summaryrefslogtreecommitdiff
path: root/libgo/go/crypto/x509/x509.go
blob: 8dae7e7fcf948c302c0ac97dd1fa415e5fb6334a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package x509 parses X.509-encoded keys and certificates.
package x509

import (
	"bytes"
	"crypto"
	"crypto/dsa"
	"crypto/rsa"
	"crypto/sha1"
	"crypto/x509/pkix"
	"encoding/asn1"
	"encoding/pem"
	"errors"
	"io"
	"math/big"
	"time"
)

// pkixPublicKey reflects a PKIX public key structure. See SubjectPublicKeyInfo
// in RFC 3280.
type pkixPublicKey struct {
	Algo      pkix.AlgorithmIdentifier
	BitString asn1.BitString
}

// ParsePKIXPublicKey parses a DER encoded public key. These values are
// typically found in PEM blocks with "BEGIN PUBLIC KEY".
func ParsePKIXPublicKey(derBytes []byte) (pub interface{}, err error) {
	var pki publicKeyInfo
	if _, err = asn1.Unmarshal(derBytes, &pki); err != nil {
		return
	}
	algo := getPublicKeyAlgorithmFromOID(pki.Algorithm.Algorithm)
	if algo == UnknownPublicKeyAlgorithm {
		return nil, errors.New("ParsePKIXPublicKey: unknown public key algorithm")
	}
	return parsePublicKey(algo, &pki)
}

// MarshalPKIXPublicKey serialises a public key to DER-encoded PKIX format.
func MarshalPKIXPublicKey(pub interface{}) ([]byte, error) {
	var pubBytes []byte

	switch pub := pub.(type) {
	case *rsa.PublicKey:
		pubBytes, _ = asn1.Marshal(rsaPublicKey{
			N: pub.N,
			E: pub.E,
		})
	default:
		return nil, errors.New("MarshalPKIXPublicKey: unknown public key type")
	}

	pkix := pkixPublicKey{
		Algo: pkix.AlgorithmIdentifier{
			Algorithm: []int{1, 2, 840, 113549, 1, 1, 1},
			// This is a NULL parameters value which is technically
			// superfluous, but most other code includes it and, by
			// doing this, we match their public key hashes.
			Parameters: asn1.RawValue{
				Tag: 5,
			},
		},
		BitString: asn1.BitString{
			Bytes:     pubBytes,
			BitLength: 8 * len(pubBytes),
		},
	}

	ret, _ := asn1.Marshal(pkix)
	return ret, nil
}

// These structures reflect the ASN.1 structure of X.509 certificates.:

type certificate struct {
	Raw                asn1.RawContent
	TBSCertificate     tbsCertificate
	SignatureAlgorithm pkix.AlgorithmIdentifier
	SignatureValue     asn1.BitString
}

type tbsCertificate struct {
	Raw                asn1.RawContent
	Version            int `asn1:"optional,explicit,default:1,tag:0"`
	SerialNumber       *big.Int
	SignatureAlgorithm pkix.AlgorithmIdentifier
	Issuer             asn1.RawValue
	Validity           validity
	Subject            asn1.RawValue
	PublicKey          publicKeyInfo
	UniqueId           asn1.BitString   `asn1:"optional,tag:1"`
	SubjectUniqueId    asn1.BitString   `asn1:"optional,tag:2"`
	Extensions         []pkix.Extension `asn1:"optional,explicit,tag:3"`
}

type dsaAlgorithmParameters struct {
	P, Q, G *big.Int
}

type dsaSignature struct {
	R, S *big.Int
}

type validity struct {
	NotBefore, NotAfter time.Time
}

type publicKeyInfo struct {
	Raw       asn1.RawContent
	Algorithm pkix.AlgorithmIdentifier
	PublicKey asn1.BitString
}

// RFC 5280,  4.2.1.1
type authKeyId struct {
	Id []byte `asn1:"optional,tag:0"`
}

type SignatureAlgorithm int

const (
	UnknownSignatureAlgorithm SignatureAlgorithm = iota
	MD2WithRSA
	MD5WithRSA
	SHA1WithRSA
	SHA256WithRSA
	SHA384WithRSA
	SHA512WithRSA
	DSAWithSHA1
	DSAWithSHA256
)

type PublicKeyAlgorithm int

const (
	UnknownPublicKeyAlgorithm PublicKeyAlgorithm = iota
	RSA
	DSA
)

// OIDs for signature algorithms
//
// pkcs-1 OBJECT IDENTIFIER ::= {
//    iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }
// 
// 
// RFC 3279 2.2.1 RSA Signature Algorithms
//
// md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 }
//
// md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 }
//
// sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 5 }
// 
// dsaWithSha1 OBJECT IDENTIFIER ::= {
//    iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 3 } 
//
//
// RFC 4055 5 PKCS #1 Version 1.5
// 
// sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }
//
// sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }
//
// sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 }
//
//
// RFC 5758 3.1 DSA Signature Algorithms
//
// dsaWithSha256 OBJECT IDENTIFIER ::= {
//    joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101)
//    csor(3) algorithms(4) id-dsa-with-sha2(3) 2}
//
var (
	oidSignatureMD2WithRSA    = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2}
	oidSignatureMD5WithRSA    = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4}
	oidSignatureSHA1WithRSA   = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5}
	oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11}
	oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12}
	oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13}
	oidSignatureDSAWithSHA1   = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3}
	oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 4, 3, 2}
)

func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) SignatureAlgorithm {
	switch {
	case oid.Equal(oidSignatureMD2WithRSA):
		return MD2WithRSA
	case oid.Equal(oidSignatureMD5WithRSA):
		return MD5WithRSA
	case oid.Equal(oidSignatureSHA1WithRSA):
		return SHA1WithRSA
	case oid.Equal(oidSignatureSHA256WithRSA):
		return SHA256WithRSA
	case oid.Equal(oidSignatureSHA384WithRSA):
		return SHA384WithRSA
	case oid.Equal(oidSignatureSHA512WithRSA):
		return SHA512WithRSA
	case oid.Equal(oidSignatureDSAWithSHA1):
		return DSAWithSHA1
	case oid.Equal(oidSignatureDSAWithSHA256):
		return DSAWithSHA256
	}
	return UnknownSignatureAlgorithm
}

// RFC 3279, 2.3 Public Key Algorithms
//
// pkcs-1 OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840)
//    rsadsi(113549) pkcs(1) 1 }
//
// rsaEncryption OBJECT IDENTIFIER ::== { pkcs1-1 1 }
//
// id-dsa OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840)
//    x9-57(10040) x9cm(4) 1 }
var (
	oidPublicKeyRsa = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1}
	oidPublicKeyDsa = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 1}
)

func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm {
	switch {
	case oid.Equal(oidPublicKeyRsa):
		return RSA
	case oid.Equal(oidPublicKeyDsa):
		return DSA
	}
	return UnknownPublicKeyAlgorithm
}

// KeyUsage represents the set of actions that are valid for a given key. It's
// a bitmap of the KeyUsage* constants.
type KeyUsage int

const (
	KeyUsageDigitalSignature KeyUsage = 1 << iota
	KeyUsageContentCommitment
	KeyUsageKeyEncipherment
	KeyUsageDataEncipherment
	KeyUsageKeyAgreement
	KeyUsageCertSign
	KeyUsageCRLSign
	KeyUsageEncipherOnly
	KeyUsageDecipherOnly
)

// RFC 5280, 4.2.1.12  Extended Key Usage
//
// anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }
//
// id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
//
// id-kp-serverAuth             OBJECT IDENTIFIER ::= { id-kp 1 }
// id-kp-clientAuth             OBJECT IDENTIFIER ::= { id-kp 2 }
// id-kp-codeSigning            OBJECT IDENTIFIER ::= { id-kp 3 }
// id-kp-emailProtection        OBJECT IDENTIFIER ::= { id-kp 4 }
// id-kp-timeStamping           OBJECT IDENTIFIER ::= { id-kp 8 }
// id-kp-OCSPSigning            OBJECT IDENTIFIER ::= { id-kp 9 }
var (
	oidExtKeyUsageAny             = asn1.ObjectIdentifier{2, 5, 29, 37, 0}
	oidExtKeyUsageServerAuth      = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 1}
	oidExtKeyUsageClientAuth      = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 2}
	oidExtKeyUsageCodeSigning     = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 3}
	oidExtKeyUsageEmailProtection = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 4}
	oidExtKeyUsageTimeStamping    = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 8}
	oidExtKeyUsageOCSPSigning     = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 9}
)

// ExtKeyUsage represents an extended set of actions that are valid for a given key.
// Each of the ExtKeyUsage* constants define a unique action.
type ExtKeyUsage int

const (
	ExtKeyUsageAny ExtKeyUsage = iota
	ExtKeyUsageServerAuth
	ExtKeyUsageClientAuth
	ExtKeyUsageCodeSigning
	ExtKeyUsageEmailProtection
	ExtKeyUsageTimeStamping
	ExtKeyUsageOCSPSigning
)

// A Certificate represents an X.509 certificate.
type Certificate struct {
	Raw                     []byte // Complete ASN.1 DER content (certificate, signature algorithm and signature).
	RawTBSCertificate       []byte // Certificate part of raw ASN.1 DER content.
	RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo.
	RawSubject              []byte // DER encoded Subject
	RawIssuer               []byte // DER encoded Issuer

	Signature          []byte
	SignatureAlgorithm SignatureAlgorithm

	PublicKeyAlgorithm PublicKeyAlgorithm
	PublicKey          interface{}

	Version             int
	SerialNumber        *big.Int
	Issuer              pkix.Name
	Subject             pkix.Name
	NotBefore, NotAfter time.Time // Validity bounds.
	KeyUsage            KeyUsage

	ExtKeyUsage        []ExtKeyUsage           // Sequence of extended key usages.
	UnknownExtKeyUsage []asn1.ObjectIdentifier // Encountered extended key usages unknown to this package.

	BasicConstraintsValid bool // if true then the next two fields are valid.
	IsCA                  bool
	MaxPathLen            int

	SubjectKeyId   []byte
	AuthorityKeyId []byte

	// Subject Alternate Name values
	DNSNames       []string
	EmailAddresses []string

	// Name constraints
	PermittedDNSDomainsCritical bool // if true then the name constraints are marked critical.
	PermittedDNSDomains         []string

	PolicyIdentifiers []asn1.ObjectIdentifier
}

// ErrUnsupportedAlgorithm results from attempting to perform an operation that
// involves algorithms that are not currently implemented.
var ErrUnsupportedAlgorithm = errors.New("crypto/x509: cannot verify signature: algorithm unimplemented")

// ConstraintViolationError results when a requested usage is not permitted by
// a certificate. For example: checking a signature when the public key isn't a
// certificate signing key.
type ConstraintViolationError struct{}

func (ConstraintViolationError) Error() string {
	return "crypto/x509: invalid signature: parent certificate cannot sign this kind of certificate"
}

func (c *Certificate) Equal(other *Certificate) bool {
	return bytes.Equal(c.Raw, other.Raw)
}

// CheckSignatureFrom verifies that the signature on c is a valid signature
// from parent.
func (c *Certificate) CheckSignatureFrom(parent *Certificate) (err error) {
	// RFC 5280, 4.2.1.9:
	// "If the basic constraints extension is not present in a version 3
	// certificate, or the extension is present but the cA boolean is not
	// asserted, then the certified public key MUST NOT be used to verify
	// certificate signatures."
	if parent.Version == 3 && !parent.BasicConstraintsValid ||
		parent.BasicConstraintsValid && !parent.IsCA {
		return ConstraintViolationError{}
	}

	if parent.KeyUsage != 0 && parent.KeyUsage&KeyUsageCertSign == 0 {
		return ConstraintViolationError{}
	}

	if parent.PublicKeyAlgorithm == UnknownPublicKeyAlgorithm {
		return ErrUnsupportedAlgorithm
	}

	// TODO(agl): don't ignore the path length constraint.

	return parent.CheckSignature(c.SignatureAlgorithm, c.RawTBSCertificate, c.Signature)
}

// CheckSignature verifies that signature is a valid signature over signed from
// c's public key.
func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) (err error) {
	var hashType crypto.Hash

	switch algo {
	case SHA1WithRSA, DSAWithSHA1:
		hashType = crypto.SHA1
	case SHA256WithRSA, DSAWithSHA256:
		hashType = crypto.SHA256
	case SHA384WithRSA:
		hashType = crypto.SHA384
	case SHA512WithRSA:
		hashType = crypto.SHA512
	default:
		return ErrUnsupportedAlgorithm
	}

	h := hashType.New()
	if h == nil {
		return ErrUnsupportedAlgorithm
	}

	h.Write(signed)
	digest := h.Sum(nil)

	switch pub := c.PublicKey.(type) {
	case *rsa.PublicKey:
		return rsa.VerifyPKCS1v15(pub, hashType, digest, signature)
	case *dsa.PublicKey:
		dsaSig := new(dsaSignature)
		if _, err := asn1.Unmarshal(signature, dsaSig); err != nil {
			return err
		}
		if dsaSig.R.Sign() <= 0 || dsaSig.S.Sign() <= 0 {
			return errors.New("DSA signature contained zero or negative values")
		}
		if !dsa.Verify(pub, digest, dsaSig.R, dsaSig.S) {
			return errors.New("DSA verification failure")
		}
		return
	}
	return ErrUnsupportedAlgorithm
}

// CheckCRLSignature checks that the signature in crl is from c.
func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) (err error) {
	algo := getSignatureAlgorithmFromOID(crl.SignatureAlgorithm.Algorithm)
	return c.CheckSignature(algo, crl.TBSCertList.Raw, crl.SignatureValue.RightAlign())
}

type UnhandledCriticalExtension struct{}

func (h UnhandledCriticalExtension) Error() string {
	return "unhandled critical extension"
}

type basicConstraints struct {
	IsCA       bool `asn1:"optional"`
	MaxPathLen int  `asn1:"optional,default:-1"`
}

// RFC 5280 4.2.1.4
type policyInformation struct {
	Policy asn1.ObjectIdentifier
	// policyQualifiers omitted
}

// RFC 5280, 4.2.1.10
type nameConstraints struct {
	Permitted []generalSubtree `asn1:"optional,tag:0"`
	Excluded  []generalSubtree `asn1:"optional,tag:1"`
}

type generalSubtree struct {
	Name string `asn1:"tag:2,optional,ia5"`
	Min  int    `asn1:"optional,tag:0"`
	Max  int    `asn1:"optional,tag:1"`
}

func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{}, error) {
	asn1Data := keyData.PublicKey.RightAlign()
	switch algo {
	case RSA:
		p := new(rsaPublicKey)
		_, err := asn1.Unmarshal(asn1Data, p)
		if err != nil {
			return nil, err
		}

		pub := &rsa.PublicKey{
			E: p.E,
			N: p.N,
		}
		return pub, nil
	case DSA:
		var p *big.Int
		_, err := asn1.Unmarshal(asn1Data, &p)
		if err != nil {
			return nil, err
		}
		paramsData := keyData.Algorithm.Parameters.FullBytes
		params := new(dsaAlgorithmParameters)
		_, err = asn1.Unmarshal(paramsData, params)
		if err != nil {
			return nil, err
		}
		if p.Sign() <= 0 || params.P.Sign() <= 0 || params.Q.Sign() <= 0 || params.G.Sign() <= 0 {
			return nil, errors.New("zero or negative DSA parameter")
		}
		pub := &dsa.PublicKey{
			Parameters: dsa.Parameters{
				P: params.P,
				Q: params.Q,
				G: params.G,
			},
			Y: p,
		}
		return pub, nil
	default:
		return nil, nil
	}
	panic("unreachable")
}

func parseCertificate(in *certificate) (*Certificate, error) {
	out := new(Certificate)
	out.Raw = in.Raw
	out.RawTBSCertificate = in.TBSCertificate.Raw
	out.RawSubjectPublicKeyInfo = in.TBSCertificate.PublicKey.Raw
	out.RawSubject = in.TBSCertificate.Subject.FullBytes
	out.RawIssuer = in.TBSCertificate.Issuer.FullBytes

	out.Signature = in.SignatureValue.RightAlign()
	out.SignatureAlgorithm =
		getSignatureAlgorithmFromOID(in.TBSCertificate.SignatureAlgorithm.Algorithm)

	out.PublicKeyAlgorithm =
		getPublicKeyAlgorithmFromOID(in.TBSCertificate.PublicKey.Algorithm.Algorithm)
	var err error
	out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, &in.TBSCertificate.PublicKey)
	if err != nil {
		return nil, err
	}

	if in.TBSCertificate.SerialNumber.Sign() < 0 {
		return nil, errors.New("negative serial number")
	}

	out.Version = in.TBSCertificate.Version + 1
	out.SerialNumber = in.TBSCertificate.SerialNumber

	var issuer, subject pkix.RDNSequence
	if _, err := asn1.Unmarshal(in.TBSCertificate.Subject.FullBytes, &subject); err != nil {
		return nil, err
	}
	if _, err := asn1.Unmarshal(in.TBSCertificate.Issuer.FullBytes, &issuer); err != nil {
		return nil, err
	}

	out.Issuer.FillFromRDNSequence(&issuer)
	out.Subject.FillFromRDNSequence(&subject)

	out.NotBefore = in.TBSCertificate.Validity.NotBefore
	out.NotAfter = in.TBSCertificate.Validity.NotAfter

	for _, e := range in.TBSCertificate.Extensions {
		if len(e.Id) == 4 && e.Id[0] == 2 && e.Id[1] == 5 && e.Id[2] == 29 {
			switch e.Id[3] {
			case 15:
				// RFC 5280, 4.2.1.3
				var usageBits asn1.BitString
				_, err := asn1.Unmarshal(e.Value, &usageBits)

				if err == nil {
					var usage int
					for i := 0; i < 9; i++ {
						if usageBits.At(i) != 0 {
							usage |= 1 << uint(i)
						}
					}
					out.KeyUsage = KeyUsage(usage)
					continue
				}
			case 19:
				// RFC 5280, 4.2.1.9
				var constraints basicConstraints
				_, err := asn1.Unmarshal(e.Value, &constraints)

				if err == nil {
					out.BasicConstraintsValid = true
					out.IsCA = constraints.IsCA
					out.MaxPathLen = constraints.MaxPathLen
					continue
				}
			case 17:
				// RFC 5280, 4.2.1.6

				// SubjectAltName ::= GeneralNames
				//
				// GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
				//
				// GeneralName ::= CHOICE {
				//      otherName                       [0]     OtherName,
				//      rfc822Name                      [1]     IA5String,
				//      dNSName                         [2]     IA5String,
				//      x400Address                     [3]     ORAddress,
				//      directoryName                   [4]     Name,
				//      ediPartyName                    [5]     EDIPartyName,
				//      uniformResourceIdentifier       [6]     IA5String,
				//      iPAddress                       [7]     OCTET STRING,
				//      registeredID                    [8]     OBJECT IDENTIFIER }
				var seq asn1.RawValue
				_, err := asn1.Unmarshal(e.Value, &seq)
				if err != nil {
					return nil, err
				}
				if !seq.IsCompound || seq.Tag != 16 || seq.Class != 0 {
					return nil, asn1.StructuralError{Msg: "bad SAN sequence"}
				}

				parsedName := false

				rest := seq.Bytes
				for len(rest) > 0 {
					var v asn1.RawValue
					rest, err = asn1.Unmarshal(rest, &v)
					if err != nil {
						return nil, err
					}
					switch v.Tag {
					case 1:
						out.EmailAddresses = append(out.EmailAddresses, string(v.Bytes))
						parsedName = true
					case 2:
						out.DNSNames = append(out.DNSNames, string(v.Bytes))
						parsedName = true
					}
				}

				if parsedName {
					continue
				}
				// If we didn't parse any of the names then we
				// fall through to the critical check below.

			case 30:
				// RFC 5280, 4.2.1.10

				// NameConstraints ::= SEQUENCE {
				//      permittedSubtrees       [0]     GeneralSubtrees OPTIONAL,
				//      excludedSubtrees        [1]     GeneralSubtrees OPTIONAL }
				//
				// GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
				//
				// GeneralSubtree ::= SEQUENCE {
				//      base                    GeneralName,
				//      minimum         [0]     BaseDistance DEFAULT 0,
				//      maximum         [1]     BaseDistance OPTIONAL }
				//
				// BaseDistance ::= INTEGER (0..MAX)

				var constraints nameConstraints
				_, err := asn1.Unmarshal(e.Value, &constraints)
				if err != nil {
					return nil, err
				}

				if len(constraints.Excluded) > 0 && e.Critical {
					return out, UnhandledCriticalExtension{}
				}

				for _, subtree := range constraints.Permitted {
					if subtree.Min > 0 || subtree.Max > 0 || len(subtree.Name) == 0 {
						if e.Critical {
							return out, UnhandledCriticalExtension{}
						}
						continue
					}
					out.PermittedDNSDomains = append(out.PermittedDNSDomains, subtree.Name)
				}
				continue

			case 35:
				// RFC 5280, 4.2.1.1
				var a authKeyId
				_, err = asn1.Unmarshal(e.Value, &a)
				if err != nil {
					return nil, err
				}
				out.AuthorityKeyId = a.Id
				continue

			case 37:
				// RFC 5280, 4.2.1.12.  Extended Key Usage

				// id-ce-extKeyUsage OBJECT IDENTIFIER ::= { id-ce 37 }
				//
				// ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
				//
				// KeyPurposeId ::= OBJECT IDENTIFIER

				var keyUsage []asn1.ObjectIdentifier
				_, err = asn1.Unmarshal(e.Value, &keyUsage)
				if err != nil {
					return nil, err
				}

				for _, u := range keyUsage {
					switch {
					case u.Equal(oidExtKeyUsageAny):
						out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageAny)
					case u.Equal(oidExtKeyUsageServerAuth):
						out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageServerAuth)
					case u.Equal(oidExtKeyUsageClientAuth):
						out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageClientAuth)
					case u.Equal(oidExtKeyUsageCodeSigning):
						out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageCodeSigning)
					case u.Equal(oidExtKeyUsageEmailProtection):
						out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageEmailProtection)
					case u.Equal(oidExtKeyUsageTimeStamping):
						out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageTimeStamping)
					case u.Equal(oidExtKeyUsageOCSPSigning):
						out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageOCSPSigning)
					default:
						out.UnknownExtKeyUsage = append(out.UnknownExtKeyUsage, u)
					}
				}

				continue

			case 14:
				// RFC 5280, 4.2.1.2
				var keyid []byte
				_, err = asn1.Unmarshal(e.Value, &keyid)
				if err != nil {
					return nil, err
				}
				out.SubjectKeyId = keyid
				continue

			case 32:
				// RFC 5280 4.2.1.4: Certificate Policies
				var policies []policyInformation
				if _, err = asn1.Unmarshal(e.Value, &policies); err != nil {
					return nil, err
				}
				out.PolicyIdentifiers = make([]asn1.ObjectIdentifier, len(policies))
				for i, policy := range policies {
					out.PolicyIdentifiers[i] = policy.Policy
				}
			}
		}

		if e.Critical {
			return out, UnhandledCriticalExtension{}
		}
	}

	return out, nil
}

// ParseCertificate parses a single certificate from the given ASN.1 DER data.
func ParseCertificate(asn1Data []byte) (*Certificate, error) {
	var cert certificate
	rest, err := asn1.Unmarshal(asn1Data, &cert)
	if err != nil {
		return nil, err
	}
	if len(rest) > 0 {
		return nil, asn1.SyntaxError{Msg: "trailing data"}
	}

	return parseCertificate(&cert)
}

// ParseCertificates parses one or more certificates from the given ASN.1 DER
// data. The certificates must be concatenated with no intermediate padding.
func ParseCertificates(asn1Data []byte) ([]*Certificate, error) {
	var v []*certificate

	for len(asn1Data) > 0 {
		cert := new(certificate)
		var err error
		asn1Data, err = asn1.Unmarshal(asn1Data, cert)
		if err != nil {
			return nil, err
		}
		v = append(v, cert)
	}

	ret := make([]*Certificate, len(v))
	for i, ci := range v {
		cert, err := parseCertificate(ci)
		if err != nil {
			return nil, err
		}
		ret[i] = cert
	}

	return ret, nil
}

func reverseBitsInAByte(in byte) byte {
	b1 := in>>4 | in<<4
	b2 := b1>>2&0x33 | b1<<2&0xcc
	b3 := b2>>1&0x55 | b2<<1&0xaa
	return b3
}

var (
	oidExtensionSubjectKeyId        = []int{2, 5, 29, 14}
	oidExtensionKeyUsage            = []int{2, 5, 29, 15}
	oidExtensionAuthorityKeyId      = []int{2, 5, 29, 35}
	oidExtensionBasicConstraints    = []int{2, 5, 29, 19}
	oidExtensionSubjectAltName      = []int{2, 5, 29, 17}
	oidExtensionCertificatePolicies = []int{2, 5, 29, 32}
	oidExtensionNameConstraints     = []int{2, 5, 29, 30}
)

func buildExtensions(template *Certificate) (ret []pkix.Extension, err error) {
	ret = make([]pkix.Extension, 7 /* maximum number of elements. */)
	n := 0

	if template.KeyUsage != 0 {
		ret[n].Id = oidExtensionKeyUsage
		ret[n].Critical = true

		var a [2]byte
		a[0] = reverseBitsInAByte(byte(template.KeyUsage))
		a[1] = reverseBitsInAByte(byte(template.KeyUsage >> 8))

		l := 1
		if a[1] != 0 {
			l = 2
		}

		ret[n].Value, err = asn1.Marshal(asn1.BitString{Bytes: a[0:l], BitLength: l * 8})
		if err != nil {
			return
		}
		n++
	}

	if template.BasicConstraintsValid {
		ret[n].Id = oidExtensionBasicConstraints
		ret[n].Value, err = asn1.Marshal(basicConstraints{template.IsCA, template.MaxPathLen})
		ret[n].Critical = true
		if err != nil {
			return
		}
		n++
	}

	if len(template.SubjectKeyId) > 0 {
		ret[n].Id = oidExtensionSubjectKeyId
		ret[n].Value, err = asn1.Marshal(template.SubjectKeyId)
		if err != nil {
			return
		}
		n++
	}

	if len(template.AuthorityKeyId) > 0 {
		ret[n].Id = oidExtensionAuthorityKeyId
		ret[n].Value, err = asn1.Marshal(authKeyId{template.AuthorityKeyId})
		if err != nil {
			return
		}
		n++
	}

	if len(template.DNSNames) > 0 {
		ret[n].Id = oidExtensionSubjectAltName
		rawValues := make([]asn1.RawValue, len(template.DNSNames))
		for i, name := range template.DNSNames {
			rawValues[i] = asn1.RawValue{Tag: 2, Class: 2, Bytes: []byte(name)}
		}
		ret[n].Value, err = asn1.Marshal(rawValues)
		if err != nil {
			return
		}
		n++
	}

	if len(template.PolicyIdentifiers) > 0 {
		ret[n].Id = oidExtensionCertificatePolicies
		policies := make([]policyInformation, len(template.PolicyIdentifiers))
		for i, policy := range template.PolicyIdentifiers {
			policies[i].Policy = policy
		}
		ret[n].Value, err = asn1.Marshal(policies)
		if err != nil {
			return
		}
		n++
	}

	if len(template.PermittedDNSDomains) > 0 {
		ret[n].Id = oidExtensionNameConstraints
		ret[n].Critical = template.PermittedDNSDomainsCritical

		var out nameConstraints
		out.Permitted = make([]generalSubtree, len(template.PermittedDNSDomains))
		for i, permitted := range template.PermittedDNSDomains {
			out.Permitted[i] = generalSubtree{Name: permitted}
		}
		ret[n].Value, err = asn1.Marshal(out)
		if err != nil {
			return
		}
		n++
	}

	// Adding another extension here? Remember to update the maximum number
	// of elements in the make() at the top of the function.

	return ret[0:n], nil
}

var (
	oidSHA1WithRSA = []int{1, 2, 840, 113549, 1, 1, 5}
	oidRSA         = []int{1, 2, 840, 113549, 1, 1, 1}
)

func subjectBytes(cert *Certificate) ([]byte, error) {
	if len(cert.RawSubject) > 0 {
		return cert.RawSubject, nil
	}

	return asn1.Marshal(cert.Subject.ToRDNSequence())
}

// CreateCertificate creates a new certificate based on a template. The
// following members of template are used: SerialNumber, Subject, NotBefore,
// NotAfter, KeyUsage, BasicConstraintsValid, IsCA, MaxPathLen, SubjectKeyId,
// DNSNames, PermittedDNSDomainsCritical, PermittedDNSDomains.
//
// The certificate is signed by parent. If parent is equal to template then the
// certificate is self-signed. The parameter pub is the public key of the
// signee and priv is the private key of the signer.
//
// The returned slice is the certificate in DER encoding.
//
// The only supported key type is RSA (*rsa.PublicKey for pub, *rsa.PrivateKey
// for priv).
func CreateCertificate(rand io.Reader, template, parent *Certificate, pub interface{}, priv interface{}) (cert []byte, err error) {
	rsaPub, ok := pub.(*rsa.PublicKey)
	if !ok {
		return nil, errors.New("x509: non-RSA public keys not supported")
	}

	rsaPriv, ok := priv.(*rsa.PrivateKey)
	if !ok {
		return nil, errors.New("x509: non-RSA private keys not supported")
	}

	asn1PublicKey, err := asn1.Marshal(rsaPublicKey{
		N: rsaPub.N,
		E: rsaPub.E,
	})
	if err != nil {
		return
	}

	if len(parent.SubjectKeyId) > 0 {
		template.AuthorityKeyId = parent.SubjectKeyId
	}

	extensions, err := buildExtensions(template)
	if err != nil {
		return
	}

	asn1Issuer, err := subjectBytes(parent)
	if err != nil {
		return
	}

	asn1Subject, err := subjectBytes(template)
	if err != nil {
		return
	}

	encodedPublicKey := asn1.BitString{BitLength: len(asn1PublicKey) * 8, Bytes: asn1PublicKey}
	c := tbsCertificate{
		Version:            2,
		SerialNumber:       template.SerialNumber,
		SignatureAlgorithm: pkix.AlgorithmIdentifier{Algorithm: oidSHA1WithRSA},
		Issuer:             asn1.RawValue{FullBytes: asn1Issuer},
		Validity:           validity{template.NotBefore, template.NotAfter},
		Subject:            asn1.RawValue{FullBytes: asn1Subject},
		PublicKey:          publicKeyInfo{nil, pkix.AlgorithmIdentifier{Algorithm: oidRSA}, encodedPublicKey},
		Extensions:         extensions,
	}

	tbsCertContents, err := asn1.Marshal(c)
	if err != nil {
		return
	}

	c.Raw = tbsCertContents

	h := sha1.New()
	h.Write(tbsCertContents)
	digest := h.Sum(nil)

	signature, err := rsa.SignPKCS1v15(rand, rsaPriv, crypto.SHA1, digest)
	if err != nil {
		return
	}

	cert, err = asn1.Marshal(certificate{
		nil,
		c,
		pkix.AlgorithmIdentifier{Algorithm: oidSHA1WithRSA},
		asn1.BitString{Bytes: signature, BitLength: len(signature) * 8},
	})
	return
}

// pemCRLPrefix is the magic string that indicates that we have a PEM encoded
// CRL.
var pemCRLPrefix = []byte("-----BEGIN X509 CRL")

// pemType is the type of a PEM encoded CRL.
var pemType = "X509 CRL"

// ParseCRL parses a CRL from the given bytes. It's often the case that PEM
// encoded CRLs will appear where they should be DER encoded, so this function
// will transparently handle PEM encoding as long as there isn't any leading
// garbage.
func ParseCRL(crlBytes []byte) (certList *pkix.CertificateList, err error) {
	if bytes.HasPrefix(crlBytes, pemCRLPrefix) {
		block, _ := pem.Decode(crlBytes)
		if block != nil && block.Type == pemType {
			crlBytes = block.Bytes
		}
	}
	return ParseDERCRL(crlBytes)
}

// ParseDERCRL parses a DER encoded CRL from the given bytes.
func ParseDERCRL(derBytes []byte) (certList *pkix.CertificateList, err error) {
	certList = new(pkix.CertificateList)
	_, err = asn1.Unmarshal(derBytes, certList)
	if err != nil {
		certList = nil
	}
	return
}

// CreateCRL returns a DER encoded CRL, signed by this Certificate, that
// contains the given list of revoked certificates.
//
// The only supported key type is RSA (*rsa.PrivateKey for priv).
func (c *Certificate) CreateCRL(rand io.Reader, priv interface{}, revokedCerts []pkix.RevokedCertificate, now, expiry time.Time) (crlBytes []byte, err error) {
	rsaPriv, ok := priv.(*rsa.PrivateKey)
	if !ok {
		return nil, errors.New("x509: non-RSA private keys not supported")
	}
	tbsCertList := pkix.TBSCertificateList{
		Version: 2,
		Signature: pkix.AlgorithmIdentifier{
			Algorithm: oidSignatureSHA1WithRSA,
		},
		Issuer:              c.Subject.ToRDNSequence(),
		ThisUpdate:          now,
		NextUpdate:          expiry,
		RevokedCertificates: revokedCerts,
	}

	tbsCertListContents, err := asn1.Marshal(tbsCertList)
	if err != nil {
		return
	}

	h := sha1.New()
	h.Write(tbsCertListContents)
	digest := h.Sum(nil)

	signature, err := rsa.SignPKCS1v15(rand, rsaPriv, crypto.SHA1, digest)
	if err != nil {
		return
	}

	return asn1.Marshal(pkix.CertificateList{
		TBSCertList: tbsCertList,
		SignatureAlgorithm: pkix.AlgorithmIdentifier{
			Algorithm: oidSignatureSHA1WithRSA,
		},
		SignatureValue: asn1.BitString{Bytes: signature, BitLength: len(signature) * 8},
	})
}