summaryrefslogtreecommitdiff
path: root/libgfortran/io/unit.c
blob: 90e6d85f6dad1a079e392694cd82669acf2e99d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/* Copyright (C) 2002, 2003, 2005 Free Software Foundation, Inc.
   Contributed by Andy Vaught

This file is part of the GNU Fortran 95 runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Libgfortran; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#include "config.h"
#include <stdlib.h>
#include <string.h>
#include "libgfortran.h"
#include "io.h"


/* IO locking rules:
   UNIT_LOCK is a master lock, protecting UNIT_ROOT tree and UNIT_CACHE.
   Concurrent use of different units should be supported, so
   each unit has its own lock, LOCK.
   Open should be atomic with its reopening of units and list_read.c
   in several places needs find_unit another unit while holding stdin
   unit's lock, so it must be possible to acquire UNIT_LOCK while holding
   some unit's lock.  Therefore to avoid deadlocks, it is forbidden
   to acquire unit's private locks while holding UNIT_LOCK, except
   for freshly created units (where no other thread can get at their
   address yet) or when using just trylock rather than lock operation.
   In addition to unit's private lock each unit has a WAITERS counter
   and CLOSED flag.  WAITERS counter must be either only
   atomically incremented/decremented in all places (if atomic builtins
   are supported), or protected by UNIT_LOCK in all places (otherwise).
   CLOSED flag must be always protected by unit's LOCK.
   After finding a unit in UNIT_CACHE or UNIT_ROOT with UNIT_LOCK held,
   WAITERS must be incremented to avoid concurrent close from freeing
   the unit between unlocking UNIT_LOCK and acquiring unit's LOCK.
   Unit freeing is always done under UNIT_LOCK.  If close_unit sees any
   WAITERS, it doesn't free the unit but instead sets the CLOSED flag
   and the thread that decrements WAITERS to zero while CLOSED flag is
   set is responsible for freeing it (while holding UNIT_LOCK).
   flush_all_units operation is iterating over the unit tree with
   increasing UNIT_NUMBER while holding UNIT_LOCK and attempting to
   flush each unit (and therefore needs the unit's LOCK held as well).
   To avoid deadlocks, it just trylocks the LOCK and if unsuccessful,
   remembers the current unit's UNIT_NUMBER, unlocks UNIT_LOCK, acquires
   unit's LOCK and after flushing reacquires UNIT_LOCK and restarts with
   the smallest UNIT_NUMBER above the last one flushed.

   If find_unit/find_or_create_unit/find_file/get_unit routines return
   non-NULL, the returned unit has its private lock locked and when the
   caller is done with it, it must call either unlock_unit or close_unit
   on it.  unlock_unit or close_unit must be always called only with the
   private lock held.  */

/* Subroutines related to units */


#define CACHE_SIZE 3
static gfc_unit *unit_cache[CACHE_SIZE];
gfc_offset max_offset;
gfc_unit *unit_root;
#ifdef __GTHREAD_MUTEX_INIT
__gthread_mutex_t unit_lock = __GTHREAD_MUTEX_INIT;
#else
__gthread_mutex_t unit_lock;
#endif

/* This implementation is based on Stefan Nilsson's article in the
 * July 1997 Doctor Dobb's Journal, "Treaps in Java". */

/* pseudo_random()-- Simple linear congruential pseudorandom number
 * generator.  The period of this generator is 44071, which is plenty
 * for our purposes.  */

static int
pseudo_random (void)
{
  static int x0 = 5341;

  x0 = (22611 * x0 + 10) % 44071;
  return x0;
}


/* rotate_left()-- Rotate the treap left */

static gfc_unit *
rotate_left (gfc_unit * t)
{
  gfc_unit *temp;

  temp = t->right;
  t->right = t->right->left;
  temp->left = t;

  return temp;
}


/* rotate_right()-- Rotate the treap right */

static gfc_unit *
rotate_right (gfc_unit * t)
{
  gfc_unit *temp;

  temp = t->left;
  t->left = t->left->right;
  temp->right = t;

  return temp;
}



static int
compare (int a, int b)
{
  if (a < b)
    return -1;
  if (a > b)
    return 1;

  return 0;
}


/* insert()-- Recursive insertion function.  Returns the updated treap. */

static gfc_unit *
insert (gfc_unit *new, gfc_unit *t)
{
  int c;

  if (t == NULL)
    return new;

  c = compare (new->unit_number, t->unit_number);

  if (c < 0)
    {
      t->left = insert (new, t->left);
      if (t->priority < t->left->priority)
	t = rotate_right (t);
    }

  if (c > 0)
    {
      t->right = insert (new, t->right);
      if (t->priority < t->right->priority)
	t = rotate_left (t);
    }

  if (c == 0)
    internal_error (NULL, "insert(): Duplicate key found!");

  return t;
}


/* insert_unit()-- Create a new node, insert it into the treap.  */

static gfc_unit *
insert_unit (int n)
{
  gfc_unit *u = get_mem (sizeof (gfc_unit));
  memset (u, '\0', sizeof (gfc_unit));
  u->unit_number = n;
#ifdef __GTHREAD_MUTEX_INIT
  {
    __gthread_mutex_t tmp = __GTHREAD_MUTEX_INIT;
    u->lock = tmp;
  }
#else
  __GTHREAD_MUTEX_INIT_FUNCTION (&u->lock);
#endif
  __gthread_mutex_lock (&u->lock);
  u->priority = pseudo_random ();
  unit_root = insert (u, unit_root);
  return u;
}


static gfc_unit *
delete_root (gfc_unit * t)
{
  gfc_unit *temp;

  if (t->left == NULL)
    return t->right;
  if (t->right == NULL)
    return t->left;

  if (t->left->priority > t->right->priority)
    {
      temp = rotate_right (t);
      temp->right = delete_root (t);
    }
  else
    {
      temp = rotate_left (t);
      temp->left = delete_root (t);
    }

  return temp;
}


/* delete_treap()-- Delete an element from a tree.  The 'old' value
 * does not necessarily have to point to the element to be deleted, it
 * must just point to a treap structure with the key to be deleted.
 * Returns the new root node of the tree. */

static gfc_unit *
delete_treap (gfc_unit * old, gfc_unit * t)
{
  int c;

  if (t == NULL)
    return NULL;

  c = compare (old->unit_number, t->unit_number);

  if (c < 0)
    t->left = delete_treap (old, t->left);
  if (c > 0)
    t->right = delete_treap (old, t->right);
  if (c == 0)
    t = delete_root (t);

  return t;
}


/* delete_unit()-- Delete a unit from a tree */

static void
delete_unit (gfc_unit * old)
{
  unit_root = delete_treap (old, unit_root);
}


/* get_external_unit()-- Given an integer, return a pointer to the unit
 * structure.  Returns NULL if the unit does not exist,
 * otherwise returns a locked unit. */

static gfc_unit *
get_external_unit (int n, int do_create)
{
  gfc_unit *p;
  int c, created = 0;

  __gthread_mutex_lock (&unit_lock);
retry:
  for (c = 0; c < CACHE_SIZE; c++)
    if (unit_cache[c] != NULL && unit_cache[c]->unit_number == n)
      {
	p = unit_cache[c];
	goto found;
      }

  p = unit_root;
  while (p != NULL)
    {
      c = compare (n, p->unit_number);
      if (c < 0)
	p = p->left;
      if (c > 0)
	p = p->right;
      if (c == 0)
	break;
    }

  if (p == NULL && do_create)
    {
      p = insert_unit (n);
      created = 1;
    }

  if (p != NULL)
    {
      for (c = 0; c < CACHE_SIZE - 1; c++)
	unit_cache[c] = unit_cache[c + 1];

      unit_cache[CACHE_SIZE - 1] = p;
    }

  if (created)
    {
      /* Newly created units have their lock held already
	 from insert_unit.  Just unlock UNIT_LOCK and return.  */
      __gthread_mutex_unlock (&unit_lock);
      return p;
    }

found:
  if (p != NULL)
    {
      /* Fast path.  */
      if (! __gthread_mutex_trylock (&p->lock))
	{
	  /* assert (p->closed == 0); */
	  __gthread_mutex_unlock (&unit_lock);
	  return p;
	}

      inc_waiting_locked (p);
    }

  __gthread_mutex_unlock (&unit_lock);

  if (p != NULL)
    {
      __gthread_mutex_lock (&p->lock);
      if (p->closed)
	{
	  __gthread_mutex_lock (&unit_lock);
	  __gthread_mutex_unlock (&p->lock);
	  if (predec_waiting_locked (p) == 0)
	    free_mem (p);
	  goto retry;
	}

      dec_waiting_unlocked (p);
    }
  return p;
}


gfc_unit *
find_unit (int n)
{
  return get_external_unit (n, 0);
}


gfc_unit *
find_or_create_unit (int n)
{
  return get_external_unit (n, 1);
}


gfc_unit *
get_internal_unit (st_parameter_dt *dtp)
{
  gfc_unit * iunit;

  /* Allocate memory for a unit structure.  */

  iunit = get_mem (sizeof (gfc_unit));
  if (iunit == NULL)
    {
      generate_error (&dtp->common, ERROR_INTERNAL_UNIT, NULL);
      return NULL;
    }

  memset (iunit, '\0', sizeof (gfc_unit));
#ifdef __GTHREAD_MUTEX_INIT
  {
    __gthread_mutex_t tmp = __GTHREAD_MUTEX_INIT;
    iunit->lock = tmp;
  }
#else
  __GTHREAD_MUTEX_INIT_FUNCTION (&iunit->lock);
#endif
  __gthread_mutex_lock (&iunit->lock);

  iunit->recl = dtp->internal_unit_len;
  
  /* For internal units we set the unit number to -1.
     Otherwise internal units can be mistaken for a pre-connected unit or
     some other file I/O unit.  */
  iunit->unit_number = -1;

  /* Set up the looping specification from the array descriptor, if any.  */

  if (is_array_io (dtp))
    {
      iunit->rank = GFC_DESCRIPTOR_RANK (dtp->internal_unit_desc);
      iunit->ls = (array_loop_spec *)
	get_mem (iunit->rank * sizeof (array_loop_spec));
      dtp->internal_unit_len *=
	init_loop_spec (dtp->internal_unit_desc, iunit->ls);
    }

  /* Set initial values for unit parameters.  */

  iunit->s = open_internal (dtp->internal_unit, dtp->internal_unit_len);
  iunit->bytes_left = iunit->recl;
  iunit->last_record=0;
  iunit->maxrec=0;
  iunit->current_record=0;
  iunit->read_bad = 0;

  /* Set flags for the internal unit.  */

  iunit->flags.access = ACCESS_SEQUENTIAL;
  iunit->flags.action = ACTION_READWRITE;
  iunit->flags.form = FORM_FORMATTED;
  iunit->flags.pad = PAD_YES;
  iunit->flags.status = STATUS_UNSPECIFIED;
  iunit->endfile = NO_ENDFILE;

  /* Initialize the data transfer parameters.  */

  dtp->u.p.advance_status = ADVANCE_YES;
  dtp->u.p.blank_status = BLANK_UNSPECIFIED;
  dtp->u.p.seen_dollar = 0;
  dtp->u.p.skips = 0;
  dtp->u.p.pending_spaces = 0;
  dtp->u.p.max_pos = 0;
  dtp->u.p.at_eof = 0;

  /* This flag tells us the unit is assigned to internal I/O.  */
  
  dtp->u.p.unit_is_internal = 1;

  return iunit;
}


/* free_internal_unit()-- Free memory allocated for internal units if any.  */
void
free_internal_unit (st_parameter_dt *dtp)
{
  if (!is_internal_unit (dtp))
    return;

  if (dtp->u.p.current_unit->ls != NULL)
      free_mem (dtp->u.p.current_unit->ls);
  
  sclose (dtp->u.p.current_unit->s);

  if (dtp->u.p.current_unit != NULL)
    free_mem (dtp->u.p.current_unit);
}


/* get_unit()-- Returns the unit structure associated with the integer
 * unit or the internal file. */

gfc_unit *
get_unit (st_parameter_dt *dtp, int do_create)
{

  if ((dtp->common.flags & IOPARM_DT_HAS_INTERNAL_UNIT) != 0)
    return get_internal_unit(dtp);

  /* Has to be an external unit */

  dtp->u.p.unit_is_internal = 0;
  dtp->internal_unit_desc = NULL;

  return get_external_unit (dtp->common.unit, do_create);
}


/* is_internal_unit()-- Determine if the current unit is internal or not */

int
is_internal_unit (st_parameter_dt *dtp)
{
  return dtp->u.p.unit_is_internal;
}


/* is_array_io ()-- Determine if the I/O is to/from an array */

int
is_array_io (st_parameter_dt *dtp)
{
  return dtp->internal_unit_desc != NULL;
}


/* is_stream_io () -- Determine if I/O is access="stream" mode */

int
is_stream_io (st_parameter_dt *dtp)
{
  return dtp->u.p.current_unit->flags.access == ACCESS_STREAM;
}


/*************************/
/* Initialize everything */

void
init_units (void)
{
  gfc_unit *u;
  unsigned int i;

#ifndef __GTHREAD_MUTEX_INIT
  __GTHREAD_MUTEX_INIT_FUNCTION (&unit_lock);
#endif

  if (options.stdin_unit >= 0)
    {				/* STDIN */
      u = insert_unit (options.stdin_unit);
      u->s = input_stream ();

      u->flags.action = ACTION_READ;

      u->flags.access = ACCESS_SEQUENTIAL;
      u->flags.form = FORM_FORMATTED;
      u->flags.status = STATUS_OLD;
      u->flags.blank = BLANK_NULL;
      u->flags.pad = PAD_YES;
      u->flags.position = POSITION_ASIS;

      u->recl = options.default_recl;
      u->endfile = NO_ENDFILE;

      __gthread_mutex_unlock (&u->lock);
    }

  if (options.stdout_unit >= 0)
    {				/* STDOUT */
      u = insert_unit (options.stdout_unit);
      u->s = output_stream ();

      u->flags.action = ACTION_WRITE;

      u->flags.access = ACCESS_SEQUENTIAL;
      u->flags.form = FORM_FORMATTED;
      u->flags.status = STATUS_OLD;
      u->flags.blank = BLANK_NULL;
      u->flags.position = POSITION_ASIS;

      u->recl = options.default_recl;
      u->endfile = AT_ENDFILE;

      __gthread_mutex_unlock (&u->lock);
    }

  if (options.stderr_unit >= 0)
    {				/* STDERR */
      u = insert_unit (options.stderr_unit);
      u->s = error_stream ();

      u->flags.action = ACTION_WRITE;

      u->flags.access = ACCESS_SEQUENTIAL;
      u->flags.form = FORM_FORMATTED;
      u->flags.status = STATUS_OLD;
      u->flags.blank = BLANK_NULL;
      u->flags.position = POSITION_ASIS;

      u->recl = options.default_recl;
      u->endfile = AT_ENDFILE;

      __gthread_mutex_unlock (&u->lock);
    }

  /* Calculate the maximum file offset in a portable manner.
   * max will be the largest signed number for the type gfc_offset.
   *
   * set a 1 in the LSB and keep a running sum, stopping at MSB-1 bit. */

  max_offset = 0;
  for (i = 0; i < sizeof (max_offset) * 8 - 1; i++)
    max_offset = max_offset + ((gfc_offset) 1 << i);
}


static int
close_unit_1 (gfc_unit *u, int locked)
{
  int i, rc;

  rc = (u->s == NULL) ? 0 : sclose (u->s) == FAILURE;

  u->closed = 1;
  if (!locked)
    __gthread_mutex_lock (&unit_lock);

  for (i = 0; i < CACHE_SIZE; i++)
    if (unit_cache[i] == u)
      unit_cache[i] = NULL;

  delete_unit (u);

  if (u->file)
    free_mem (u->file);
  u->file = NULL;
  u->file_len = 0;

  if (!locked)
    __gthread_mutex_unlock (&u->lock);

  /* If there are any threads waiting in find_unit for this unit,
     avoid freeing the memory, the last such thread will free it
     instead.  */
  if (u->waiting == 0)
    free_mem (u);

  if (!locked)
    __gthread_mutex_unlock (&unit_lock);

  return rc;
}

void
unlock_unit (gfc_unit *u)
{
  __gthread_mutex_unlock (&u->lock);
}

/* close_unit()-- Close a unit.  The stream is closed, and any memory
 * associated with the stream is freed.  Returns nonzero on I/O error.
 * Should be called with the u->lock locked. */

int
close_unit (gfc_unit *u)
{
  return close_unit_1 (u, 0);
}


/* close_units()-- Delete units on completion.  We just keep deleting
 * the root of the treap until there is nothing left.
 * Not sure what to do with locking here.  Some other thread might be
 * holding some unit's lock and perhaps hold it indefinitely
 * (e.g. waiting for input from some pipe) and close_units shouldn't
 * delay the program too much.  */

void
close_units (void)
{
  __gthread_mutex_lock (&unit_lock);
  while (unit_root != NULL)
    close_unit_1 (unit_root, 1);
  __gthread_mutex_unlock (&unit_lock);
}