1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect
import (
"math"
"runtime"
"unsafe"
)
const ptrSize = uintptr(unsafe.Sizeof((*byte)(nil)))
const cannotSet = "cannot set value obtained from unexported struct field"
type addr unsafe.Pointer
// TODO: This will have to go away when
// the new gc goes in.
func memmove(adst, asrc addr, n uintptr) {
dst := uintptr(adst)
src := uintptr(asrc)
switch {
case src < dst && src+n > dst:
// byte copy backward
// careful: i is unsigned
for i := n; i > 0; {
i--
*(*byte)(addr(dst + i)) = *(*byte)(addr(src + i))
}
case (n|src|dst)&(ptrSize-1) != 0:
// byte copy forward
for i := uintptr(0); i < n; i++ {
*(*byte)(addr(dst + i)) = *(*byte)(addr(src + i))
}
default:
// word copy forward
for i := uintptr(0); i < n; i += ptrSize {
*(*uintptr)(addr(dst + i)) = *(*uintptr)(addr(src + i))
}
}
}
// Value is the common interface to reflection values.
// The implementations of Value (e.g., ArrayValue, StructValue)
// have additional type-specific methods.
type Value interface {
// Type returns the value's type.
Type() Type
// Interface returns the value as an interface{}.
Interface() interface{}
// CanSet returns true if the value can be changed.
// Values obtained by the use of non-exported struct fields
// can be used in Get but not Set.
// If CanSet returns false, calling the type-specific Set will panic.
CanSet() bool
// SetValue assigns v to the value; v must have the same type as the value.
SetValue(v Value)
// CanAddr returns true if the value's address can be obtained with Addr.
// Such values are called addressable. A value is addressable if it is
// an element of a slice, an element of an addressable array,
// a field of an addressable struct, the result of dereferencing a pointer,
// or the result of a call to NewValue, MakeChan, MakeMap, or MakeZero.
// If CanAddr returns false, calling Addr will panic.
CanAddr() bool
// Addr returns the address of the value.
// If the value is not addressable, Addr panics.
// Addr is typically used to obtain a pointer to a struct field or slice element
// in order to call a method that requires a pointer receiver.
Addr() *PtrValue
// UnsafeAddr returns a pointer to the underlying data.
// It is for advanced clients that also import the "unsafe" package.
UnsafeAddr() uintptr
// Method returns a FuncValue corresponding to the value's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use
// the value as the receiver.
Method(i int) *FuncValue
getAddr() addr
}
// flags for value
const (
canSet uint32 = 1 << iota // can set value (write to *v.addr)
canAddr // can take address of value
canStore // can store through value (write to **v.addr)
)
// value is the common implementation of most values.
// It is embedded in other, public struct types, but always
// with a unique tag like "uint" or "float" so that the client cannot
// convert from, say, *UintValue to *FloatValue.
type value struct {
typ Type
addr addr
flag uint32
}
func (v *value) Type() Type { return v.typ }
func (v *value) Addr() *PtrValue {
if !v.CanAddr() {
panic("reflect: cannot take address of value")
}
a := v.addr
flag := canSet
if v.CanSet() {
flag |= canStore
}
// We could safely set canAddr here too -
// the caller would get the address of a -
// but it doesn't match the Go model.
// The language doesn't let you say &&v.
return newValue(PtrTo(v.typ), addr(&a), flag).(*PtrValue)
}
func (v *value) UnsafeAddr() uintptr { return uintptr(v.addr) }
func (v *value) getAddr() addr { return v.addr }
func (v *value) Interface() interface{} {
if typ, ok := v.typ.(*InterfaceType); ok {
// There are two different representations of interface values,
// one if the interface type has methods and one if it doesn't.
// These two representations require different expressions
// to extract correctly.
if typ.NumMethod() == 0 {
// Extract as interface value without methods.
return *(*interface{})(v.addr)
}
// Extract from v.addr as interface value with methods.
return *(*interface {
m()
})(v.addr)
}
return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr))
}
func (v *value) CanSet() bool { return v.flag&canSet != 0 }
func (v *value) CanAddr() bool { return v.flag&canAddr != 0 }
/*
* basic types
*/
// BoolValue represents a bool value.
type BoolValue struct {
value "bool"
}
// Get returns the underlying bool value.
func (v *BoolValue) Get() bool { return *(*bool)(v.addr) }
// Set sets v to the value x.
func (v *BoolValue) Set(x bool) {
if !v.CanSet() {
panic(cannotSet)
}
*(*bool)(v.addr) = x
}
// Set sets v to the value x.
func (v *BoolValue) SetValue(x Value) { v.Set(x.(*BoolValue).Get()) }
// FloatValue represents a float value.
type FloatValue struct {
value "float"
}
// Get returns the underlying int value.
func (v *FloatValue) Get() float64 {
switch v.typ.Kind() {
case Float32:
return float64(*(*float32)(v.addr))
case Float64:
return *(*float64)(v.addr)
}
panic("reflect: invalid float kind")
}
// Set sets v to the value x.
func (v *FloatValue) Set(x float64) {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
default:
panic("reflect: invalid float kind")
case Float32:
*(*float32)(v.addr) = float32(x)
case Float64:
*(*float64)(v.addr) = x
}
}
// Overflow returns true if x cannot be represented by the type of v.
func (v *FloatValue) Overflow(x float64) bool {
if v.typ.Size() == 8 {
return false
}
if x < 0 {
x = -x
}
return math.MaxFloat32 < x && x <= math.MaxFloat64
}
// Set sets v to the value x.
func (v *FloatValue) SetValue(x Value) { v.Set(x.(*FloatValue).Get()) }
// ComplexValue represents a complex value.
type ComplexValue struct {
value "complex"
}
// Get returns the underlying complex value.
func (v *ComplexValue) Get() complex128 {
switch v.typ.Kind() {
case Complex64:
return complex128(*(*complex64)(v.addr))
case Complex128:
return *(*complex128)(v.addr)
}
panic("reflect: invalid complex kind")
}
// Set sets v to the value x.
func (v *ComplexValue) Set(x complex128) {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
default:
panic("reflect: invalid complex kind")
case Complex64:
*(*complex64)(v.addr) = complex64(x)
case Complex128:
*(*complex128)(v.addr) = x
}
}
// Set sets v to the value x.
func (v *ComplexValue) SetValue(x Value) { v.Set(x.(*ComplexValue).Get()) }
// IntValue represents an int value.
type IntValue struct {
value "int"
}
// Get returns the underlying int value.
func (v *IntValue) Get() int64 {
switch v.typ.Kind() {
case Int:
return int64(*(*int)(v.addr))
case Int8:
return int64(*(*int8)(v.addr))
case Int16:
return int64(*(*int16)(v.addr))
case Int32:
return int64(*(*int32)(v.addr))
case Int64:
return *(*int64)(v.addr)
}
panic("reflect: invalid int kind")
}
// Set sets v to the value x.
func (v *IntValue) Set(x int64) {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
default:
panic("reflect: invalid int kind")
case Int:
*(*int)(v.addr) = int(x)
case Int8:
*(*int8)(v.addr) = int8(x)
case Int16:
*(*int16)(v.addr) = int16(x)
case Int32:
*(*int32)(v.addr) = int32(x)
case Int64:
*(*int64)(v.addr) = x
}
}
// Set sets v to the value x.
func (v *IntValue) SetValue(x Value) { v.Set(x.(*IntValue).Get()) }
// Overflow returns true if x cannot be represented by the type of v.
func (v *IntValue) Overflow(x int64) bool {
bitSize := uint(v.typ.Bits())
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
return x != trunc
}
// StringHeader is the runtime representation of a string.
type StringHeader struct {
Data uintptr
Len int
}
// StringValue represents a string value.
type StringValue struct {
value "string"
}
// Get returns the underlying string value.
func (v *StringValue) Get() string { return *(*string)(v.addr) }
// Set sets v to the value x.
func (v *StringValue) Set(x string) {
if !v.CanSet() {
panic(cannotSet)
}
*(*string)(v.addr) = x
}
// Set sets v to the value x.
func (v *StringValue) SetValue(x Value) { v.Set(x.(*StringValue).Get()) }
// UintValue represents a uint value.
type UintValue struct {
value "uint"
}
// Get returns the underlying uuint value.
func (v *UintValue) Get() uint64 {
switch v.typ.Kind() {
case Uint:
return uint64(*(*uint)(v.addr))
case Uint8:
return uint64(*(*uint8)(v.addr))
case Uint16:
return uint64(*(*uint16)(v.addr))
case Uint32:
return uint64(*(*uint32)(v.addr))
case Uint64:
return *(*uint64)(v.addr)
case Uintptr:
return uint64(*(*uintptr)(v.addr))
}
panic("reflect: invalid uint kind")
}
// Set sets v to the value x.
func (v *UintValue) Set(x uint64) {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
default:
panic("reflect: invalid uint kind")
case Uint:
*(*uint)(v.addr) = uint(x)
case Uint8:
*(*uint8)(v.addr) = uint8(x)
case Uint16:
*(*uint16)(v.addr) = uint16(x)
case Uint32:
*(*uint32)(v.addr) = uint32(x)
case Uint64:
*(*uint64)(v.addr) = x
case Uintptr:
*(*uintptr)(v.addr) = uintptr(x)
}
}
// Overflow returns true if x cannot be represented by the type of v.
func (v *UintValue) Overflow(x uint64) bool {
bitSize := uint(v.typ.Bits())
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
return x != trunc
}
// Set sets v to the value x.
func (v *UintValue) SetValue(x Value) { v.Set(x.(*UintValue).Get()) }
// UnsafePointerValue represents an unsafe.Pointer value.
type UnsafePointerValue struct {
value "unsafe.Pointer"
}
// Get returns the underlying uintptr value.
// Get returns uintptr, not unsafe.Pointer, so that
// programs that do not import "unsafe" cannot
// obtain a value of unsafe.Pointer type from "reflect".
func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) }
// Set sets v to the value x.
func (v *UnsafePointerValue) Set(x unsafe.Pointer) {
if !v.CanSet() {
panic(cannotSet)
}
*(*unsafe.Pointer)(v.addr) = x
}
// Set sets v to the value x.
func (v *UnsafePointerValue) SetValue(x Value) {
v.Set(unsafe.Pointer(x.(*UnsafePointerValue).Get()))
}
func typesMustMatch(t1, t2 Type) {
if t1 != t2 {
panic("type mismatch: " + t1.String() + " != " + t2.String())
}
}
/*
* array
*/
// ArrayOrSliceValue is the common interface
// implemented by both ArrayValue and SliceValue.
type ArrayOrSliceValue interface {
Value
Len() int
Cap() int
Elem(i int) Value
addr() addr
}
// grow grows the slice s so that it can hold extra more values, allocating
// more capacity if needed. It also returns the old and new slice lengths.
func grow(s *SliceValue, extra int) (*SliceValue, int, int) {
i0 := s.Len()
i1 := i0 + extra
if i1 < i0 {
panic("append: slice overflow")
}
m := s.Cap()
if i1 <= m {
return s.Slice(0, i1), i0, i1
}
if m == 0 {
m = extra
} else {
for m < i1 {
if i0 < 1024 {
m += m
} else {
m += m / 4
}
}
}
t := MakeSlice(s.Type().(*SliceType), i1, m)
Copy(t, s)
return t, i0, i1
}
// Append appends the values x to a slice s and returns the resulting slice.
// Each x must have the same type as s' element type.
func Append(s *SliceValue, x ...Value) *SliceValue {
s, i0, i1 := grow(s, len(x))
for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
s.Elem(i).SetValue(x[j])
}
return s
}
// AppendSlice appends a slice t to a slice s and returns the resulting slice.
// The slices s and t must have the same element type.
func AppendSlice(s, t *SliceValue) *SliceValue {
s, i0, i1 := grow(s, t.Len())
Copy(s.Slice(i0, i1), t)
return s
}
// Copy copies the contents of src into dst until either
// dst has been filled or src has been exhausted.
// It returns the number of elements copied.
// The arrays dst and src must have the same element type.
func Copy(dst, src ArrayOrSliceValue) int {
// TODO: This will have to move into the runtime
// once the real gc goes in.
de := dst.Type().(ArrayOrSliceType).Elem()
se := src.Type().(ArrayOrSliceType).Elem()
typesMustMatch(de, se)
n := dst.Len()
if xn := src.Len(); n > xn {
n = xn
}
memmove(dst.addr(), src.addr(), uintptr(n)*de.Size())
return n
}
// An ArrayValue represents an array.
type ArrayValue struct {
value "array"
}
// Len returns the length of the array.
func (v *ArrayValue) Len() int { return v.typ.(*ArrayType).Len() }
// Cap returns the capacity of the array (equal to Len()).
func (v *ArrayValue) Cap() int { return v.typ.(*ArrayType).Len() }
// addr returns the base address of the data in the array.
func (v *ArrayValue) addr() addr { return v.value.addr }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *ArrayValue) Set(x *ArrayValue) {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
Copy(v, x)
}
// Set sets v to the value x.
func (v *ArrayValue) SetValue(x Value) { v.Set(x.(*ArrayValue)) }
// Elem returns the i'th element of v.
func (v *ArrayValue) Elem(i int) Value {
typ := v.typ.(*ArrayType).Elem()
n := v.Len()
if i < 0 || i >= n {
panic("array index out of bounds")
}
p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
return newValue(typ, p, v.flag)
}
/*
* slice
*/
// runtime representation of slice
type SliceHeader struct {
Data uintptr
Len int
Cap int
}
// A SliceValue represents a slice.
type SliceValue struct {
value "slice"
}
func (v *SliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) }
// IsNil returns whether v is a nil slice.
func (v *SliceValue) IsNil() bool { return v.slice().Data == 0 }
// Len returns the length of the slice.
func (v *SliceValue) Len() int { return int(v.slice().Len) }
// Cap returns the capacity of the slice.
func (v *SliceValue) Cap() int { return int(v.slice().Cap) }
// addr returns the base address of the data in the slice.
func (v *SliceValue) addr() addr { return addr(v.slice().Data) }
// SetLen changes the length of v.
// The new length n must be between 0 and the capacity, inclusive.
func (v *SliceValue) SetLen(n int) {
s := v.slice()
if n < 0 || n > int(s.Cap) {
panic("reflect: slice length out of range in SetLen")
}
s.Len = n
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *SliceValue) Set(x *SliceValue) {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
*v.slice() = *x.slice()
}
// Set sets v to the value x.
func (v *SliceValue) SetValue(x Value) { v.Set(x.(*SliceValue)) }
// Get returns the uintptr address of the v.Cap()'th element. This gives
// the same result for all slices of the same array.
// It is mainly useful for printing.
func (v *SliceValue) Get() uintptr {
typ := v.typ.(*SliceType)
return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size()
}
// Slice returns a sub-slice of the slice v.
func (v *SliceValue) Slice(beg, end int) *SliceValue {
cap := v.Cap()
if beg < 0 || end < beg || end > cap {
panic("slice index out of bounds")
}
typ := v.typ.(*SliceType)
s := new(SliceHeader)
s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size()
s.Len = end - beg
s.Cap = cap - beg
// Like the result of Addr, we treat Slice as an
// unaddressable temporary, so don't set canAddr.
flag := canSet
if v.flag&canStore != 0 {
flag |= canStore
}
return newValue(typ, addr(s), flag).(*SliceValue)
}
// Elem returns the i'th element of v.
func (v *SliceValue) Elem(i int) Value {
typ := v.typ.(*SliceType).Elem()
n := v.Len()
if i < 0 || i >= n {
panic("reflect: slice index out of range")
}
p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
flag := canAddr
if v.flag&canStore != 0 {
flag |= canSet | canStore
}
return newValue(typ, p, flag)
}
// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
func MakeSlice(typ *SliceType, len, cap int) *SliceValue {
s := &SliceHeader{
Data: uintptr(unsafe.NewArray(typ.Elem(), cap)),
Len: len,
Cap: cap,
}
return newValue(typ, addr(s), canAddr|canSet|canStore).(*SliceValue)
}
/*
* chan
*/
// A ChanValue represents a chan.
type ChanValue struct {
value "chan"
}
// IsNil returns whether v is a nil channel.
func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *ChanValue) Set(x *ChanValue) {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *ChanValue) SetValue(x Value) { v.Set(x.(*ChanValue)) }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *ChanValue) Get() uintptr { return *(*uintptr)(v.addr) }
// implemented in ../pkg/runtime/reflect.cgo
func makechan(typ *runtime.ChanType, size uint32) (ch *byte)
func chansend(ch, val *byte, pres *bool)
func chanrecv(ch, val *byte, pres *bool)
func chanclosed(ch *byte) bool
func chanclose(ch *byte)
func chanlen(ch *byte) int32
func chancap(ch *byte) int32
// Closed returns the result of closed(c) on the underlying channel.
func (v *ChanValue) Closed() bool {
ch := *(**byte)(v.addr)
return chanclosed(ch)
}
// Close closes the channel.
func (v *ChanValue) Close() {
ch := *(**byte)(v.addr)
chanclose(ch)
}
func (v *ChanValue) Len() int {
ch := *(**byte)(v.addr)
return int(chanlen(ch))
}
func (v *ChanValue) Cap() int {
ch := *(**byte)(v.addr)
return int(chancap(ch))
}
// internal send; non-blocking if b != nil
func (v *ChanValue) send(x Value, b *bool) {
t := v.Type().(*ChanType)
if t.Dir()&SendDir == 0 {
panic("send on recv-only channel")
}
typesMustMatch(t.Elem(), x.Type())
ch := *(**byte)(v.addr)
chansend(ch, (*byte)(x.getAddr()), b)
}
// internal recv; non-blocking if b != nil
func (v *ChanValue) recv(b *bool) Value {
t := v.Type().(*ChanType)
if t.Dir()&RecvDir == 0 {
panic("recv on send-only channel")
}
ch := *(**byte)(v.addr)
x := MakeZero(t.Elem())
chanrecv(ch, (*byte)(x.getAddr()), b)
return x
}
// Send sends x on the channel v.
func (v *ChanValue) Send(x Value) { v.send(x, nil) }
// Recv receives and returns a value from the channel v.
func (v *ChanValue) Recv() Value { return v.recv(nil) }
// TrySend attempts to sends x on the channel v but will not block.
// It returns true if the value was sent, false otherwise.
func (v *ChanValue) TrySend(x Value) bool {
var ok bool
v.send(x, &ok)
return ok
}
// TryRecv attempts to receive a value from the channel v but will not block.
// It returns the value if one is received, nil otherwise.
func (v *ChanValue) TryRecv() Value {
var ok bool
x := v.recv(&ok)
if !ok {
return nil
}
return x
}
// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ *ChanType, buffer int) *ChanValue {
if buffer < 0 {
panic("MakeChan: negative buffer size")
}
if typ.Dir() != BothDir {
panic("MakeChan: unidirectional channel type")
}
v := MakeZero(typ).(*ChanValue)
*(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer))
return v
}
/*
* func
*/
// A FuncValue represents a function value.
type FuncValue struct {
value "func"
first *value
isInterface bool
}
// IsNil returns whether v is a nil function.
func (v *FuncValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *FuncValue) Set(x *FuncValue) {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *FuncValue) SetValue(x Value) { v.Set(x.(*FuncValue)) }
// Method returns a FuncValue corresponding to v's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use v
// as the receiver.
func (v *value) Method(i int) *FuncValue {
t := v.Type().uncommon()
if t == nil || i < 0 || i >= len(t.methods) {
return nil
}
p := &t.methods[i]
fn := p.tfn
fv := &FuncValue{value: value{runtimeToType(p.typ), addr(&fn), 0}, first: v, isInterface: false}
return fv
}
// implemented in ../pkg/runtime/*/asm.s
func call(typ *FuncType, fnaddr *byte, isInterface bool, params *addr, results *addr)
// Interface returns the fv as an interface value.
// If fv is a method obtained by invoking Value.Method
// (as opposed to Type.Method), Interface cannot return an
// interface value, so it panics.
func (fv *FuncValue) Interface() interface{} {
if fv.first != nil {
panic("FuncValue: cannot create interface value for method with bound receiver")
}
return fv.value.Interface()
}
// Call calls the function fv with input parameters in.
// It returns the function's output parameters as Values.
func (fv *FuncValue) Call(in []Value) []Value {
t := fv.Type().(*FuncType)
nin := len(in)
if fv.first != nil && !fv.isInterface {
nin++
}
if nin != t.NumIn() {
panic("FuncValue: wrong argument count")
}
if fv.first != nil && fv.isInterface {
nin++
}
nout := t.NumOut()
params := make([]addr, nin)
delta := 0
off := 0
if v := fv.first; v != nil {
// Hard-wired first argument.
if fv.isInterface {
// v is a single uninterpreted word
params[0] = v.getAddr()
} else {
// v is a real value
tv := v.Type()
// This is a method, so we need to always pass
// a pointer.
vAddr := v.getAddr()
if ptv, ok := tv.(*PtrType); ok {
typesMustMatch(t.In(0), tv)
} else {
p := addr(new(addr))
*(*addr)(p) = vAddr
vAddr = p
typesMustMatch(t.In(0).(*PtrType).Elem(), tv)
}
params[0] = vAddr
delta = 1
}
off = 1
}
for i, v := range in {
tv := v.Type()
tf := t.In(i + delta)
// If this is really a method, and we are explicitly
// passing the object, then we need to pass the address
// of the object instead. Unfortunately, we don't
// have any way to know that this is a method, so we just
// check the type. FIXME: This is ugly.
vAddr := v.getAddr()
if i == 0 && tf != tv {
if ptf, ok := tf.(*PtrType); ok {
p := addr(new(addr))
*(*addr)(p) = vAddr
vAddr = p
tf = ptf.Elem()
}
}
typesMustMatch(tf, tv)
params[i+off] = vAddr
}
ret := make([]Value, nout)
results := make([]addr, nout)
for i := 0; i < nout; i++ {
tv := t.Out(i)
v := MakeZero(tv)
results[i] = v.getAddr()
ret[i] = v
}
call(t, *(**byte)(fv.addr), fv.isInterface, ¶ms[0], &results[0])
return ret
}
/*
* interface
*/
// An InterfaceValue represents an interface value.
type InterfaceValue struct {
value "interface"
}
// IsNil returns whether v is a nil interface value.
func (v *InterfaceValue) IsNil() bool { return v.Interface() == nil }
// No single uinptr Get because v.Interface() is available.
// Get returns the two words that represent an interface in the runtime.
// Those words are useful only when playing unsafe games.
func (v *InterfaceValue) Get() [2]uintptr {
return *(*[2]uintptr)(v.addr)
}
// Elem returns the concrete value stored in the interface value v.
func (v *InterfaceValue) Elem() Value { return NewValue(v.Interface()) }
// ../runtime/reflect.cgo
func setiface(typ *InterfaceType, x *interface{}, addr addr)
// Set assigns x to v.
func (v *InterfaceValue) Set(x Value) {
var i interface{}
if x != nil {
i = x.Interface()
}
if !v.CanSet() {
panic(cannotSet)
}
// Two different representations; see comment in Get.
// Empty interface is easy.
t := v.typ.(*InterfaceType)
if t.NumMethod() == 0 {
*(*interface{})(v.addr) = i
return
}
// Non-empty interface requires a runtime check.
setiface(t, &i, v.addr)
}
// Set sets v to the value x.
func (v *InterfaceValue) SetValue(x Value) { v.Set(x) }
// Method returns a FuncValue corresponding to v's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use v
// as the receiver.
func (v *InterfaceValue) Method(i int) *FuncValue {
t := v.Type().(*InterfaceType)
if t == nil || i < 0 || i >= len(t.methods) {
return nil
}
p := &t.methods[i]
// Interface is two words: itable, data.
tab := *(**[10000]addr)(v.addr)
data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr) + ptrSize), 0}
fn := tab[i+1]
fv := &FuncValue{value: value{runtimeToType(p.typ), addr(&fn), 0}, first: data, isInterface: true}
return fv
}
/*
* map
*/
// A MapValue represents a map value.
type MapValue struct {
value "map"
}
// IsNil returns whether v is a nil map value.
func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *MapValue) Set(x *MapValue) {
if !v.CanSet() {
panic(cannotSet)
}
if x == nil {
*(**uintptr)(v.addr) = nil
return
}
typesMustMatch(v.typ, x.typ)
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *MapValue) SetValue(x Value) {
if x == nil {
v.Set(nil)
return
}
v.Set(x.(*MapValue))
}
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *MapValue) Get() uintptr { return *(*uintptr)(v.addr) }
// implemented in ../pkg/runtime/reflect.cgo
func mapaccess(m, key, val *byte) bool
func mapassign(m, key, val *byte)
func maplen(m *byte) int32
func mapiterinit(m *byte) *byte
func mapiternext(it *byte)
func mapiterkey(it *byte, key *byte) bool
func makemap(t *runtime.MapType) *byte
// Elem returns the value associated with key in the map v.
// It returns nil if key is not found in the map.
func (v *MapValue) Elem(key Value) Value {
t := v.Type().(*MapType)
typesMustMatch(t.Key(), key.Type())
m := *(**byte)(v.addr)
if m == nil {
return nil
}
newval := MakeZero(t.Elem())
if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) {
return nil
}
return newval
}
// SetElem sets the value associated with key in the map v to val.
// If val is nil, Put deletes the key from map.
func (v *MapValue) SetElem(key, val Value) {
t := v.Type().(*MapType)
typesMustMatch(t.Key(), key.Type())
var vaddr *byte
if val != nil {
typesMustMatch(t.Elem(), val.Type())
vaddr = (*byte)(val.getAddr())
}
m := *(**byte)(v.addr)
mapassign(m, (*byte)(key.getAddr()), vaddr)
}
// Len returns the number of keys in the map v.
func (v *MapValue) Len() int {
m := *(**byte)(v.addr)
if m == nil {
return 0
}
return int(maplen(m))
}
// Keys returns a slice containing all the keys present in the map,
// in unspecified order.
func (v *MapValue) Keys() []Value {
tk := v.Type().(*MapType).Key()
m := *(**byte)(v.addr)
mlen := int32(0)
if m != nil {
mlen = maplen(m)
}
it := mapiterinit(m)
a := make([]Value, mlen)
var i int
for i = 0; i < len(a); i++ {
k := MakeZero(tk)
if !mapiterkey(it, (*byte)(k.getAddr())) {
break
}
a[i] = k
mapiternext(it)
}
return a[0:i]
}
// MakeMap creates a new map of the specified type.
func MakeMap(typ *MapType) *MapValue {
v := MakeZero(typ).(*MapValue)
*(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ)))
return v
}
/*
* ptr
*/
// A PtrValue represents a pointer.
type PtrValue struct {
value "ptr"
}
// IsNil returns whether v is a nil pointer.
func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set assigns x to v.
// The new value x must have the same type as v, and x.Elem().CanSet() must be true.
func (v *PtrValue) Set(x *PtrValue) {
if x == nil {
*(**uintptr)(v.addr) = nil
return
}
if !v.CanSet() {
panic(cannotSet)
}
if x.flag&canStore == 0 {
panic("cannot copy pointer obtained from unexported struct field")
}
typesMustMatch(v.typ, x.typ)
// TODO: This will have to move into the runtime
// once the new gc goes in
*(*uintptr)(v.addr) = *(*uintptr)(x.addr)
}
// Set sets v to the value x.
func (v *PtrValue) SetValue(x Value) {
if x == nil {
v.Set(nil)
return
}
v.Set(x.(*PtrValue))
}
// PointTo changes v to point to x.
// If x is a nil Value, PointTo sets v to nil.
func (v *PtrValue) PointTo(x Value) {
if x == nil {
*(**uintptr)(v.addr) = nil
return
}
if !x.CanSet() {
panic("cannot set x; cannot point to x")
}
typesMustMatch(v.typ.(*PtrType).Elem(), x.Type())
// TODO: This will have to move into the runtime
// once the new gc goes in.
*(*uintptr)(v.addr) = x.UnsafeAddr()
}
// Elem returns the value that v points to.
// If v is a nil pointer, Elem returns a nil Value.
func (v *PtrValue) Elem() Value {
if v.IsNil() {
return nil
}
flag := canAddr
if v.flag&canStore != 0 {
flag |= canSet | canStore
}
return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), flag)
}
// Indirect returns the value that v points to.
// If v is a nil pointer, Indirect returns a nil Value.
// If v is not a pointer, Indirect returns v.
func Indirect(v Value) Value {
if pv, ok := v.(*PtrValue); ok {
return pv.Elem()
}
return v
}
/*
* struct
*/
// A StructValue represents a struct value.
type StructValue struct {
value "struct"
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *StructValue) Set(x *StructValue) {
// TODO: This will have to move into the runtime
// once the gc goes in.
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
memmove(v.addr, x.addr, v.typ.Size())
}
// Set sets v to the value x.
func (v *StructValue) SetValue(x Value) { v.Set(x.(*StructValue)) }
// Field returns the i'th field of the struct.
func (v *StructValue) Field(i int) Value {
t := v.typ.(*StructType)
if i < 0 || i >= t.NumField() {
return nil
}
f := t.Field(i)
flag := v.flag
if f.PkgPath != "" {
// unexported field
flag &^= canSet | canStore
}
return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), flag)
}
// FieldByIndex returns the nested field corresponding to index.
func (t *StructValue) FieldByIndex(index []int) (v Value) {
v = t
for i, x := range index {
if i > 0 {
if p, ok := v.(*PtrValue); ok {
v = p.Elem()
}
if s, ok := v.(*StructValue); ok {
t = s
} else {
v = nil
return
}
}
v = t.Field(x)
}
return
}
// FieldByName returns the struct field with the given name.
// The result is nil if no field was found.
func (t *StructValue) FieldByName(name string) Value {
if f, ok := t.Type().(*StructType).FieldByName(name); ok {
return t.FieldByIndex(f.Index)
}
return nil
}
// FieldByNameFunc returns the struct field with a name that satisfies the
// match function.
// The result is nil if no field was found.
func (t *StructValue) FieldByNameFunc(match func(string) bool) Value {
if f, ok := t.Type().(*StructType).FieldByNameFunc(match); ok {
return t.FieldByIndex(f.Index)
}
return nil
}
// NumField returns the number of fields in the struct.
func (v *StructValue) NumField() int { return v.typ.(*StructType).NumField() }
/*
* constructors
*/
// NewValue returns a new Value initialized to the concrete value
// stored in the interface i. NewValue(nil) returns nil.
func NewValue(i interface{}) Value {
if i == nil {
return nil
}
t, a := unsafe.Reflect(i)
return newValue(canonicalize(toType(t)), addr(a), canSet|canAddr|canStore)
}
func newValue(typ Type, addr addr, flag uint32) Value {
v := value{typ, addr, flag}
switch typ.(type) {
case *ArrayType:
return &ArrayValue{v}
case *BoolType:
return &BoolValue{v}
case *ChanType:
return &ChanValue{v}
case *FloatType:
return &FloatValue{v}
case *FuncType:
return &FuncValue{value: v}
case *ComplexType:
return &ComplexValue{v}
case *IntType:
return &IntValue{v}
case *InterfaceType:
return &InterfaceValue{v}
case *MapType:
return &MapValue{v}
case *PtrType:
return &PtrValue{v}
case *SliceType:
return &SliceValue{v}
case *StringType:
return &StringValue{v}
case *StructType:
return &StructValue{v}
case *UintType:
return &UintValue{v}
case *UnsafePointerType:
return &UnsafePointerValue{v}
}
panic("newValue" + typ.String())
}
// MakeZero returns a zero Value for the specified Type.
func MakeZero(typ Type) Value {
if typ == nil {
return nil
}
return newValue(typ, addr(unsafe.New(typ)), canSet|canAddr|canStore)
}
|