1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rand
import (
"errors"
"fmt"
"math"
"testing"
)
const (
numTestSamples = 10000
)
type statsResults struct {
mean float64
stddev float64
closeEnough float64
maxError float64
}
func max(a, b float64) float64 {
if a > b {
return a
}
return b
}
func nearEqual(a, b, closeEnough, maxError float64) bool {
absDiff := math.Abs(a - b)
if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
return true
}
return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
}
var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
// checkSimilarDistribution returns success if the mean and stddev of the
// two statsResults are similar.
func (this *statsResults) checkSimilarDistribution(expected *statsResults) error {
if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {
s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError)
fmt.Println(s)
return errors.New(s)
}
if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) {
s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError)
fmt.Println(s)
return errors.New(s)
}
return nil
}
func getStatsResults(samples []float64) *statsResults {
res := new(statsResults)
var sum, squaresum float64
for _, s := range samples {
sum += s
squaresum += s * s
}
res.mean = sum / float64(len(samples))
res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
return res
}
func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
actual := getStatsResults(samples)
err := actual.checkSimilarDistribution(expected)
if err != nil {
t.Errorf(err.Error())
}
}
func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
chunk := len(samples) / nslices
for i := 0; i < nslices; i++ {
low := i * chunk
var high int
if i == nslices-1 {
high = len(samples) - 1
} else {
high = (i + 1) * chunk
}
checkSampleDistribution(t, samples[low:high], expected)
}
}
//
// Normal distribution tests
//
func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
r := New(NewSource(seed))
samples := make([]float64, nsamples)
for i := range samples {
samples[i] = r.NormFloat64()*stddev + mean
}
return samples
}
func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
samples := generateNormalSamples(nsamples, mean, stddev, seed)
errorScale := max(1.0, stddev) // Error scales with stddev
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
// Make sure that each half of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 2, expected)
// Make sure that each 7th of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 7, expected)
}
// Actual tests
func TestStandardNormalValues(t *testing.T) {
for _, seed := range testSeeds {
testNormalDistribution(t, numTestSamples, 0, 1, seed)
}
}
func TestNonStandardNormalValues(t *testing.T) {
sdmax := 1000.0
mmax := 1000.0
if testing.Short() {
sdmax = 5
mmax = 5
}
for sd := 0.5; sd < sdmax; sd *= 2 {
for m := 0.5; m < mmax; m *= 2 {
for _, seed := range testSeeds {
testNormalDistribution(t, numTestSamples, m, sd, seed)
if testing.Short() {
break
}
}
}
}
}
//
// Exponential distribution tests
//
func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
r := New(NewSource(seed))
samples := make([]float64, nsamples)
for i := range samples {
samples[i] = r.ExpFloat64() / rate
}
return samples
}
func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);
mean := 1 / rate
stddev := mean
samples := generateExponentialSamples(nsamples, rate, seed)
errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
// Make sure that each half of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 2, expected)
// Make sure that each 7th of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 7, expected)
}
// Actual tests
func TestStandardExponentialValues(t *testing.T) {
for _, seed := range testSeeds {
testExponentialDistribution(t, numTestSamples, 1, seed)
}
}
func TestNonStandardExponentialValues(t *testing.T) {
for rate := 0.05; rate < 10; rate *= 2 {
for _, seed := range testSeeds {
testExponentialDistribution(t, numTestSamples, rate, seed)
if testing.Short() {
break
}
}
}
}
//
// Table generation tests
//
func initNorm() (testKn []uint32, testWn, testFn []float32) {
const m1 = 1 << 31
var (
dn float64 = rn
tn = dn
vn float64 = 9.91256303526217e-3
)
testKn = make([]uint32, 128)
testWn = make([]float32, 128)
testFn = make([]float32, 128)
q := vn / math.Exp(-0.5*dn*dn)
testKn[0] = uint32((dn / q) * m1)
testKn[1] = 0
testWn[0] = float32(q / m1)
testWn[127] = float32(dn / m1)
testFn[0] = 1.0
testFn[127] = float32(math.Exp(-0.5 * dn * dn))
for i := 126; i >= 1; i-- {
dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
testKn[i+1] = uint32((dn / tn) * m1)
tn = dn
testFn[i] = float32(math.Exp(-0.5 * dn * dn))
testWn[i] = float32(dn / m1)
}
return
}
func initExp() (testKe []uint32, testWe, testFe []float32) {
const m2 = 1 << 32
var (
de float64 = re
te = de
ve float64 = 3.9496598225815571993e-3
)
testKe = make([]uint32, 256)
testWe = make([]float32, 256)
testFe = make([]float32, 256)
q := ve / math.Exp(-de)
testKe[0] = uint32((de / q) * m2)
testKe[1] = 0
testWe[0] = float32(q / m2)
testWe[255] = float32(de / m2)
testFe[0] = 1.0
testFe[255] = float32(math.Exp(-de))
for i := 254; i >= 1; i-- {
de = -math.Log(ve/de + math.Exp(-de))
testKe[i+1] = uint32((de / te) * m2)
te = de
testFe[i] = float32(math.Exp(-de))
testWe[i] = float32(de / m2)
}
return
}
// compareUint32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareUint32Slices(s1, s2 []uint32) int {
if len(s1) != len(s2) {
if len(s1) > len(s2) {
return len(s2) + 1
}
return len(s1) + 1
}
for i := range s1 {
if s1[i] != s2[i] {
return i
}
}
return -1
}
// compareFloat32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareFloat32Slices(s1, s2 []float32) int {
if len(s1) != len(s2) {
if len(s1) > len(s2) {
return len(s2) + 1
}
return len(s1) + 1
}
for i := range s1 {
if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
return i
}
}
return -1
}
func TestNormTables(t *testing.T) {
testKn, testWn, testFn := initNorm()
if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
}
if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
}
if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
}
}
func TestExpTables(t *testing.T) {
testKe, testWe, testFe := initExp()
if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
}
if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
}
if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
}
}
// Benchmarks
func BenchmarkInt63Threadsafe(b *testing.B) {
for n := b.N; n > 0; n-- {
Int63()
}
}
func BenchmarkInt63Unthreadsafe(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Int63()
}
}
func BenchmarkIntn1000(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Intn(1000)
}
}
func BenchmarkInt63n1000(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Int63n(1000)
}
}
func BenchmarkInt31n1000(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Int31n(1000)
}
}
|