1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ebnf is a library for EBNF grammars. The input is text ([]byte)
// satisfying the following grammar (represented itself in EBNF):
//
// Production = name "=" Expression "." .
// Expression = Alternative { "|" Alternative } .
// Alternative = Term { Term } .
// Term = name | token [ "..." token ] | Group | Option | Repetition .
// Group = "(" Expression ")" .
// Option = "[" Expression "]" .
// Repetition = "{" Expression "}" .
//
// A name is a Go identifier, a token is a Go string, and comments
// and white space follow the same rules as for the Go language.
// Production names starting with an uppercase Unicode letter denote
// non-terminal productions (i.e., productions which allow white-space
// and comments between tokens); all other production names denote
// lexical productions.
//
package ebnf
import (
"go/scanner"
"go/token"
"os"
"unicode"
"utf8"
)
// ----------------------------------------------------------------------------
// Internal representation
type (
// An Expression node represents a production expression.
Expression interface {
// Pos is the position of the first character of the syntactic construct
Pos() token.Pos
}
// An Alternative node represents a non-empty list of alternative expressions.
Alternative []Expression // x | y | z
// A Sequence node represents a non-empty list of sequential expressions.
Sequence []Expression // x y z
// A Name node represents a production name.
Name struct {
StringPos token.Pos
String string
}
// A Token node represents a literal.
Token struct {
StringPos token.Pos
String string
}
// A List node represents a range of characters.
Range struct {
Begin, End *Token // begin ... end
}
// A Group node represents a grouped expression.
Group struct {
Lparen token.Pos
Body Expression // (body)
}
// An Option node represents an optional expression.
Option struct {
Lbrack token.Pos
Body Expression // [body]
}
// A Repetition node represents a repeated expression.
Repetition struct {
Lbrace token.Pos
Body Expression // {body}
}
// A Production node represents an EBNF production.
Production struct {
Name *Name
Expr Expression
}
// A Grammar is a set of EBNF productions. The map
// is indexed by production name.
//
Grammar map[string]*Production
)
func (x Alternative) Pos() token.Pos { return x[0].Pos() } // the parser always generates non-empty Alternative
func (x Sequence) Pos() token.Pos { return x[0].Pos() } // the parser always generates non-empty Sequences
func (x *Name) Pos() token.Pos { return x.StringPos }
func (x *Token) Pos() token.Pos { return x.StringPos }
func (x *Range) Pos() token.Pos { return x.Begin.Pos() }
func (x *Group) Pos() token.Pos { return x.Lparen }
func (x *Option) Pos() token.Pos { return x.Lbrack }
func (x *Repetition) Pos() token.Pos { return x.Lbrace }
func (x *Production) Pos() token.Pos { return x.Name.Pos() }
// ----------------------------------------------------------------------------
// Grammar verification
func isLexical(name string) bool {
ch, _ := utf8.DecodeRuneInString(name)
return !unicode.IsUpper(ch)
}
type verifier struct {
fset *token.FileSet
scanner.ErrorVector
worklist []*Production
reached Grammar // set of productions reached from (and including) the root production
grammar Grammar
}
func (v *verifier) error(pos token.Pos, msg string) {
v.Error(v.fset.Position(pos), msg)
}
func (v *verifier) push(prod *Production) {
name := prod.Name.String
if _, found := v.reached[name]; !found {
v.worklist = append(v.worklist, prod)
v.reached[name] = prod
}
}
func (v *verifier) verifyChar(x *Token) int {
s := x.String
if utf8.RuneCountInString(s) != 1 {
v.error(x.Pos(), "single char expected, found "+s)
return 0
}
ch, _ := utf8.DecodeRuneInString(s)
return ch
}
func (v *verifier) verifyExpr(expr Expression, lexical bool) {
switch x := expr.(type) {
case nil:
// empty expression
case Alternative:
for _, e := range x {
v.verifyExpr(e, lexical)
}
case Sequence:
for _, e := range x {
v.verifyExpr(e, lexical)
}
case *Name:
// a production with this name must exist;
// add it to the worklist if not yet processed
if prod, found := v.grammar[x.String]; found {
v.push(prod)
} else {
v.error(x.Pos(), "missing production "+x.String)
}
// within a lexical production references
// to non-lexical productions are invalid
if lexical && !isLexical(x.String) {
v.error(x.Pos(), "reference to non-lexical production "+x.String)
}
case *Token:
// nothing to do for now
case *Range:
i := v.verifyChar(x.Begin)
j := v.verifyChar(x.End)
if i >= j {
v.error(x.Pos(), "decreasing character range")
}
case *Group:
v.verifyExpr(x.Body, lexical)
case *Option:
v.verifyExpr(x.Body, lexical)
case *Repetition:
v.verifyExpr(x.Body, lexical)
default:
panic("unreachable")
}
}
func (v *verifier) verify(fset *token.FileSet, grammar Grammar, start string) {
// find root production
root, found := grammar[start]
if !found {
// token.NoPos doesn't require a file set;
// ok to set v.fset only afterwards
v.error(token.NoPos, "no start production "+start)
return
}
// initialize verifier
v.fset = fset
v.ErrorVector.Reset()
v.worklist = v.worklist[0:0]
v.reached = make(Grammar)
v.grammar = grammar
// work through the worklist
v.push(root)
for {
n := len(v.worklist) - 1
if n < 0 {
break
}
prod := v.worklist[n]
v.worklist = v.worklist[0:n]
v.verifyExpr(prod.Expr, isLexical(prod.Name.String))
}
// check if all productions were reached
if len(v.reached) < len(v.grammar) {
for name, prod := range v.grammar {
if _, found := v.reached[name]; !found {
v.error(prod.Pos(), name+" is unreachable")
}
}
}
}
// Verify checks that:
// - all productions used are defined
// - all productions defined are used when beginning at start
// - lexical productions refer only to other lexical productions
//
// Position information is interpreted relative to the file set fset.
//
func Verify(fset *token.FileSet, grammar Grammar, start string) os.Error {
var v verifier
v.verify(fset, grammar, start)
return v.GetError(scanner.Sorted)
}
|