summaryrefslogtreecommitdiff
path: root/libgo/go/crypto/elliptic/elliptic.go
blob: a3990891be353c5a4d0fa482d3fb191b3bfc5174 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package elliptic implements several standard elliptic curves over prime
// fields.
package elliptic

// This package operates, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
// calculation can be performed within the transform (as in ScalarMult and
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
// reverse the transform than to operate in affine coordinates.

import (
	"io"
	"math/big"
	"sync"
)

// A Curve represents a short-form Weierstrass curve with a=-3.
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
type Curve interface {
	// Params returns the parameters for the curve.
	Params() *CurveParams
	// IsOnCurve returns true if the given (x,y) lies on the curve.
	IsOnCurve(x, y *big.Int) bool
	// Add returns the sum of (x1,y1) and (x2,y2)
	Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
	// Double returns 2*(x,y)
	Double(x1, y1 *big.Int) (x, y *big.Int)
	// ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
	ScalarMult(x1, y1 *big.Int, scalar []byte) (x, y *big.Int)
	// ScalarBaseMult returns k*G, where G is the base point of the group and k
	// is an integer in big-endian form.
	ScalarBaseMult(scalar []byte) (x, y *big.Int)
}

// CurveParams contains the parameters of an elliptic curve and also provides
// a generic, non-constant time implementation of Curve.
type CurveParams struct {
	P       *big.Int // the order of the underlying field
	N       *big.Int // the order of the base point
	B       *big.Int // the constant of the curve equation
	Gx, Gy  *big.Int // (x,y) of the base point
	BitSize int      // the size of the underlying field
}

func (curve *CurveParams) Params() *CurveParams {
	return curve
}

func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
	// y² = x³ - 3x + b
	y2 := new(big.Int).Mul(y, y)
	y2.Mod(y2, curve.P)

	x3 := new(big.Int).Mul(x, x)
	x3.Mul(x3, x)

	threeX := new(big.Int).Lsh(x, 1)
	threeX.Add(threeX, x)

	x3.Sub(x3, threeX)
	x3.Add(x3, curve.B)
	x3.Mod(x3, curve.P)

	return x3.Cmp(y2) == 0
}

// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file.
func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
	zinv := new(big.Int).ModInverse(z, curve.P)
	zinvsq := new(big.Int).Mul(zinv, zinv)

	xOut = new(big.Int).Mul(x, zinvsq)
	xOut.Mod(xOut, curve.P)
	zinvsq.Mul(zinvsq, zinv)
	yOut = new(big.Int).Mul(y, zinvsq)
	yOut.Mod(yOut, curve.P)
	return
}

func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
	z := new(big.Int).SetInt64(1)
	return curve.affineFromJacobian(curve.addJacobian(x1, y1, z, x2, y2, z))
}

// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
	z1z1 := new(big.Int).Mul(z1, z1)
	z1z1.Mod(z1z1, curve.P)
	z2z2 := new(big.Int).Mul(z2, z2)
	z2z2.Mod(z2z2, curve.P)

	u1 := new(big.Int).Mul(x1, z2z2)
	u1.Mod(u1, curve.P)
	u2 := new(big.Int).Mul(x2, z1z1)
	u2.Mod(u2, curve.P)
	h := new(big.Int).Sub(u2, u1)
	if h.Sign() == -1 {
		h.Add(h, curve.P)
	}
	i := new(big.Int).Lsh(h, 1)
	i.Mul(i, i)
	j := new(big.Int).Mul(h, i)

	s1 := new(big.Int).Mul(y1, z2)
	s1.Mul(s1, z2z2)
	s1.Mod(s1, curve.P)
	s2 := new(big.Int).Mul(y2, z1)
	s2.Mul(s2, z1z1)
	s2.Mod(s2, curve.P)
	r := new(big.Int).Sub(s2, s1)
	if r.Sign() == -1 {
		r.Add(r, curve.P)
	}
	r.Lsh(r, 1)
	v := new(big.Int).Mul(u1, i)

	x3 := new(big.Int).Set(r)
	x3.Mul(x3, x3)
	x3.Sub(x3, j)
	x3.Sub(x3, v)
	x3.Sub(x3, v)
	x3.Mod(x3, curve.P)

	y3 := new(big.Int).Set(r)
	v.Sub(v, x3)
	y3.Mul(y3, v)
	s1.Mul(s1, j)
	s1.Lsh(s1, 1)
	y3.Sub(y3, s1)
	y3.Mod(y3, curve.P)

	z3 := new(big.Int).Add(z1, z2)
	z3.Mul(z3, z3)
	z3.Sub(z3, z1z1)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Sub(z3, z2z2)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Mul(z3, h)
	z3.Mod(z3, curve.P)

	return x3, y3, z3
}

func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
	z1 := new(big.Int).SetInt64(1)
	return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
}

// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
	delta := new(big.Int).Mul(z, z)
	delta.Mod(delta, curve.P)
	gamma := new(big.Int).Mul(y, y)
	gamma.Mod(gamma, curve.P)
	alpha := new(big.Int).Sub(x, delta)
	if alpha.Sign() == -1 {
		alpha.Add(alpha, curve.P)
	}
	alpha2 := new(big.Int).Add(x, delta)
	alpha.Mul(alpha, alpha2)
	alpha2.Set(alpha)
	alpha.Lsh(alpha, 1)
	alpha.Add(alpha, alpha2)

	beta := alpha2.Mul(x, gamma)

	x3 := new(big.Int).Mul(alpha, alpha)
	beta8 := new(big.Int).Lsh(beta, 3)
	x3.Sub(x3, beta8)
	for x3.Sign() == -1 {
		x3.Add(x3, curve.P)
	}
	x3.Mod(x3, curve.P)

	z3 := new(big.Int).Add(y, z)
	z3.Mul(z3, z3)
	z3.Sub(z3, gamma)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Sub(z3, delta)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Mod(z3, curve.P)

	beta.Lsh(beta, 2)
	beta.Sub(beta, x3)
	if beta.Sign() == -1 {
		beta.Add(beta, curve.P)
	}
	y3 := alpha.Mul(alpha, beta)

	gamma.Mul(gamma, gamma)
	gamma.Lsh(gamma, 3)
	gamma.Mod(gamma, curve.P)

	y3.Sub(y3, gamma)
	if y3.Sign() == -1 {
		y3.Add(y3, curve.P)
	}
	y3.Mod(y3, curve.P)

	return x3, y3, z3
}

func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
	// We have a slight problem in that the identity of the group (the
	// point at infinity) cannot be represented in (x, y) form on a finite
	// machine. Thus the standard add/double algorithm has to be tweaked
	// slightly: our initial state is not the identity, but x, and we
	// ignore the first true bit in |k|.  If we don't find any true bits in
	// |k|, then we return nil, nil, because we cannot return the identity
	// element.

	Bz := new(big.Int).SetInt64(1)
	x := Bx
	y := By
	z := Bz

	seenFirstTrue := false
	for _, byte := range k {
		for bitNum := 0; bitNum < 8; bitNum++ {
			if seenFirstTrue {
				x, y, z = curve.doubleJacobian(x, y, z)
			}
			if byte&0x80 == 0x80 {
				if !seenFirstTrue {
					seenFirstTrue = true
				} else {
					x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
				}
			}
			byte <<= 1
		}
	}

	if !seenFirstTrue {
		return nil, nil
	}

	return curve.affineFromJacobian(x, y, z)
}

func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
	return curve.ScalarMult(curve.Gx, curve.Gy, k)
}

var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}

// GenerateKey returns a public/private key pair. The private key is
// generated using the given reader, which must return random data.
func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) {
	bitSize := curve.Params().BitSize
	byteLen := (bitSize + 7) >> 3
	priv = make([]byte, byteLen)

	for x == nil {
		_, err = io.ReadFull(rand, priv)
		if err != nil {
			return
		}
		// We have to mask off any excess bits in the case that the size of the
		// underlying field is not a whole number of bytes.
		priv[0] &= mask[bitSize%8]
		// This is because, in tests, rand will return all zeros and we don't
		// want to get the point at infinity and loop forever.
		priv[1] ^= 0x42
		x, y = curve.ScalarBaseMult(priv)
	}
	return
}

// Marshal converts a point into the form specified in section 4.3.6 of ANSI X9.62.
func Marshal(curve Curve, x, y *big.Int) []byte {
	byteLen := (curve.Params().BitSize + 7) >> 3

	ret := make([]byte, 1+2*byteLen)
	ret[0] = 4 // uncompressed point

	xBytes := x.Bytes()
	copy(ret[1+byteLen-len(xBytes):], xBytes)
	yBytes := y.Bytes()
	copy(ret[1+2*byteLen-len(yBytes):], yBytes)
	return ret
}

// Unmarshal converts a point, serialized by Marshal, into an x, y pair. On error, x = nil.
func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
	byteLen := (curve.Params().BitSize + 7) >> 3
	if len(data) != 1+2*byteLen {
		return
	}
	if data[0] != 4 { // uncompressed form
		return
	}
	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
	y = new(big.Int).SetBytes(data[1+byteLen:])
	return
}

var initonce sync.Once
var p256 *CurveParams
var p384 *CurveParams
var p521 *CurveParams

func initAll() {
	initP224()
	initP256()
	initP384()
	initP521()
}

func initP256() {
	// See FIPS 186-3, section D.2.3
	p256 = new(CurveParams)
	p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
	p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
	p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
	p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
	p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
	p256.BitSize = 256
}

func initP384() {
	// See FIPS 186-3, section D.2.4
	p384 = new(CurveParams)
	p384.P, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319", 10)
	p384.N, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643", 10)
	p384.B, _ = new(big.Int).SetString("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef", 16)
	p384.Gx, _ = new(big.Int).SetString("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7", 16)
	p384.Gy, _ = new(big.Int).SetString("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f", 16)
	p384.BitSize = 384
}

func initP521() {
	// See FIPS 186-3, section D.2.5
	p521 = new(CurveParams)
	p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10)
	p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10)
	p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16)
	p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16)
	p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16)
	p521.BitSize = 521
}

// P256 returns a Curve which implements P-256 (see FIPS 186-3, section D.2.3)
func P256() Curve {
	initonce.Do(initAll)
	return p256
}

// P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4)
func P384() Curve {
	initonce.Do(initAll)
	return p384
}

// P521 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5)
func P521() Curve {
	initonce.Do(initAll)
	return p521
}