1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// MakeFunc amd64 implementation.
package reflect
import "unsafe"
// The assembler stub will pass a pointer to this structure.
// This will come in holding all the registers that might hold
// function parameters. On return we will set the registers that
// might hold result values.
type amd64Regs struct {
rax uint64
rdi uint64
rsi uint64
rdx uint64
rcx uint64
r8 uint64
r9 uint64
rsp uint64
xmm0 [2]uint64
xmm1 [2]uint64
xmm2 [2]uint64
xmm3 [2]uint64
xmm4 [2]uint64
xmm5 [2]uint64
xmm6 [2]uint64
xmm7 [2]uint64
}
// Argument classifications. The amd64 ELF ABI uses several more, but
// these are the only ones that arise for Go types.
type amd64Class int
const (
amd64Integer amd64Class = iota
amd64SSE
amd64NoClass
amd64Memory
)
// amd64Classify returns the one or two register classes needed to
// pass the value of type. Go types never need more than two
// registers. amd64Memory means the value is stored in memory.
// amd64NoClass means the register is not used.
func amd64Classify(typ *rtype) (amd64Class, amd64Class) {
switch typ.Kind() {
default:
panic("internal error--unknown kind in amd64Classify")
case Bool, Int, Int8, Int16, Int32, Int64,
Uint, Uint8, Uint16, Uint32, Uint64,
Uintptr, Chan, Func, Map, Ptr, UnsafePointer:
return amd64Integer, amd64NoClass
case Float32, Float64, Complex64:
return amd64SSE, amd64NoClass
case Complex128:
return amd64SSE, amd64SSE
case Array:
if typ.size == 0 {
return amd64NoClass, amd64NoClass
} else if typ.size > 16 {
return amd64Memory, amd64NoClass
}
atyp := (*arrayType)(unsafe.Pointer(typ))
eclass1, eclass2 := amd64Classify(atyp.elem)
if eclass1 == amd64Memory {
return amd64Memory, amd64NoClass
}
if eclass2 == amd64NoClass && typ.size > 8 {
eclass2 = eclass1
}
return eclass1, eclass2
case Interface:
return amd64Integer, amd64Integer
case Slice:
return amd64Memory, amd64NoClass
case String:
return amd64Integer, amd64Integer
case Struct:
if typ.size == 0 {
return amd64NoClass, amd64NoClass
} else if typ.size > 16 {
return amd64Memory, amd64NoClass
}
var first, second amd64Class
f := amd64NoClass
onFirst := true
styp := (*structType)(unsafe.Pointer(typ))
for _, field := range styp.fields {
if onFirst && field.offset >= 8 {
first = f
f = amd64NoClass
onFirst = false
}
fclass1, fclass2 := amd64Classify(field.typ)
f = amd64MergeClasses(f, fclass1)
if fclass2 != amd64NoClass {
if !onFirst {
panic("amd64Classify inconsistent")
}
first = f
f = fclass2
onFirst = false
}
}
if onFirst {
first = f
second = amd64NoClass
} else {
second = f
}
if first == amd64Memory || second == amd64Memory {
return amd64Memory, amd64NoClass
}
return first, second
}
}
// amd64MergeClasses merges two register classes as described in the
// amd64 ELF ABI.
func amd64MergeClasses(c1, c2 amd64Class) amd64Class {
switch {
case c1 == c2:
return c1
case c1 == amd64NoClass:
return c2
case c2 == amd64NoClass:
return c1
case c1 == amd64Memory || c2 == amd64Memory:
return amd64Memory
case c1 == amd64Integer || c2 == amd64Integer:
return amd64Integer
default:
return amd64SSE
}
}
// MakeFuncStubGo implements the amd64 calling convention for
// MakeFunc. This should not be called. It is exported so that
// assembly code can call it.
func MakeFuncStubGo(regs *amd64Regs, c *makeFuncImpl) {
ftyp := c.typ
// See if the result requires a struct. If it does, the first
// parameter is a pointer to the struct.
var ret1, ret2 amd64Class
switch len(ftyp.out) {
case 0:
ret1, ret2 = amd64NoClass, amd64NoClass
case 1:
ret1, ret2 = amd64Classify(ftyp.out[0])
default:
off := uintptr(0)
f := amd64NoClass
onFirst := true
for _, rt := range ftyp.out {
off = align(off, uintptr(rt.fieldAlign))
if onFirst && off >= 8 {
ret1 = f
f = amd64NoClass
onFirst = false
}
off += rt.size
if off > 16 {
break
}
fclass1, fclass2 := amd64Classify(rt)
f = amd64MergeClasses(f, fclass1)
if fclass2 != amd64NoClass {
if !onFirst {
panic("amd64Classify inconsistent")
}
ret1 = f
f = fclass2
onFirst = false
}
}
if off > 16 {
ret1, ret2 = amd64Memory, amd64NoClass
} else {
if onFirst {
ret1, ret2 = f, amd64NoClass
} else {
ret2 = f
}
}
if ret1 == amd64Memory || ret2 == amd64Memory {
ret1, ret2 = amd64Memory, amd64NoClass
}
}
in := make([]Value, 0, len(ftyp.in))
intreg := 0
ssereg := 0
ap := uintptr(regs.rsp)
maxIntregs := 6 // When we support Windows, this would be 4.
maxSSEregs := 8
if ret1 == amd64Memory {
// We are returning a value in memory, which means
// that the first argument is a hidden parameter
// pointing to that return area.
intreg++
}
argloop:
for _, rt := range ftyp.in {
c1, c2 := amd64Classify(rt)
fl := flag(rt.Kind()) << flagKindShift
if c2 == amd64NoClass {
// Argument is passed in a single register or
// in memory.
switch c1 {
case amd64NoClass:
v := Value{rt, nil, fl | flagIndir}
in = append(in, v)
continue argloop
case amd64Integer:
if intreg < maxIntregs {
reg := amd64IntregVal(regs, intreg)
iw := unsafe.Pointer(reg)
if k := rt.Kind(); k != Ptr && k != UnsafePointer {
iw = unsafe.Pointer(®)
fl |= flagIndir
}
v := Value{rt, iw, fl}
in = append(in, v)
intreg++
continue argloop
}
case amd64SSE:
if ssereg < maxSSEregs {
reg := amd64SSEregVal(regs, ssereg)
v := Value{rt, unsafe.Pointer(®), fl | flagIndir}
in = append(in, v)
ssereg++
continue argloop
}
}
in, ap = amd64Memarg(in, ap, rt)
continue argloop
}
// Argument is passed in two registers.
nintregs := 0
nsseregs := 0
switch c1 {
case amd64Integer:
nintregs++
case amd64SSE:
nsseregs++
default:
panic("inconsistent")
}
switch c2 {
case amd64Integer:
nintregs++
case amd64SSE:
nsseregs++
default:
panic("inconsistent")
}
// If the whole argument does not fit in registers, it
// is passed in memory.
if intreg+nintregs > maxIntregs || ssereg+nsseregs > maxSSEregs {
in, ap = amd64Memarg(in, ap, rt)
continue argloop
}
var word1, word2 uintptr
switch c1 {
case amd64Integer:
word1 = amd64IntregVal(regs, intreg)
intreg++
case amd64SSE:
word1 = amd64SSEregVal(regs, ssereg)
ssereg++
}
switch c2 {
case amd64Integer:
word2 = amd64IntregVal(regs, intreg)
intreg++
case amd64SSE:
word2 = amd64SSEregVal(regs, ssereg)
ssereg++
}
p := unsafe_New(rt)
*(*uintptr)(p) = word1
*(*uintptr)(unsafe.Pointer(uintptr(p) + ptrSize)) = word2
v := Value{rt, p, fl | flagIndir}
in = append(in, v)
}
// All the real arguments have been found and turned into
// Value's. Call the real function.
out := c.call(in)
if len(out) != len(ftyp.out) {
panic("reflect: wrong return count from function created by MakeFunc")
}
for i, typ := range ftyp.out {
v := out[i]
if v.typ != typ {
panic("reflect: function created by MakeFunc using " + funcName(c.fn) +
" returned wrong type: have " +
out[i].typ.String() + " for " + typ.String())
}
if v.flag&flagRO != 0 {
panic("reflect: function created by MakeFunc using " + funcName(c.fn) +
" returned value obtained from unexported field")
}
}
if ret1 == amd64NoClass {
return
}
if ret1 == amd64Memory {
// The address of the memory area was passed as a
// hidden parameter in %rdi.
ptr := unsafe.Pointer(uintptr(regs.rdi))
off := uintptr(0)
for i, typ := range ftyp.out {
v := out[i]
off = align(off, uintptr(typ.fieldAlign))
addr := unsafe.Pointer(uintptr(ptr) + off)
if v.flag&flagIndir == 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) {
*(*unsafe.Pointer)(addr) = v.ptr
} else {
memmove(addr, v.ptr, typ.size)
}
off += typ.size
}
return
}
if len(out) == 1 && ret2 == amd64NoClass {
v := out[0]
w := v.iword()
if v.Kind() != Ptr && v.Kind() != UnsafePointer {
w = iword(loadScalar(unsafe.Pointer(w), v.typ.size))
}
switch ret1 {
case amd64Integer:
regs.rax = uint64(uintptr(w))
case amd64SSE:
regs.xmm0[0] = uint64(uintptr(w))
regs.xmm0[1] = 0
default:
panic("inconsistency")
}
return
}
var buf [2]unsafe.Pointer
ptr := unsafe.Pointer(&buf[0])
off := uintptr(0)
for i, typ := range ftyp.out {
v := out[i]
off = align(off, uintptr(typ.fieldAlign))
addr := unsafe.Pointer(uintptr(ptr) + off)
if v.flag&flagIndir == 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) {
*(*unsafe.Pointer)(addr) = v.ptr
} else {
memmove(addr, v.ptr, typ.size)
}
off += uintptr(typ.size)
}
switch ret1 {
case amd64Integer:
regs.rax = *(*uint64)(unsafe.Pointer(&buf[0]))
case amd64SSE:
regs.xmm0[0] = *(*uint64)(unsafe.Pointer(&buf[0]))
regs.xmm0[1] = 0
default:
panic("inconsistency")
}
switch ret2 {
case amd64Integer:
reg := *(*uint64)(unsafe.Pointer(&buf[1]))
if ret1 == amd64Integer {
regs.rdx = reg
} else {
regs.rax = reg
}
case amd64SSE:
reg := *(*uint64)(unsafe.Pointer(&buf[1]))
if ret1 == amd64Integer {
regs.xmm0[0] = reg
regs.xmm0[1] = 0
} else {
regs.xmm1[0] = reg
regs.xmm1[1] = 0
}
case amd64NoClass:
default:
panic("inconsistency")
}
}
// The amd64Memarg function adds an argument passed in memory.
func amd64Memarg(in []Value, ap uintptr, rt *rtype) ([]Value, uintptr) {
ap = align(ap, ptrSize)
ap = align(ap, uintptr(rt.align))
// We have to copy the argument onto the heap in case the
// function hangs onto the reflect.Value we pass it.
p := unsafe_New(rt)
memmove(p, unsafe.Pointer(ap), rt.size)
v := Value{rt, p, flag(rt.Kind()<<flagKindShift) | flagIndir}
in = append(in, v)
ap += rt.size
return in, ap
}
// The amd64IntregVal function returns the value of integer register i.
func amd64IntregVal(regs *amd64Regs, i int) uintptr {
var r uint64
switch i {
case 0:
r = regs.rdi
case 1:
r = regs.rsi
case 2:
r = regs.rdx
case 3:
r = regs.rcx
case 4:
r = regs.r8
case 5:
r = regs.r9
default:
panic("amd64IntregVal: bad index")
}
return uintptr(r)
}
// The amd64SSEregVal function returns the value of SSE register i.
// Note that although SSE registers can hold two uinptr's, for the
// types we use in Go we only ever use the least significant one. The
// most significant one would only be used for 128 bit types.
func amd64SSEregVal(regs *amd64Regs, i int) uintptr {
var r uint64
switch i {
case 0:
r = regs.xmm0[0]
case 1:
r = regs.xmm1[0]
case 2:
r = regs.xmm2[0]
case 3:
r = regs.xmm3[0]
case 4:
r = regs.xmm4[0]
case 5:
r = regs.xmm5[0]
case 6:
r = regs.xmm6[0]
case 7:
r = regs.xmm7[0]
}
return uintptr(r)
}
|