summaryrefslogtreecommitdiff
path: root/libgo/go/net/ip.go
blob: 0582009b8bdb58169dff74f5e5131fee0075364f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// IP address manipulations
//
// IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes.
// An IPv4 address can be converted to an IPv6 address by
// adding a canonical prefix (10 zeros, 2 0xFFs).
// This library accepts either size of byte slice but always
// returns 16-byte addresses.

package net

import "errors"

// IP address lengths (bytes).
const (
	IPv4len = 4
	IPv6len = 16
)

// An IP is a single IP address, a slice of bytes.
// Functions in this package accept either 4-byte (IPv4)
// or 16-byte (IPv6) slices as input.
//
// Note that in this documentation, referring to an
// IP address as an IPv4 address or an IPv6 address
// is a semantic property of the address, not just the
// length of the byte slice: a 16-byte slice can still
// be an IPv4 address.
type IP []byte

// An IP mask is an IP address.
type IPMask []byte

// An IPNet represents an IP network.
type IPNet struct {
	IP   IP     // network number
	Mask IPMask // network mask
}

// IPv4 returns the IP address (in 16-byte form) of the
// IPv4 address a.b.c.d.
func IPv4(a, b, c, d byte) IP {
	p := make(IP, IPv6len)
	copy(p, v4InV6Prefix)
	p[12] = a
	p[13] = b
	p[14] = c
	p[15] = d
	return p
}

var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}

// IPv4Mask returns the IP mask (in 4-byte form) of the
// IPv4 mask a.b.c.d.
func IPv4Mask(a, b, c, d byte) IPMask {
	p := make(IPMask, IPv4len)
	p[0] = a
	p[1] = b
	p[2] = c
	p[3] = d
	return p
}

// CIDRMask returns an IPMask consisting of `ones' 1 bits
// followed by 0s up to a total length of `bits' bits.
// For a mask of this form, CIDRMask is the inverse of IPMask.Size.
func CIDRMask(ones, bits int) IPMask {
	if bits != 8*IPv4len && bits != 8*IPv6len {
		return nil
	}
	if ones < 0 || ones > bits {
		return nil
	}
	l := bits / 8
	m := make(IPMask, l)
	n := uint(ones)
	for i := 0; i < l; i++ {
		if n >= 8 {
			m[i] = 0xff
			n -= 8
			continue
		}
		m[i] = ^byte(0xff >> n)
		n = 0
	}
	return m
}

// Well-known IPv4 addresses
var (
	IPv4bcast     = IPv4(255, 255, 255, 255) // broadcast
	IPv4allsys    = IPv4(224, 0, 0, 1)       // all systems
	IPv4allrouter = IPv4(224, 0, 0, 2)       // all routers
	IPv4zero      = IPv4(0, 0, 0, 0)         // all zeros
)

// Well-known IPv6 addresses
var (
	IPv6zero                   = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
	IPv6unspecified            = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
	IPv6loopback               = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
	IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
	IPv6linklocalallnodes      = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
	IPv6linklocalallrouters    = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02}
)

// IsUnspecified returns true if ip is an unspecified address.
func (ip IP) IsUnspecified() bool {
	if ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified) {
		return true
	}
	return false
}

// IsLoopback returns true if ip is a loopback address.
func (ip IP) IsLoopback() bool {
	if ip4 := ip.To4(); ip4 != nil && ip4[0] == 127 {
		return true
	}
	return ip.Equal(IPv6loopback)
}

// IsMulticast returns true if ip is a multicast address.
func (ip IP) IsMulticast() bool {
	if ip4 := ip.To4(); ip4 != nil && ip4[0]&0xf0 == 0xe0 {
		return true
	}
	return ip[0] == 0xff
}

// IsInterfaceLinkLocalMulticast returns true if ip is
// an interface-local multicast address.
func (ip IP) IsInterfaceLocalMulticast() bool {
	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01
}

// IsLinkLocalMulticast returns true if ip is a link-local
// multicast address.
func (ip IP) IsLinkLocalMulticast() bool {
	if ip4 := ip.To4(); ip4 != nil && ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0 {
		return true
	}
	return ip[0] == 0xff && ip[1]&0x0f == 0x02
}

// IsLinkLocalUnicast returns true if ip is a link-local
// unicast address.
func (ip IP) IsLinkLocalUnicast() bool {
	if ip4 := ip.To4(); ip4 != nil && ip4[0] == 169 && ip4[1] == 254 {
		return true
	}
	return ip[0] == 0xfe && ip[1]&0xc0 == 0x80
}

// IsGlobalUnicast returns true if ip is a global unicast
// address.
func (ip IP) IsGlobalUnicast() bool {
	return !ip.IsUnspecified() &&
		!ip.IsLoopback() &&
		!ip.IsMulticast() &&
		!ip.IsLinkLocalUnicast()
}

// Is p all zeros?
func isZeros(p IP) bool {
	for i := 0; i < len(p); i++ {
		if p[i] != 0 {
			return false
		}
	}
	return true
}

// To4 converts the IPv4 address ip to a 4-byte representation.
// If ip is not an IPv4 address, To4 returns nil.
func (ip IP) To4() IP {
	if len(ip) == IPv4len {
		return ip
	}
	if len(ip) == IPv6len &&
		isZeros(ip[0:10]) &&
		ip[10] == 0xff &&
		ip[11] == 0xff {
		return ip[12:16]
	}
	return nil
}

// To16 converts the IP address ip to a 16-byte representation.
// If ip is not an IP address (it is the wrong length), To16 returns nil.
func (ip IP) To16() IP {
	if len(ip) == IPv4len {
		return IPv4(ip[0], ip[1], ip[2], ip[3])
	}
	if len(ip) == IPv6len {
		return ip
	}
	return nil
}

// Default route masks for IPv4.
var (
	classAMask = IPv4Mask(0xff, 0, 0, 0)
	classBMask = IPv4Mask(0xff, 0xff, 0, 0)
	classCMask = IPv4Mask(0xff, 0xff, 0xff, 0)
)

// DefaultMask returns the default IP mask for the IP address ip.
// Only IPv4 addresses have default masks; DefaultMask returns
// nil if ip is not a valid IPv4 address.
func (ip IP) DefaultMask() IPMask {
	if ip = ip.To4(); ip == nil {
		return nil
	}
	switch true {
	case ip[0] < 0x80:
		return classAMask
	case ip[0] < 0xC0:
		return classBMask
	default:
		return classCMask
	}
}

func allFF(b []byte) bool {
	for _, c := range b {
		if c != 0xff {
			return false
		}
	}
	return true
}

// Mask returns the result of masking the IP address ip with mask.
func (ip IP) Mask(mask IPMask) IP {
	if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) {
		mask = mask[12:]
	}
	if len(mask) == IPv4len && len(ip) == IPv6len && bytesEqual(ip[:12], v4InV6Prefix) {
		ip = ip[12:]
	}
	n := len(ip)
	if n != len(mask) {
		return nil
	}
	out := make(IP, n)
	for i := 0; i < n; i++ {
		out[i] = ip[i] & mask[i]
	}
	return out
}

// String returns the string form of the IP address ip.
// If the address is an IPv4 address, the string representation
// is dotted decimal ("74.125.19.99").  Otherwise the representation
// is IPv6 ("2001:4860:0:2001::68").
func (ip IP) String() string {
	p := ip

	if len(ip) == 0 {
		return "<nil>"
	}

	// If IPv4, use dotted notation.
	if p4 := p.To4(); len(p4) == IPv4len {
		return itod(uint(p4[0])) + "." +
			itod(uint(p4[1])) + "." +
			itod(uint(p4[2])) + "." +
			itod(uint(p4[3]))
	}
	if len(p) != IPv6len {
		return "?"
	}

	// Find longest run of zeros.
	e0 := -1
	e1 := -1
	for i := 0; i < IPv6len; i += 2 {
		j := i
		for j < IPv6len && p[j] == 0 && p[j+1] == 0 {
			j += 2
		}
		if j > i && j-i > e1-e0 {
			e0 = i
			e1 = j
		}
	}
	// The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field.
	if e1-e0 <= 2 {
		e0 = -1
		e1 = -1
	}

	// Print with possible :: in place of run of zeros
	var s string
	for i := 0; i < IPv6len; i += 2 {
		if i == e0 {
			s += "::"
			i = e1
			if i >= IPv6len {
				break
			}
		} else if i > 0 {
			s += ":"
		}
		s += itox((uint(p[i])<<8)|uint(p[i+1]), 1)
	}
	return s
}

// ipEmptyString is like ip.String except that it returns
// an empty string when ip is unset.
func ipEmptyString(ip IP) string {
	if len(ip) == 0 {
		return ""
	}
	return ip.String()
}

// MarshalText implements the encoding.TextMarshaler interface.
// The encoding is the same as returned by String.
func (ip IP) MarshalText() ([]byte, error) {
	if len(ip) == 0 {
		return []byte(""), nil
	}
	if len(ip) != IPv4len && len(ip) != IPv6len {
		return nil, errors.New("invalid IP address")
	}
	return []byte(ip.String()), nil
}

// UnmarshalText implements the encoding.TextUnmarshaler interface.
// The IP address is expected in a form accepted by ParseIP.
func (ip *IP) UnmarshalText(text []byte) error {
	if len(text) == 0 {
		*ip = nil
		return nil
	}
	s := string(text)
	x := ParseIP(s)
	if x == nil {
		return &ParseError{"IP address", s}
	}
	*ip = x
	return nil
}

// Equal returns true if ip and x are the same IP address.
// An IPv4 address and that same address in IPv6 form are
// considered to be equal.
func (ip IP) Equal(x IP) bool {
	if len(ip) == len(x) {
		return bytesEqual(ip, x)
	}
	if len(ip) == IPv4len && len(x) == IPv6len {
		return bytesEqual(x[0:12], v4InV6Prefix) && bytesEqual(ip, x[12:])
	}
	if len(ip) == IPv6len && len(x) == IPv4len {
		return bytesEqual(ip[0:12], v4InV6Prefix) && bytesEqual(ip[12:], x)
	}
	return false
}

func bytesEqual(x, y []byte) bool {
	if len(x) != len(y) {
		return false
	}
	for i, b := range x {
		if y[i] != b {
			return false
		}
	}
	return true
}

// If mask is a sequence of 1 bits followed by 0 bits,
// return the number of 1 bits.
func simpleMaskLength(mask IPMask) int {
	var n int
	for i, v := range mask {
		if v == 0xff {
			n += 8
			continue
		}
		// found non-ff byte
		// count 1 bits
		for v&0x80 != 0 {
			n++
			v <<= 1
		}
		// rest must be 0 bits
		if v != 0 {
			return -1
		}
		for i++; i < len(mask); i++ {
			if mask[i] != 0 {
				return -1
			}
		}
		break
	}
	return n
}

// Size returns the number of leading ones and total bits in the mask.
// If the mask is not in the canonical form--ones followed by zeros--then
// Size returns 0, 0.
func (m IPMask) Size() (ones, bits int) {
	ones, bits = simpleMaskLength(m), len(m)*8
	if ones == -1 {
		return 0, 0
	}
	return
}

// String returns the hexadecimal form of m, with no punctuation.
func (m IPMask) String() string {
	s := ""
	for _, b := range m {
		s += itox(uint(b), 2)
	}
	if len(s) == 0 {
		return "<nil>"
	}
	return s
}

func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) {
	if ip = n.IP.To4(); ip == nil {
		ip = n.IP
		if len(ip) != IPv6len {
			return nil, nil
		}
	}
	m = n.Mask
	switch len(m) {
	case IPv4len:
		if len(ip) != IPv4len {
			return nil, nil
		}
	case IPv6len:
		if len(ip) == IPv4len {
			m = m[12:]
		}
	default:
		return nil, nil
	}
	return
}

// Contains reports whether the network includes ip.
func (n *IPNet) Contains(ip IP) bool {
	nn, m := networkNumberAndMask(n)
	if x := ip.To4(); x != nil {
		ip = x
	}
	l := len(ip)
	if l != len(nn) {
		return false
	}
	for i := 0; i < l; i++ {
		if nn[i]&m[i] != ip[i]&m[i] {
			return false
		}
	}
	return true
}

// Network returns the address's network name, "ip+net".
func (n *IPNet) Network() string { return "ip+net" }

// String returns the CIDR notation of n like "192.168.100.1/24"
// or "2001:DB8::/48" as defined in RFC 4632 and RFC 4291.
// If the mask is not in the canonical form, it returns the
// string which consists of an IP address, followed by a slash
// character and a mask expressed as hexadecimal form with no
// punctuation like "192.168.100.1/c000ff00".
func (n *IPNet) String() string {
	nn, m := networkNumberAndMask(n)
	if nn == nil || m == nil {
		return "<nil>"
	}
	l := simpleMaskLength(m)
	if l == -1 {
		return nn.String() + "/" + m.String()
	}
	return nn.String() + "/" + itod(uint(l))
}

// Parse IPv4 address (d.d.d.d).
func parseIPv4(s string) IP {
	var p [IPv4len]byte
	i := 0
	for j := 0; j < IPv4len; j++ {
		if i >= len(s) {
			// Missing octets.
			return nil
		}
		if j > 0 {
			if s[i] != '.' {
				return nil
			}
			i++
		}
		var (
			n  int
			ok bool
		)
		n, i, ok = dtoi(s, i)
		if !ok || n > 0xFF {
			return nil
		}
		p[j] = byte(n)
	}
	if i != len(s) {
		return nil
	}
	return IPv4(p[0], p[1], p[2], p[3])
}

// parseIPv6 parses s as a literal IPv6 address described in RFC 4291
// and RFC 5952.  It can also parse a literal scoped IPv6 address with
// zone identifier which is described in RFC 4007 when zoneAllowed is
// true.
func parseIPv6(s string, zoneAllowed bool) (ip IP, zone string) {
	ip = make(IP, IPv6len)
	ellipsis := -1 // position of ellipsis in p
	i := 0         // index in string s

	if zoneAllowed {
		s, zone = splitHostZone(s)
	}

	// Might have leading ellipsis
	if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
		ellipsis = 0
		i = 2
		// Might be only ellipsis
		if i == len(s) {
			return ip, zone
		}
	}

	// Loop, parsing hex numbers followed by colon.
	j := 0
	for j < IPv6len {
		// Hex number.
		n, i1, ok := xtoi(s, i)
		if !ok || n > 0xFFFF {
			return nil, zone
		}

		// If followed by dot, might be in trailing IPv4.
		if i1 < len(s) && s[i1] == '.' {
			if ellipsis < 0 && j != IPv6len-IPv4len {
				// Not the right place.
				return nil, zone
			}
			if j+IPv4len > IPv6len {
				// Not enough room.
				return nil, zone
			}
			ip4 := parseIPv4(s[i:])
			if ip4 == nil {
				return nil, zone
			}
			ip[j] = ip4[12]
			ip[j+1] = ip4[13]
			ip[j+2] = ip4[14]
			ip[j+3] = ip4[15]
			i = len(s)
			j += IPv4len
			break
		}

		// Save this 16-bit chunk.
		ip[j] = byte(n >> 8)
		ip[j+1] = byte(n)
		j += 2

		// Stop at end of string.
		i = i1
		if i == len(s) {
			break
		}

		// Otherwise must be followed by colon and more.
		if s[i] != ':' || i+1 == len(s) {
			return nil, zone
		}
		i++

		// Look for ellipsis.
		if s[i] == ':' {
			if ellipsis >= 0 { // already have one
				return nil, zone
			}
			ellipsis = j
			if i++; i == len(s) { // can be at end
				break
			}
		}
	}

	// Must have used entire string.
	if i != len(s) {
		return nil, zone
	}

	// If didn't parse enough, expand ellipsis.
	if j < IPv6len {
		if ellipsis < 0 {
			return nil, zone
		}
		n := IPv6len - j
		for k := j - 1; k >= ellipsis; k-- {
			ip[k+n] = ip[k]
		}
		for k := ellipsis + n - 1; k >= ellipsis; k-- {
			ip[k] = 0
		}
	} else if ellipsis >= 0 {
		// Ellipsis must represent at least one 0 group.
		return nil, zone
	}
	return ip, zone
}

// A ParseError represents a malformed text string and the type of string that was expected.
type ParseError struct {
	Type string
	Text string
}

func (e *ParseError) Error() string {
	return "invalid " + e.Type + ": " + e.Text
}

// ParseIP parses s as an IP address, returning the result.
// The string s can be in dotted decimal ("74.125.19.99")
// or IPv6 ("2001:4860:0:2001::68") form.
// If s is not a valid textual representation of an IP address,
// ParseIP returns nil.
func ParseIP(s string) IP {
	if ip := parseIPv4(s); ip != nil {
		return ip
	}
	ip, _ := parseIPv6(s, false)
	return ip
}

// ParseCIDR parses s as a CIDR notation IP address and mask,
// like "192.168.100.1/24" or "2001:DB8::/48", as defined in
// RFC 4632 and RFC 4291.
//
// It returns the IP address and the network implied by the IP
// and mask.  For example, ParseCIDR("192.168.100.1/16") returns
// the IP address 192.168.100.1 and the network 192.168.0.0/16.
func ParseCIDR(s string) (IP, *IPNet, error) {
	i := byteIndex(s, '/')
	if i < 0 {
		return nil, nil, &ParseError{"CIDR address", s}
	}
	addr, mask := s[:i], s[i+1:]
	iplen := IPv4len
	ip := parseIPv4(addr)
	if ip == nil {
		iplen = IPv6len
		ip, _ = parseIPv6(addr, false)
	}
	n, i, ok := dtoi(mask, 0)
	if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen {
		return nil, nil, &ParseError{"CIDR address", s}
	}
	m := CIDRMask(n, 8*iplen)
	return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil
}