summaryrefslogtreecommitdiff
path: root/libgfortran/m4/ifunction.m4
blob: caf9dbaab8d58fa71f92f97fca9f50087e20e2f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
dnl Support macro file for intrinsic functions.
dnl Contains the generic sections of the array functions.
dnl This file is part of the GNU Fortran 95 Runtime Library (libgfortran)
dnl Distributed under the GNU GPL with exception.  See COPYING for details.
dnl
dnl Pass the implementation for a single section as the parameter to
dnl {MASK_}ARRAY_FUNCTION.
dnl The variables base, delta, and len describe the input section.
dnl For masked section the mask is described by mbase and mdelta.
dnl These should not be modified. The result should be stored in *dest.
dnl The names count, extent, sstride, dstride, base, dest, rank, dim
dnl retarray, array, pdim and mstride should not be used.
dnl The variable n is declared as index_type and may be used.
dnl Other variable declarations may be placed at the start of the code,
dnl The types of the array parameter and the return value are
dnl atype_name and rtype_name respectively.
dnl Execution should be allowed to continue to the end of the block.
dnl You should not return or break from the inner loop of the implementation.
dnl Care should also be taken to avoid using the names defined in iparm.m4
define(START_ARRAY_FUNCTION,
`
extern void name`'rtype_qual`_'atype_code (rtype * const restrict, 
	atype * const restrict, const index_type * const restrict);
export_proto(name`'rtype_qual`_'atype_code);

void
name`'rtype_qual`_'atype_code (rtype * const restrict retarray, 
	atype * const restrict array, 
	const index_type * const restrict pdim)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  const atype_name * restrict base;
  rtype_name * restrict dest;
  index_type rank;
  index_type n;
  index_type len;
  index_type delta;
  index_type dim;

  /* Make dim zero based to avoid confusion.  */
  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;

  /* TODO:  It should be a front end job to correctly set the strides.  */

  if (array->dim[0].stride == 0)
    array->dim[0].stride = 1;

  len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
  delta = array->dim[dim].stride;

  for (n = 0; n < dim; n++)
    {
      sstride[n] = array->dim[n].stride;
      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
    }
  for (n = dim; n < rank; n++)
    {
      sstride[n] = array->dim[n + 1].stride;
      extent[n] =
        array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
    }

  if (retarray->data == NULL)
    {
      for (n = 0; n < rank; n++)
        {
          retarray->dim[n].lbound = 0;
          retarray->dim[n].ubound = extent[n]-1;
          if (n == 0)
            retarray->dim[n].stride = 1;
          else
            retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
        }

      retarray->data
	 = internal_malloc_size (sizeof (rtype_name)
		 		 * retarray->dim[rank-1].stride
				 * extent[rank-1]);
      retarray->offset = 0;
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
    }
  else
    {
      if (retarray->dim[0].stride == 0)
	retarray->dim[0].stride = 1;

      if (rank != GFC_DESCRIPTOR_RANK (retarray))
	runtime_error ("rank of return array incorrect");
    }

  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
      dstride[n] = retarray->dim[n].stride;
      if (extent[n] <= 0)
        len = 0;
    }

  base = array->data;
  dest = retarray->data;

  while (base)
    {
      const atype_name * restrict src;
      rtype_name result;
      src = base;
      {
')dnl
define(START_ARRAY_BLOCK,
`        if (len <= 0)
	  *dest = '$1`;
	else
	  {
	    for (n = 0; n < len; n++, src += delta)
	      {
')dnl
define(FINISH_ARRAY_FUNCTION,
    `          }
	    *dest = result;
	  }
      }
      /* Advance to the next element.  */
      count[0]++;
      base += sstride[0];
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so proabably not worth it.  */
          base -= sstride[n] * extent[n];
          dest -= dstride[n] * extent[n];
          n++;
          if (n == rank)
            {
              /* Break out of the look.  */
              base = NULL;
              break;
            }
          else
            {
              count[n]++;
              base += sstride[n];
              dest += dstride[n];
            }
        }
    }
}')dnl
define(START_MASKED_ARRAY_FUNCTION,
`
extern void `m'name`'rtype_qual`_'atype_code (rtype * const restrict, 
	atype * const restrict, const index_type * const restrict,
	gfc_array_l4 * const restrict);
export_proto(`m'name`'rtype_qual`_'atype_code);

void
`m'name`'rtype_qual`_'atype_code (rtype * const restrict retarray, 
	atype * const restrict array, 
	const index_type * const restrict pdim, 
	gfc_array_l4 * const restrict mask)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  index_type mstride[GFC_MAX_DIMENSIONS];
  rtype_name * restrict dest;
  const atype_name * restrict base;
  const GFC_LOGICAL_4 * restrict mbase;
  int rank;
  int dim;
  index_type n;
  index_type len;
  index_type delta;
  index_type mdelta;

  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;

  /* TODO:  It should be a front end job to correctly set the strides.  */

  if (array->dim[0].stride == 0)
    array->dim[0].stride = 1;

  if (mask->dim[0].stride == 0)
    mask->dim[0].stride = 1;

  len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
  if (len <= 0)
    return;
  delta = array->dim[dim].stride;
  mdelta = mask->dim[dim].stride;

  for (n = 0; n < dim; n++)
    {
      sstride[n] = array->dim[n].stride;
      mstride[n] = mask->dim[n].stride;
      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
    }
  for (n = dim; n < rank; n++)
    {
      sstride[n] = array->dim[n + 1].stride;
      mstride[n] = mask->dim[n + 1].stride;
      extent[n] =
        array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
    }

  if (retarray->data == NULL)
    {
      for (n = 0; n < rank; n++)
        {
          retarray->dim[n].lbound = 0;
          retarray->dim[n].ubound = extent[n]-1;
          if (n == 0)
            retarray->dim[n].stride = 1;
          else
            retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
        }

      retarray->data
	 = internal_malloc_size (sizeof (rtype_name)
		 		 * retarray->dim[rank-1].stride
				 * extent[rank-1]);
      retarray->offset = 0;
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
    }
  else
    {
      if (retarray->dim[0].stride == 0)
	retarray->dim[0].stride = 1;

      if (rank != GFC_DESCRIPTOR_RANK (retarray))
	runtime_error ("rank of return array incorrect");
    }

  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
      dstride[n] = retarray->dim[n].stride;
      if (extent[n] <= 0)
        return;
    }

  dest = retarray->data;
  base = array->data;
  mbase = mask->data;

  if (GFC_DESCRIPTOR_SIZE (mask) != 4)
    {
      /* This allows the same loop to be used for all logical types.  */
      assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
      for (n = 0; n < rank; n++)
        mstride[n] <<= 1;
      mdelta <<= 1;
      mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
    }

  while (base)
    {
      const atype_name * restrict src;
      const GFC_LOGICAL_4 * restrict msrc;
      rtype_name result;
      src = base;
      msrc = mbase;
      {
')dnl
define(START_MASKED_ARRAY_BLOCK,
`        if (len <= 0)
	  *dest = '$1`;
	else
	  {
	    for (n = 0; n < len; n++, src += delta, msrc += mdelta)
	      {
')dnl
define(FINISH_MASKED_ARRAY_FUNCTION,
`              }
	    *dest = result;
	  }
      }
      /* Advance to the next element.  */
      count[0]++;
      base += sstride[0];
      mbase += mstride[0];
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so proabably not worth it.  */
          base -= sstride[n] * extent[n];
          mbase -= mstride[n] * extent[n];
          dest -= dstride[n] * extent[n];
          n++;
          if (n == rank)
            {
              /* Break out of the look.  */
              base = NULL;
              break;
            }
          else
            {
              count[n]++;
              base += sstride[n];
              mbase += mstride[n];
              dest += dstride[n];
            }
        }
    }
}')dnl
define(ARRAY_FUNCTION,
`START_ARRAY_FUNCTION
$2
START_ARRAY_BLOCK($1)
$3
FINISH_ARRAY_FUNCTION')dnl
define(MASKED_ARRAY_FUNCTION,
`START_MASKED_ARRAY_FUNCTION
$2
START_MASKED_ARRAY_BLOCK($1)
$3
FINISH_MASKED_ARRAY_FUNCTION')dnl