1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gob
import (
"bytes"
"io"
"os"
"reflect"
"sync"
)
// An Encoder manages the transmission of type and data information to the
// other side of a connection.
type Encoder struct {
mutex sync.Mutex // each item must be sent atomically
w []io.Writer // where to send the data
sent map[reflect.Type]typeId // which types we've already sent
countState *encoderState // stage for writing counts
buf []byte // for collecting the output.
err os.Error
}
// NewEncoder returns a new encoder that will transmit on the io.Writer.
func NewEncoder(w io.Writer) *Encoder {
enc := new(Encoder)
enc.w = []io.Writer{w}
enc.sent = make(map[reflect.Type]typeId)
enc.countState = newEncoderState(enc, new(bytes.Buffer))
return enc
}
// writer() returns the innermost writer the encoder is using
func (enc *Encoder) writer() io.Writer {
return enc.w[len(enc.w)-1]
}
// pushWriter adds a writer to the encoder.
func (enc *Encoder) pushWriter(w io.Writer) {
enc.w = append(enc.w, w)
}
// popWriter pops the innermost writer.
func (enc *Encoder) popWriter() {
enc.w = enc.w[0 : len(enc.w)-1]
}
func (enc *Encoder) badType(rt reflect.Type) {
enc.setError(os.ErrorString("gob: can't encode type " + rt.String()))
}
func (enc *Encoder) setError(err os.Error) {
if enc.err == nil { // remember the first.
enc.err = err
}
}
// writeMessage sends the data item preceded by a unsigned count of its length.
func (enc *Encoder) writeMessage(w io.Writer, b *bytes.Buffer) {
enc.countState.encodeUint(uint64(b.Len()))
// Build the buffer.
countLen := enc.countState.b.Len()
total := countLen + b.Len()
if total > len(enc.buf) {
enc.buf = make([]byte, total+1000) // extra for growth
}
// Place the length before the data.
// TODO(r): avoid the extra copy here.
enc.countState.b.Read(enc.buf[0:countLen])
// Now the data.
b.Read(enc.buf[countLen:total])
// Write the data.
_, err := w.Write(enc.buf[0:total])
if err != nil {
enc.setError(err)
}
}
func (enc *Encoder) sendType(w io.Writer, state *encoderState, origt reflect.Type) (sent bool) {
// Drill down to the base type.
ut := userType(origt)
rt := ut.base
switch rt := rt.(type) {
default:
// Basic types and interfaces do not need to be described.
return
case *reflect.SliceType:
// If it's []uint8, don't send; it's considered basic.
if rt.Elem().Kind() == reflect.Uint8 {
return
}
// Otherwise we do send.
break
case *reflect.ArrayType:
// arrays must be sent so we know their lengths and element types.
break
case *reflect.MapType:
// maps must be sent so we know their lengths and key/value types.
break
case *reflect.StructType:
// structs must be sent so we know their fields.
break
case *reflect.ChanType, *reflect.FuncType:
// Probably a bad field in a struct.
enc.badType(rt)
return
}
// Have we already sent this type? This time we ask about the base type.
if _, alreadySent := enc.sent[rt]; alreadySent {
return
}
// Need to send it.
typeLock.Lock()
info, err := getTypeInfo(rt)
typeLock.Unlock()
if err != nil {
enc.setError(err)
return
}
// Send the pair (-id, type)
// Id:
state.encodeInt(-int64(info.id))
// Type:
enc.encode(state.b, reflect.NewValue(info.wire), wireTypeUserInfo)
enc.writeMessage(w, state.b)
if enc.err != nil {
return
}
// Remember we've sent this type.
enc.sent[rt] = info.id
// Remember we've sent the top-level, possibly indirect type too.
enc.sent[origt] = info.id
// Now send the inner types
switch st := rt.(type) {
case *reflect.StructType:
for i := 0; i < st.NumField(); i++ {
enc.sendType(w, state, st.Field(i).Type)
}
case reflect.ArrayOrSliceType:
enc.sendType(w, state, st.Elem())
}
return true
}
// Encode transmits the data item represented by the empty interface value,
// guaranteeing that all necessary type information has been transmitted first.
func (enc *Encoder) Encode(e interface{}) os.Error {
return enc.EncodeValue(reflect.NewValue(e))
}
// sendTypeDescriptor makes sure the remote side knows about this type.
// It will send a descriptor if this is the first time the type has been
// sent.
func (enc *Encoder) sendTypeDescriptor(w io.Writer, state *encoderState, ut *userTypeInfo) {
// Make sure the type is known to the other side.
// First, have we already sent this (base) type?
base := ut.base
if _, alreadySent := enc.sent[base]; !alreadySent {
// No, so send it.
sent := enc.sendType(w, state, base)
if enc.err != nil {
return
}
// If the type info has still not been transmitted, it means we have
// a singleton basic type (int, []byte etc.) at top level. We don't
// need to send the type info but we do need to update enc.sent.
if !sent {
typeLock.Lock()
info, err := getTypeInfo(base)
typeLock.Unlock()
if err != nil {
enc.setError(err)
return
}
enc.sent[base] = info.id
}
}
}
// sendTypeId sends the id, which must have already been defined.
func (enc *Encoder) sendTypeId(state *encoderState, ut *userTypeInfo) {
// Identify the type of this top-level value.
state.encodeInt(int64(enc.sent[ut.base]))
}
// EncodeValue transmits the data item represented by the reflection value,
// guaranteeing that all necessary type information has been transmitted first.
func (enc *Encoder) EncodeValue(value reflect.Value) os.Error {
// Make sure we're single-threaded through here, so multiple
// goroutines can share an encoder.
enc.mutex.Lock()
defer enc.mutex.Unlock()
// Remove any nested writers remaining due to previous errors.
enc.w = enc.w[0:1]
ut, err := validUserType(value.Type())
if err != nil {
return err
}
enc.err = nil
state := newEncoderState(enc, new(bytes.Buffer))
enc.sendTypeDescriptor(enc.writer(), state, ut)
enc.sendTypeId(state, ut)
if enc.err != nil {
return enc.err
}
// Encode the object.
err = enc.encode(state.b, value, ut)
if err != nil {
enc.setError(err)
} else {
enc.writeMessage(enc.writer(), state.b)
}
return enc.err
}
|