.inst = make([]*instr, 0, 10)
	regexp.doParse()
	return
}

// MustCompile is like Compile but panics if the expression cannot be parsed.
// It simplifies safe initialization of global variables holding compiled regular
// expressions.
func MustCompile(str string) *Regexp {
	regexp, error := Compile(str)
	if error != nil {
		panic(`regexp: compiling "` + str + `": ` + error.String())
	}
	return regexp
}

// NumSubexp returns the number of parenthesized subexpressions in this Regexp.
func (re *Regexp) NumSubexp() int { return re.nbra }

// The match arena allows us to reduce the garbage generated by tossing
// match vectors away as we execute.  Matches are ref counted and returned
// to a free list when no longer active.  Increases a simple benchmark by 22X.
type matchArena struct {
	head  *matchVec
	len   int // length of match vector
	pos   int
	atBOT bool // whether we're at beginning of text
	atEOT bool // whether we're at end of text
}

type matchVec struct {
	m    []int // pairs of bracketing submatches. 0th is start,end
	ref  int
	next *matchVec
}

func (a *matchArena) new() *matchVec {
	if a.head == nil {
		const N = 10
		block := make([]matchVec, N)
		for i := 0; i < N; i++ {
			b := &block[i]
			b.next = a.head
			a.head = b
		}
	}
	m := a.head
	a.head = m.next
	m.ref = 0
	if m.m == nil {
		m.m = make([]int, a.len)
	}
	return m
}

func (a *matchArena) free(m *matchVec) {
	m.ref--
	if m.ref == 0 {
		m.next = a.head
		a.head = m
	}
}

func (a *matchArena) copy(m *matchVec) *matchVec {
	m1 := a.new()
	copy(m1.m, m.m)
	return m1
}

func (a *matchArena) noMatch() *matchVec {
	m := a.new()
	for i := range m.m {
		m.m[i] = -1 // no match seen; catches cases like "a(b)?c" on "ac"
	}
	m.ref = 1
	return m
}

type state struct {
	inst     *instr // next instruction to execute
	prefixed bool   // this match began with a fixed prefix
	match    *matchVec
}

// Append new state to to-do list.  Leftmost-longest wins so avoid
// adding a state that's already active.  The matchVec will be inc-ref'ed
// if it is assigned to a state.
func (a *matchArena) addState(s []state, inst *instr, prefixed bool, match *matchVec) []state {
	switch inst.kind {
	case iBOT:
		if a.atBOT {
			s = a.addState(s, inst.next, prefixed, match)
		}
		return s
	case iEOT:
		if a.atEOT {
			s = a.addState(s, inst.next, prefixed, match)
		}
		return s
	case iBra:
		match.m[inst.braNum] = a.pos
		s = a.addState(s, inst.next, prefixed, match)
		return s
	}
	l := len(s)
	// States are inserted in order so it's sufficient to see if we have the same
	// instruction; no need to see if existing match is earlier (it is).
	for i := 0; i < l; i++ {
		if s[i].inst == inst {
			return s
		}
	}
	s = append(s, state{inst, prefixed, match})
	match.ref++
	if inst.kind == iAlt {
		s = a.addState(s, inst.left, prefixed, a.copy(match))
		// give other branch a copy of this match vector
		s = a.addState(s, inst.next, prefixed, a.copy(match))
	}
	return s
}

// input abstracts different representations of the input text. It provides
// one-character lookahead.
type input interface {
	step(pos int) (rune int, width int) // advance one rune
	canCheckPrefix() bool               // can we look ahead without losing info?
	hasPrefix(re *Regexp) bool
	index(re *Regexp, pos int) int
}

// inputString scans a string.
type inputString struct {
	str string
}

func newInputString(str string) *inputString {
	return &inputString{str: str}
}

func (i *inputString) step(pos int) (int, int) {
	if pos < len(i.str) {
		return utf8.DecodeRuneInString(i.str[pos:len(i.str)])
	}
	return endOfText, 0
}

func (i *inputString) canCheckPrefix() bool {
	return true
}

func (i *inputString) hasPrefix(re *Regexp) bool {
	return strings.HasPrefix(i.str, re.prefix)
}

func (i *inputString) index(re *Regexp, pos int) int {
	return strings.Index(i.str[pos:], re.prefix)
}

// inputBytes scans a byte slice.
type inputBytes struct {
	str []byte
}

func newInputBytes(str []byte) *inputBytes {
	return &inputBytes{str: str}
}

func (i *inputBytes) step(pos int) (int, int) {
	if pos < len(i.str) {
		return utf8.DecodeRune(i.str[pos:len(i.str)])
	}
	return endOfText, 0
}

func (i *inputBytes) canCheckPrefix() bool {
	return true
}

func (i *inputBytes) hasPrefix(re *Regexp) bool {
	return bytes.HasPrefix(i.str, re.prefixBytes)
}

func (i *inputBytes) index(re *Regexp, pos int) int {
	return bytes.Index(i.str[pos:], re.prefixBytes)
}

// inputReader scans a RuneReader.
type inputReader struct {
	r     io.RuneReader
	atEOT bool
	pos   int
}

func newInputReader(r io.RuneReader) *inputReader {
	return &inputReader{r: r}
}

func (i *inputReader) step(pos int) (int, int) {
	if !i.atEOT && pos != i.pos {
		return endOfText, 0

	}
	r, w, err := i.r.ReadRune()
	if err != nil {
		i.atEOT = true
		return endOfText, 0
	}
	i.pos += w
	return r, w
}

func (i *inputReader) canCheckPrefix() bool {
	return false
}

func (i *inputReader) hasPrefix(re *Regexp) bool {
	return false
}

func (i *inputReader) index(re *Regexp, pos int) int {
	return -1
}

// Search match starting from pos bytes into the input.
func (re *Regexp) doExecute(i input, pos int) []int {
	var s [2][]state
	s[0] = make([]state, 0, 10)
	s[1] = make([]state, 0, 10)
	in, out := 0, 1
	var final state
	found := false
	anchored := re.inst[0].next.kind == iBOT
	if anchored && pos > 0 {
		return nil
	}
	// fast check for initial plain substring
	if i.canCheckPrefix() && re.prefix != "" {
		advance := 0
		if anchored {
			if !i.hasPrefix(re) {
				return nil
			}
		} else {
			advance = i.index(re, pos)
			if advance == -1 {
				return nil
			}
		}
		pos += advance
	}
	// We look one character ahead so we can match $, which checks whether
	// we are at EOT.
	nextChar, nextWidth := i.step(pos)
	arena := &matchArena{
		len:   2 * (re.nbra + 1),
		pos:   pos,
		atBOT: pos == 0,
		atEOT: nextChar == endOfText,
	}
	for c, startPos := 0, pos; c != endOfText; {
		if !found && (pos == startPos || !anchored) {
			// prime the pump if we haven't seen a match yet
			match := arena.noMatch()
			match.m[0] = pos
			s[out] = arena.addState(s[out], re.start.next, false, match)
			arena.free(match) // if addState saved it, ref was incremented
		} else if len(s[out]) == 0 {
			// machine has completed
			break
		}
		in, out = out, in // old out state is new in state
		// clear out old state
		old := s[out]
		for _, state := range old {
			arena.free(state.match)
		}
		s[out] = old[0:0] // truncate state vector
		c = nextChar
		thisPos := pos
		pos += nextWidth
		nextChar, nextWidth = i.step(pos)
		arena.atEOT = nextChar == endOfText
		arena.atBOT = false
		arena.pos = pos
		for _, st := range s[in] {
			switch st.inst.kind {
			case iBOT:
			case iEOT:
			case iChar:
				if c == st.inst.char {
					s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
				}
			case iCharClass:
				if st.inst.cclass.matches(c) {
					s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
				}
			case iAny:
				if c != endOfText {
					s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
				}
			case iNotNL:
				if c != endOfText && c != '\n' {
					s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
				}
			case iBra:
			case iAlt:
			case iEnd:
				// choose leftmost longest
				if !found || // first
					st.match.m[0] < final.match.m[0] || // leftmost
					(st.match.m[0] == final.match.m[0] && thisPos > final.match.m[1]) { // longest
					if final.match != nil {
						arena.free(final.match)
					}
					final = st
					final.match.ref++
					final.match.m[1] = thisPos
				}
				found = true
			default:
				st.inst.print()
				panic("unknown instruction in execute")
			}
		}
	}
	if final.match == nil {
		return nil
	}
	// if match found, back up start of match by width of prefix.
	if final.prefixed && len(final.match.m) > 0 {
		final.match.m[0] -= len(re.prefix)
	}
	return final.match.m
}

// LiteralPrefix returns a literal string that must begin any match
// of the regular expression re.  It returns the boolean true if the
// literal string comprises the entire regular expression.
func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
	c := make([]int, len(re.inst)-2) // minus start and end.
	// First instruction is start; skip that.
	i := 0
	for inst := re.inst[0].next; inst.kind != iEnd; inst = inst.next {
		// stop if this is not a char
		if inst.kind != iChar {
			return string(c[:i]), false
		}
		c[i] = inst.char
		i++
	}
	return string(c[:i]), true
}

// MatchReader returns whether the Regexp matches the text read by the
// RuneReader.  The return value is a boolean: true for match, false for no
// match.
func (re *Regexp) MatchReader(r io.RuneReader) bool {
	return len(re.doExecute(newInputReader(r), 0)) > 0
}

// MatchString returns whether the Regexp matches the string s.
// The return value is a boolean: true for match, false for no match.
func (re *Regexp) MatchString(s string) bool { return len(re.doExecute(newInputString(s), 0)) > 0 }

// Match returns whether the Regexp matches the byte slice b.
// The return value is a boolean: true for match, false for no match.
func (re *Regexp) Match(b []byte) bool { return len(re.doExecute(newInputBytes(b), 0)) > 0 }

// MatchReader checks whether a textual regular expression matches the text
// read by the RuneReader.  More complicated queries need to use Compile and
// the full Regexp interface.
func MatchReader(pattern string, r io.RuneReader) (matched bool, error os.Error) {
	re, err := Compile(pattern)
	if err != nil {
		return false, err
	}
	return re.MatchReader(r), nil
}

// MatchString checks whether a textual regular expression
// matches a string.  More complicated queries need
// to use Compile and the full Regexp interface.
func MatchString(pattern string, s string) (matched bool, error os.Error) {
	re, err := Compile(pattern)
	if err != nil {
		return false, err
	}
	return re.MatchString(s), nil
}

// Match checks whether a textual regular expression
// matches a byte slice.  More complicated queries need
// to use Compile and the full Regexp interface.
func Match(pattern string, b []byte) (matched bool, error os.Error) {
	re, err := Compile(pattern)
	if err != nil {
		return false, err
	}
	return re.Match(b), nil
}

// ReplaceAllString returns a copy of src in which all matches for the Regexp
// have been replaced by repl.  No support is provided for expressions
// (e.g. \1 or $1) in the replacement string.
func (re *Regexp) ReplaceAllString(src, repl string) string {
	return re.ReplaceAllStringFunc(src, func(string) string { return repl })
}

// ReplaceAllStringFunc returns a copy of src in which all matches for the
// Regexp have been replaced by the return value of of function repl (whose
// first argument is the matched string).  No support is provided for
// expressions (e.g. \1 or $1) in the replacement string.
func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
	lastMatchEnd := 0 // end position of the most recent match
	searchPos := 0    // position where we next look for a match
	buf := new(bytes.Buffer)
	for searchPos <= len(src) {
		a := re.doExecute(newInputString(src), searchPos)
		if len(a) == 0 {
			break // no more matches
		}

		// Copy the unmatched characters before this match.
		io.WriteString(buf, src[lastMatchEnd:a[0]])

		// Now insert a copy of the replacement string, but not for a
		// match of the empty string immediately after another match.
		// (Otherwise, we get double replacement for patterns that
		// match both empty and nonempty strings.)
		if a[1] > lastMatchEnd || a[0] == 0 {
			io.WriteString(buf, repl(src[a[0]:a[1]]))
		}
		lastMatchEnd = a[1]

		// Advance past this match; always advance at least one character.
		_, width := utf8.DecodeRuneInString(src[searchPos:])
		if searchPos+width > a[1] {
			searchPos += width
		} else if searchPos+1 > a[1] {
			// This clause is only needed at the end of the input
			// string.  In that case, DecodeRuneInString returns width=0.
			searchPos++
		} else {
			searchPos = a[1]
		}
	}

	// Copy the unmatched characters after the last match.
	io.WriteString(buf, src[lastMatchEnd:])

	return buf.String()
}

// ReplaceAll returns a copy of src in which all matches for the Regexp
// have been replaced by repl.  No support is provided for expressions
// (e.g. \1 or $1) in the replacement text.
func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
	return re.ReplaceAllFunc(src, func([]byte) []byte { return repl })
}

// ReplaceAllFunc returns a copy of src in which all matches for the
// Regexp have been replaced by the return value of of function repl (whose
// first argument is the matched []byte).  No support is provided for
// expressions (e.g. \1 or $1) in the replacement string.
func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
	lastMatchEnd := 0 // end position of the most recent match
	searchPos := 0    // position where we next look for a match
	buf := new(bytes.Buffer)
	for searchPos <= len(src) {
		a := re.doExecute(newInputBytes(src), searchPos)
		if len(a) == 0 {
			break // no more matches
		}

		// Copy the unmatched characters before this match.
		buf.Write(src[lastMatchEnd:a[0]])

		// Now insert a copy of the replacement string, but not for a
		// match of the empty string immediately after another match.
		// (Otherwise, we get double replacement for patterns that
		// match both empty and nonempty strings.)
		if a[1] > lastMatchEnd || a[0] == 0 {
			buf.Write(repl(src[a[0]:a[1]]))
		}
		lastMatchEnd = a[1]

		// Advance past this match; always advance at least one character.
		_, width := utf8.DecodeRune(src[searchPos:])
		if searchPos+width > a[1] {
			searchPos += width
		} else if searchPos+1 > a[1] {
			// This clause is only needed at the end of the input
			// string.  In that case, DecodeRuneInString returns width=0.
			searchPos++
		} else {
			searchPos = a[1]
		}
	}

	// Copy the unmatched characters after the last match.
	buf.Write(src[lastMatchEnd:])

	return buf.Bytes()
}

// QuoteMeta returns a string that quotes all regular expression metacharacters
// inside the argument text; the returned string is a regular expression matching
// the literal text.  For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
func QuoteMeta(s string) string {
	b := make([]byte, 2*len(s))

	// A byte loop is correct because all metacharacters are ASCII.
	j := 0
	for i := 0; i < len(s); i++ {
		if special(int(s[i])) {
			b[j] = '\\'
			j++
		}
		b[j] = s[i]
		j++
	}
	return string(b[0:j])
}

// Find matches in slice b if b is non-nil, otherwise find matches in string s.
func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
	var end int
	if b == nil {
		end = len(s)
	} else {
		end = len(b)
	}

	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
		var in input
		if b == nil {
			in = newInputString(s)
		} else {
			in = newInputBytes(b)
		}
		matches := re.doExecute(in, pos)
		if len(matches) == 0 {
			break
		}

		accept := true
		if matches[1] == pos {
			// We've found an empty match.
			if matches[0] == prevMatchEnd {
				// We don't allow an empty match right
				// after a previous match, so ignore it.
				accept = false
			}
			var width int
			// TODO: use step()
			if b == nil {
				_, width = utf8.DecodeRuneInString(s[pos:end])
			} else {
				_, width = utf8.DecodeRune(b[pos:end])
			}
			if width > 0 {
				pos += width
			} else {
				pos = end + 1
			}
		} else {
			pos = matches[1]
		}
		prevMatchEnd = matches[1]

		if accept {
			deliver(matches)
			i++
		}
	}
}

// Find returns a slice holding the text of the leftmost match in b of the regular expression.
// A return value of nil indicates no match.
func (re *Regexp) Find(b []byte) []byte {
	a := re.doExecute(newInputBytes(b), 0)
	if a == nil {
		return nil
	}
	return b[a[0]:a[1]]
}

// FindIndex returns a two-element slice of integers defining the location of
// the leftmost match in b of the regular expression.  The match itself is at
// b[loc[0]:loc[1]].
// A return value of nil indicates no match.
func (re *Regexp) FindIndex(b []byte) (loc []int) {
	a := re.doExecute(newInputBytes(b), 0)
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindString returns a string holding the text of the leftmost match in s of the regular
// expression.  If there is no match, the return value is an empty string,
// but it will also be empty if the regular expression successfully matches
// an empty string.  Use FindStringIndex or FindStringSubmatch if it is
// necessary to distinguish these cases.
func (re *Regexp) FindString(s string) string {
	a := re.doExecute(newInputString(s), 0)
	if a == nil {
		return ""
	}
	return s[a[0]:a[1]]
}

// FindStringIndex returns a two-element slice of integers defining the
// location of the leftmost match in s of the regular expression.  The match
// itself is at s[loc[0]:loc[1]].
// A return value of nil indicates no match.
func (re *Regexp) FindStringIndex(s string) []int {
	a := re.doExecute(newInputString(s), 0)
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindReaderIndex returns a two-element slice of integers defining the
// location of the leftmost match of the regular expression in text read from
// the RuneReader.  The match itself is at s[loc[0]:loc[1]].  A return
// value of nil indicates no match.
func (re *Regexp) FindReaderIndex(r io.RuneReader) []int {
	a := re.doExecute(newInputReader(r), 0)
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindSubmatch returns a slice of slices holding the text of the leftmost
// match of the regular expression in b and the matches, if any, of its
// subexpressions, as defined by the 'Submatch' descriptions in the package
// comment.
// A return value of nil indicates no match.
func (re *Regexp) FindSubmatch(b []byte) [][]byte {
	a := re.doExecute(newInputBytes(b), 0)
	if a == nil {
		return nil
	}
	ret := make([][]byte, len(a)/2)
	for i := range ret {
		if a[2*i] >= 0 {
			ret[i] = b[a[2*i]:a[2*i+1]]
		}
	}
	return ret
}

// FindSubmatchIndex returns a slice holding the index pairs identifying the
// leftmost match of the regular expression in b and the matches, if any, of
// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindSubmatchIndex(b []byte) []int {
	return re.doExecute(newInputBytes(b), 0)
}

// FindStringSubmatch returns a slice of strings holding the text of the
// leftmost match of the regular expression in s and the matches, if any, of
// its subexpressions, as defined by the 'Submatch' description in the
// package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindStringSubmatch(s string) []string {
	a := re.doExecute(newInputString(s), 0)
	if a == nil {
		return nil
	}
	ret := make([]string, len(a)/2)
	for i := range ret {
		if a[2*i] >= 0 {
			ret[i] = s[a[2*i]:a[2*i+1]]
		}
	}
	return ret
}

// FindStringSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression in s and the
// matches, if any, of its subexpressions, as defined by the 'Submatch' and
// 'Index' descriptions in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindStringSubmatchIndex(s string) []int {
	return re.doExecute(newInputString(s), 0)
}

// FindReaderSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression of text read by
// the RuneReader, and the matches, if any, of its subexpressions, as defined
// by the 'Submatch' and 'Index' descriptions in the package comment.  A
// return value of nil indicates no match.
func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
	return re.doExecute(newInputReader(r), 0)
}

const startSize = 10 // The size at which to start a slice in the 'All' routines.

// FindAll is the 'All' version of Find; it returns a slice of all successive
// matches of the expression, as defined by the 'All' description in the
// package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAll(b []byte, n int) [][]byte {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][]byte, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		result = append(result, b[match[0]:match[1]])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
// successive matches of the expression, as defined by the 'All' description
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		result = append(result, match[0:2])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllString is the 'All' version of FindString; it returns a slice of all
// successive matches of the expression, as defined by the 'All' description
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllString(s string, n int) []string {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([]string, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		result = append(result, s[match[0]:match[1]])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
// slice of all successive matches of the expression, as defined by the 'All'
// description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		result = append(result, match[0:2])
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
// of all successive matches of the expression, as defined by the 'All'
// description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][][]byte, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		slice := make([][]byte, len(match)/2)
		for j := range slice {
			if match[2*j] >= 0 {
				slice[j] = b[match[2*j]:match[2*j+1]]
			}
		}
		result = append(result, slice)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
// a slice of all successive matches of the expression, as defined by the
// 'All' description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
	if n < 0 {
		n = len(b) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches("", b, n, func(match []int) {
		result = append(result, match)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
// returns a slice of all successive matches of the expression, as defined by
// the 'All' description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([][]string, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		slice := make([]string, len(match)/2)
		for j := range slice {
			if match[2*j] >= 0 {
				slice[j] = s[match[2*j]:match[2*j+1]]
			}
		}
		result = append(result, slice)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}

// FindAllStringSubmatchIndex is the 'All' version of
// FindStringSubmatchIndex; it returns a slice of all successive matches of
// the expression, as defined by the 'All' description in the package
// comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
	if n < 0 {
		n = len(s) + 1
	}
	result := make([][]int, 0, startSize)
	re.allMatches(s, nil, n, func(match []int) {
		result = append(result, match)
	})
	if len(result) == 0 {
		return nil
	}
	return result
}