summaryrefslogtreecommitdiff
path: root/libgo/go/math/big/rat.go
blob: c5339fe443184583dadb2d6a224123955e2440d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements multi-precision rational numbers.

package big

import (
	"encoding/binary"
	"errors"
	"fmt"
	"math"
	"strings"
)

// A Rat represents a quotient a/b of arbitrary precision.
// The zero value for a Rat represents the value 0.
type Rat struct {
	// To make zero values for Rat work w/o initialization,
	// a zero value of b (len(b) == 0) acts like b == 1.
	// a.neg determines the sign of the Rat, b.neg is ignored.
	a, b Int
}

// NewRat creates a new Rat with numerator a and denominator b.
func NewRat(a, b int64) *Rat {
	return new(Rat).SetFrac64(a, b)
}

// SetFloat64 sets z to exactly f and returns z.
// If f is not finite, SetFloat returns nil.
func (z *Rat) SetFloat64(f float64) *Rat {
	const expMask = 1<<11 - 1
	bits := math.Float64bits(f)
	mantissa := bits & (1<<52 - 1)
	exp := int((bits >> 52) & expMask)
	switch exp {
	case expMask: // non-finite
		return nil
	case 0: // denormal
		exp -= 1022
	default: // normal
		mantissa |= 1 << 52
		exp -= 1023
	}

	shift := 52 - exp

	// Optimization (?): partially pre-normalise.
	for mantissa&1 == 0 && shift > 0 {
		mantissa >>= 1
		shift--
	}

	z.a.SetUint64(mantissa)
	z.a.neg = f < 0
	z.b.Set(intOne)
	if shift > 0 {
		z.b.Lsh(&z.b, uint(shift))
	} else {
		z.a.Lsh(&z.a, uint(-shift))
	}
	return z.norm()
}

// quotToFloat32 returns the non-negative float32 value
// nearest to the quotient a/b, using round-to-even in
// halfway cases.  It does not mutate its arguments.
// Preconditions: b is non-zero; a and b have no common factors.
func quotToFloat32(a, b nat) (f float32, exact bool) {
	const (
		// float size in bits
		Fsize = 32

		// mantissa
		Msize  = 23
		Msize1 = Msize + 1 // incl. implicit 1
		Msize2 = Msize1 + 1

		// exponent
		Esize = Fsize - Msize1
		Ebias = 1<<(Esize-1) - 1
		Emin  = 1 - Ebias
		Emax  = Ebias
	)

	// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
	alen := a.bitLen()
	if alen == 0 {
		return 0, true
	}
	blen := b.bitLen()
	if blen == 0 {
		panic("division by zero")
	}

	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
	// This is 2 or 3 more than the float32 mantissa field width of Msize:
	// - the optional extra bit is shifted away in step 3 below.
	// - the high-order 1 is omitted in "normal" representation;
	// - the low-order 1 will be used during rounding then discarded.
	exp := alen - blen
	var a2, b2 nat
	a2 = a2.set(a)
	b2 = b2.set(b)
	if shift := Msize2 - exp; shift > 0 {
		a2 = a2.shl(a2, uint(shift))
	} else if shift < 0 {
		b2 = b2.shl(b2, uint(-shift))
	}

	// 2. Compute quotient and remainder (q, r).  NB: due to the
	// extra shift, the low-order bit of q is logically the
	// high-order bit of r.
	var q nat
	q, r := q.div(a2, a2, b2) // (recycle a2)
	mantissa := low32(q)
	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half

	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
	// (in effect---we accomplish this incrementally).
	if mantissa>>Msize2 == 1 {
		if mantissa&1 == 1 {
			haveRem = true
		}
		mantissa >>= 1
		exp++
	}
	if mantissa>>Msize1 != 1 {
		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
	}

	// 4. Rounding.
	if Emin-Msize <= exp && exp <= Emin {
		// Denormal case; lose 'shift' bits of precision.
		shift := uint(Emin - (exp - 1)) // [1..Esize1)
		lostbits := mantissa & (1<<shift - 1)
		haveRem = haveRem || lostbits != 0
		mantissa >>= shift
		exp = 2 - Ebias // == exp + shift
	}
	// Round q using round-half-to-even.
	exact = !haveRem
	if mantissa&1 != 0 {
		exact = false
		if haveRem || mantissa&2 != 0 {
			if mantissa++; mantissa >= 1<<Msize2 {
				// Complete rollover 11...1 => 100...0, so shift is safe
				mantissa >>= 1
				exp++
			}
		}
	}
	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1.

	f = float32(math.Ldexp(float64(mantissa), exp-Msize1))
	if math.IsInf(float64(f), 0) {
		exact = false
	}
	return
}

// quotToFloat64 returns the non-negative float64 value
// nearest to the quotient a/b, using round-to-even in
// halfway cases.  It does not mutate its arguments.
// Preconditions: b is non-zero; a and b have no common factors.
func quotToFloat64(a, b nat) (f float64, exact bool) {
	const (
		// float size in bits
		Fsize = 64

		// mantissa
		Msize  = 52
		Msize1 = Msize + 1 // incl. implicit 1
		Msize2 = Msize1 + 1

		// exponent
		Esize = Fsize - Msize1
		Ebias = 1<<(Esize-1) - 1
		Emin  = 1 - Ebias
		Emax  = Ebias
	)

	// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
	alen := a.bitLen()
	if alen == 0 {
		return 0, true
	}
	blen := b.bitLen()
	if blen == 0 {
		panic("division by zero")
	}

	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
	// This is 2 or 3 more than the float64 mantissa field width of Msize:
	// - the optional extra bit is shifted away in step 3 below.
	// - the high-order 1 is omitted in "normal" representation;
	// - the low-order 1 will be used during rounding then discarded.
	exp := alen - blen
	var a2, b2 nat
	a2 = a2.set(a)
	b2 = b2.set(b)
	if shift := Msize2 - exp; shift > 0 {
		a2 = a2.shl(a2, uint(shift))
	} else if shift < 0 {
		b2 = b2.shl(b2, uint(-shift))
	}

	// 2. Compute quotient and remainder (q, r).  NB: due to the
	// extra shift, the low-order bit of q is logically the
	// high-order bit of r.
	var q nat
	q, r := q.div(a2, a2, b2) // (recycle a2)
	mantissa := low64(q)
	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half

	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
	// (in effect---we accomplish this incrementally).
	if mantissa>>Msize2 == 1 {
		if mantissa&1 == 1 {
			haveRem = true
		}
		mantissa >>= 1
		exp++
	}
	if mantissa>>Msize1 != 1 {
		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
	}

	// 4. Rounding.
	if Emin-Msize <= exp && exp <= Emin {
		// Denormal case; lose 'shift' bits of precision.
		shift := uint(Emin - (exp - 1)) // [1..Esize1)
		lostbits := mantissa & (1<<shift - 1)
		haveRem = haveRem || lostbits != 0
		mantissa >>= shift
		exp = 2 - Ebias // == exp + shift
	}
	// Round q using round-half-to-even.
	exact = !haveRem
	if mantissa&1 != 0 {
		exact = false
		if haveRem || mantissa&2 != 0 {
			if mantissa++; mantissa >= 1<<Msize2 {
				// Complete rollover 11...1 => 100...0, so shift is safe
				mantissa >>= 1
				exp++
			}
		}
	}
	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1.

	f = math.Ldexp(float64(mantissa), exp-Msize1)
	if math.IsInf(f, 0) {
		exact = false
	}
	return
}

// Float32 returns the nearest float32 value for x and a bool indicating
// whether f represents x exactly. If the magnitude of x is too large to
// be represented by a float32, f is an infinity and exact is false.
// The sign of f always matches the sign of x, even if f == 0.
func (x *Rat) Float32() (f float32, exact bool) {
	b := x.b.abs
	if len(b) == 0 {
		b = b.set(natOne) // materialize denominator
	}
	f, exact = quotToFloat32(x.a.abs, b)
	if x.a.neg {
		f = -f
	}
	return
}

// Float64 returns the nearest float64 value for x and a bool indicating
// whether f represents x exactly. If the magnitude of x is too large to
// be represented by a float64, f is an infinity and exact is false.
// The sign of f always matches the sign of x, even if f == 0.
func (x *Rat) Float64() (f float64, exact bool) {
	b := x.b.abs
	if len(b) == 0 {
		b = b.set(natOne) // materialize denominator
	}
	f, exact = quotToFloat64(x.a.abs, b)
	if x.a.neg {
		f = -f
	}
	return
}

// SetFrac sets z to a/b and returns z.
func (z *Rat) SetFrac(a, b *Int) *Rat {
	z.a.neg = a.neg != b.neg
	babs := b.abs
	if len(babs) == 0 {
		panic("division by zero")
	}
	if &z.a == b || alias(z.a.abs, babs) {
		babs = nat(nil).set(babs) // make a copy
	}
	z.a.abs = z.a.abs.set(a.abs)
	z.b.abs = z.b.abs.set(babs)
	return z.norm()
}

// SetFrac64 sets z to a/b and returns z.
func (z *Rat) SetFrac64(a, b int64) *Rat {
	z.a.SetInt64(a)
	if b == 0 {
		panic("division by zero")
	}
	if b < 0 {
		b = -b
		z.a.neg = !z.a.neg
	}
	z.b.abs = z.b.abs.setUint64(uint64(b))
	return z.norm()
}

// SetInt sets z to x (by making a copy of x) and returns z.
func (z *Rat) SetInt(x *Int) *Rat {
	z.a.Set(x)
	z.b.abs = z.b.abs.make(0)
	return z
}

// SetInt64 sets z to x and returns z.
func (z *Rat) SetInt64(x int64) *Rat {
	z.a.SetInt64(x)
	z.b.abs = z.b.abs.make(0)
	return z
}

// Set sets z to x (by making a copy of x) and returns z.
func (z *Rat) Set(x *Rat) *Rat {
	if z != x {
		z.a.Set(&x.a)
		z.b.Set(&x.b)
	}
	return z
}

// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Rat) Abs(x *Rat) *Rat {
	z.Set(x)
	z.a.neg = false
	return z
}

// Neg sets z to -x and returns z.
func (z *Rat) Neg(x *Rat) *Rat {
	z.Set(x)
	z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
	return z
}

// Inv sets z to 1/x and returns z.
func (z *Rat) Inv(x *Rat) *Rat {
	if len(x.a.abs) == 0 {
		panic("division by zero")
	}
	z.Set(x)
	a := z.b.abs
	if len(a) == 0 {
		a = a.set(natOne) // materialize numerator
	}
	b := z.a.abs
	if b.cmp(natOne) == 0 {
		b = b.make(0) // normalize denominator
	}
	z.a.abs, z.b.abs = a, b // sign doesn't change
	return z
}

// Sign returns:
//
//	-1 if x <  0
//	 0 if x == 0
//	+1 if x >  0
//
func (x *Rat) Sign() int {
	return x.a.Sign()
}

// IsInt returns true if the denominator of x is 1.
func (x *Rat) IsInt() bool {
	return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
}

// Num returns the numerator of x; it may be <= 0.
// The result is a reference to x's numerator; it
// may change if a new value is assigned to x, and vice versa.
// The sign of the numerator corresponds to the sign of x.
func (x *Rat) Num() *Int {
	return &x.a
}

// Denom returns the denominator of x; it is always > 0.
// The result is a reference to x's denominator; it
// may change if a new value is assigned to x, and vice versa.
func (x *Rat) Denom() *Int {
	x.b.neg = false // the result is always >= 0
	if len(x.b.abs) == 0 {
		x.b.abs = x.b.abs.set(natOne) // materialize denominator
	}
	return &x.b
}

func (z *Rat) norm() *Rat {
	switch {
	case len(z.a.abs) == 0:
		// z == 0 - normalize sign and denominator
		z.a.neg = false
		z.b.abs = z.b.abs.make(0)
	case len(z.b.abs) == 0:
		// z is normalized int - nothing to do
	case z.b.abs.cmp(natOne) == 0:
		// z is int - normalize denominator
		z.b.abs = z.b.abs.make(0)
	default:
		neg := z.a.neg
		z.a.neg = false
		z.b.neg = false
		if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 {
			z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
			z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
			if z.b.abs.cmp(natOne) == 0 {
				// z is int - normalize denominator
				z.b.abs = z.b.abs.make(0)
			}
		}
		z.a.neg = neg
	}
	return z
}

// mulDenom sets z to the denominator product x*y (by taking into
// account that 0 values for x or y must be interpreted as 1) and
// returns z.
func mulDenom(z, x, y nat) nat {
	switch {
	case len(x) == 0:
		return z.set(y)
	case len(y) == 0:
		return z.set(x)
	}
	return z.mul(x, y)
}

// scaleDenom computes x*f.
// If f == 0 (zero value of denominator), the result is (a copy of) x.
func scaleDenom(x *Int, f nat) *Int {
	var z Int
	if len(f) == 0 {
		return z.Set(x)
	}
	z.abs = z.abs.mul(x.abs, f)
	z.neg = x.neg
	return &z
}

// Cmp compares x and y and returns:
//
//   -1 if x <  y
//    0 if x == y
//   +1 if x >  y
//
func (x *Rat) Cmp(y *Rat) int {
	return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs))
}

// Add sets z to the sum x+y and returns z.
func (z *Rat) Add(x, y *Rat) *Rat {
	a1 := scaleDenom(&x.a, y.b.abs)
	a2 := scaleDenom(&y.a, x.b.abs)
	z.a.Add(a1, a2)
	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
	return z.norm()
}

// Sub sets z to the difference x-y and returns z.
func (z *Rat) Sub(x, y *Rat) *Rat {
	a1 := scaleDenom(&x.a, y.b.abs)
	a2 := scaleDenom(&y.a, x.b.abs)
	z.a.Sub(a1, a2)
	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
	return z.norm()
}

// Mul sets z to the product x*y and returns z.
func (z *Rat) Mul(x, y *Rat) *Rat {
	z.a.Mul(&x.a, &y.a)
	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
	return z.norm()
}

// Quo sets z to the quotient x/y and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
func (z *Rat) Quo(x, y *Rat) *Rat {
	if len(y.a.abs) == 0 {
		panic("division by zero")
	}
	a := scaleDenom(&x.a, y.b.abs)
	b := scaleDenom(&y.a, x.b.abs)
	z.a.abs = a.abs
	z.b.abs = b.abs
	z.a.neg = a.neg != b.neg
	return z.norm()
}

func ratTok(ch rune) bool {
	return strings.IndexRune("+-/0123456789.eE", ch) >= 0
}

// Scan is a support routine for fmt.Scanner. It accepts the formats
// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
	tok, err := s.Token(true, ratTok)
	if err != nil {
		return err
	}
	if strings.IndexRune("efgEFGv", ch) < 0 {
		return errors.New("Rat.Scan: invalid verb")
	}
	if _, ok := z.SetString(string(tok)); !ok {
		return errors.New("Rat.Scan: invalid syntax")
	}
	return nil
}

// SetString sets z to the value of s and returns z and a boolean indicating
// success. s can be given as a fraction "a/b" or as a floating-point number
// optionally followed by an exponent. If the operation failed, the value of
// z is undefined but the returned value is nil.
func (z *Rat) SetString(s string) (*Rat, bool) {
	if len(s) == 0 {
		return nil, false
	}

	// check for a quotient
	sep := strings.Index(s, "/")
	if sep >= 0 {
		if _, ok := z.a.SetString(s[0:sep], 10); !ok {
			return nil, false
		}
		s = s[sep+1:]
		var err error
		if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil {
			return nil, false
		}
		if len(z.b.abs) == 0 {
			return nil, false
		}
		return z.norm(), true
	}

	// check for a decimal point
	sep = strings.Index(s, ".")
	// check for an exponent
	e := strings.IndexAny(s, "eE")
	var exp Int
	if e >= 0 {
		if e < sep {
			// The E must come after the decimal point.
			return nil, false
		}
		if _, ok := exp.SetString(s[e+1:], 10); !ok {
			return nil, false
		}
		s = s[0:e]
	}
	if sep >= 0 {
		s = s[0:sep] + s[sep+1:]
		exp.Sub(&exp, NewInt(int64(len(s)-sep)))
	}

	if _, ok := z.a.SetString(s, 10); !ok {
		return nil, false
	}
	powTen := nat(nil).expNN(natTen, exp.abs, nil)
	if exp.neg {
		z.b.abs = powTen
		z.norm()
	} else {
		z.a.abs = z.a.abs.mul(z.a.abs, powTen)
		z.b.abs = z.b.abs.make(0)
	}

	return z, true
}

// String returns a string representation of x in the form "a/b" (even if b == 1).
func (x *Rat) String() string {
	s := "/1"
	if len(x.b.abs) != 0 {
		s = "/" + x.b.abs.decimalString()
	}
	return x.a.String() + s
}

// RatString returns a string representation of x in the form "a/b" if b != 1,
// and in the form "a" if b == 1.
func (x *Rat) RatString() string {
	if x.IsInt() {
		return x.a.String()
	}
	return x.String()
}

// FloatString returns a string representation of x in decimal form with prec
// digits of precision after the decimal point and the last digit rounded.
func (x *Rat) FloatString(prec int) string {
	if x.IsInt() {
		s := x.a.String()
		if prec > 0 {
			s += "." + strings.Repeat("0", prec)
		}
		return s
	}
	// x.b.abs != 0

	q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)

	p := natOne
	if prec > 0 {
		p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil)
	}

	r = r.mul(r, p)
	r, r2 := r.div(nat(nil), r, x.b.abs)

	// see if we need to round up
	r2 = r2.add(r2, r2)
	if x.b.abs.cmp(r2) <= 0 {
		r = r.add(r, natOne)
		if r.cmp(p) >= 0 {
			q = nat(nil).add(q, natOne)
			r = nat(nil).sub(r, p)
		}
	}

	s := q.decimalString()
	if x.a.neg {
		s = "-" + s
	}

	if prec > 0 {
		rs := r.decimalString()
		leadingZeros := prec - len(rs)
		s += "." + strings.Repeat("0", leadingZeros) + rs
	}

	return s
}

// Gob codec version. Permits backward-compatible changes to the encoding.
const ratGobVersion byte = 1

// GobEncode implements the gob.GobEncoder interface.
func (x *Rat) GobEncode() ([]byte, error) {
	if x == nil {
		return nil, nil
	}
	buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
	i := x.b.abs.bytes(buf)
	j := x.a.abs.bytes(buf[0:i])
	n := i - j
	if int(uint32(n)) != n {
		// this should never happen
		return nil, errors.New("Rat.GobEncode: numerator too large")
	}
	binary.BigEndian.PutUint32(buf[j-4:j], uint32(n))
	j -= 1 + 4
	b := ratGobVersion << 1 // make space for sign bit
	if x.a.neg {
		b |= 1
	}
	buf[j] = b
	return buf[j:], nil
}

// GobDecode implements the gob.GobDecoder interface.
func (z *Rat) GobDecode(buf []byte) error {
	if len(buf) == 0 {
		// Other side sent a nil or default value.
		*z = Rat{}
		return nil
	}
	b := buf[0]
	if b>>1 != ratGobVersion {
		return errors.New(fmt.Sprintf("Rat.GobDecode: encoding version %d not supported", b>>1))
	}
	const j = 1 + 4
	i := j + binary.BigEndian.Uint32(buf[j-4:j])
	z.a.neg = b&1 != 0
	z.a.abs = z.a.abs.setBytes(buf[j:i])
	z.b.abs = z.b.abs.setBytes(buf[i:])
	return nil
}

// MarshalText implements the encoding.TextMarshaler interface.
func (r *Rat) MarshalText() (text []byte, err error) {
	return []byte(r.RatString()), nil
}

// UnmarshalText implements the encoding.TextUnmarshaler interface.
func (r *Rat) UnmarshalText(text []byte) error {
	if _, ok := r.SetString(string(text)); !ok {
		return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text)
	}
	return nil
}