1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
/* Implementation of the RANDOM intrinsics
Copyright 2002, 2004 Free Software Foundation, Inc.
Contributed by Lars Segerlund <seger@linuxmail.org>
The algorithm was taken from the paper :
Mersenne Twister: 623-dimensionally equidistributed
uniform pseudorandom generator.
by: Makoto Matsumoto
Takuji Nishimura
Which appeared in the: ACM Transactions on Modelling and Computer
Simulations: Special Issue on Uniform Random Number
Generation. ( Early in 1998 ).
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include "libgfortran.h"
/*Use the 'big' generator by default ( period -> 2**19937 ). */
#define MT19937
/* Define the necessary constants for the algorithm. */
#ifdef MT19937
enum constants
{
N = 624, M = 397, R = 19, TU = 11, TS = 7, TT = 15, TL = 17
};
#define M_A 0x9908B0DF
#define T_B 0x9D2C5680
#define T_C 0xEFC60000
#else
enum constants
{
N = 351, M = 175, R = 19, TU = 11, TS = 7, TT = 15, TL = 17
};
#define M_A 0xE4BD75F5
#define T_B 0x655E5280
#define T_C 0xFFD58000
#endif
static int i = N;
static unsigned int seed[N];
/* This is the routine which handles the seeding of the generator,
and also reading and writing of the seed. */
void
random_seed (GFC_INTEGER_4 * size, const gfc_array_i4 * put,
const gfc_array_i4 * get)
{
/* Initialize the seed in system dependent manner. */
if (get == NULL && put == NULL && size == NULL)
{
int fd;
fd = open ("/dev/urandom", O_RDONLY);
if (fd == 0)
{
/* We dont have urandom. */
GFC_UINTEGER_4 s = (GFC_UINTEGER_4) seed;
for (i = 0; i < N; i++)
{
s = s * 29943829 - 1;
seed[i] = s;
}
}
else
{
/* Using urandom, might have a length issue. */
read (fd, &seed[0], sizeof (GFC_UINTEGER_4) * N);
close (fd);
}
return;
}
/* Return the size of the seed */
if (size != NULL)
{
*size = N;
return;
}
/* if we have gotten to this pount we have a get or put
* now we check it the array fulfills the demands in the standard .
*/
/* Set the seed to PUT data */
if (put != NULL)
{
/* if the rank of the array is not 1 abort */
if (GFC_DESCRIPTOR_RANK (put) != 1)
abort ();
/* if the array is too small abort */
if (((put->dim[0].ubound + 1 - put->dim[0].lbound)) < N)
abort ();
/* If this is the case the array is a temporary */
if (put->dim[0].stride == 0)
return;
/* This code now should do correct strides. */
for (i = 0; i < N; i++)
seed[i] = put->data[i * put->dim[0].stride];
}
/* Return the seed to GET data */
if (get != NULL)
{
/* if the rank of the array is not 1 abort */
if (GFC_DESCRIPTOR_RANK (get) != 1)
abort ();
/* if the array is too small abort */
if (((get->dim[0].ubound + 1 - get->dim[0].lbound)) < N)
abort ();
/* If this is the case the array is a temporary */
if (get->dim[0].stride == 0)
return;
/* This code now should do correct strides. */
for (i = 0; i < N; i++)
get->data[i * get->dim[0].stride] = seed[i];
}
}
/* Here is the internal routine which generates the random numbers
in 'batches' based upon the need for a new batch.
It's an integer based routine known as 'Mersenne Twister'.
This implementation still lacks 'tempering' and a good verification,
but gives very good metrics. */
static void
random_generate (void)
{
/* 32 bits. */
GFC_UINTEGER_4 y;
/* Generate batch of N. */
int k, m;
for (k = 0, m = M; k < N - 1; k++)
{
y = (seed[k] & (-1 << R)) | (seed[k + 1] & ((1u << R) - 1));
seed[k] = seed[m] ^ (y >> 1) ^ (-(GFC_INTEGER_4) (y & 1) & M_A);
if (++m >= N)
m = 0;
}
y = (seed[N - 1] & (-1 << R)) | (seed[0] & ((1u << R) - 1));
seed[N - 1] = seed[M - 1] ^ (y >> 1) ^ (-(GFC_INTEGER_4) (y & 1) & M_A);
i = 0;
}
/* A routine to return a REAL(KIND=4). */
#define random_r4 prefix(random_r4)
void
random_r4 (GFC_REAL_4 * harv)
{
/* Regenerate if we need to. */
if (i >= N)
random_generate ();
/* Convert uint32 to REAL(KIND=4). */
*harv = (GFC_REAL_4) ((GFC_REAL_4) (GFC_UINTEGER_4) seed[i++] /
(GFC_REAL_4) (~(GFC_UINTEGER_4) 0));
}
/* A routine to return a REAL(KIND=8). */
#define random_r8 prefix(random_r8)
void
random_r8 (GFC_REAL_8 * harv)
{
/* Regenerate if we need to, may waste one 32-bit value. */
if ((i + 1) >= N)
random_generate ();
/* Convert two uint32 to a REAL(KIND=8). */
*harv = ((GFC_REAL_8) ((((GFC_UINTEGER_8) seed[i+1]) << 32) + seed[i])) /
(GFC_REAL_8) (~(GFC_UINTEGER_8) 0);
i += 2;
}
/* Code to handle arrays will follow here. */
/* REAL(KIND=4) REAL array. */
#define arandom_r4 prefix(arandom_r4)
void
arandom_r4 (gfc_array_r4 * harv)
{
index_type count[GFC_MAX_DIMENSIONS - 1];
index_type extent[GFC_MAX_DIMENSIONS - 1];
index_type stride[GFC_MAX_DIMENSIONS - 1];
index_type stride0;
index_type dim;
GFC_REAL_4 *dest;
int n;
dest = harv->data;
if (harv->dim[0].stride == 0)
harv->dim[0].stride = 1;
dim = GFC_DESCRIPTOR_RANK (harv);
for (n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = harv->dim[n].stride;
extent[n] = harv->dim[n].ubound + 1 - harv->dim[n].lbound;
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
while (dest)
{
/* Set the elements. */
/* regenerate if we need to */
if (i >= N)
random_generate ();
/* Convert uint32 to float in a hopefully g95 compiant manner */
*dest = (GFC_REAL_4) ((GFC_REAL_4) (GFC_UINTEGER_4) seed[i++] /
(GFC_REAL_4) (~(GFC_UINTEGER_4) 0));
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension,
reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products,
but this is a less
frequently used path so proabably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
/* REAL(KIND=8) array. */
#define arandom_r8 prefix(arandom_r8)
void
arandom_r8 (gfc_array_r8 * harv)
{
index_type count[GFC_MAX_DIMENSIONS - 1];
index_type extent[GFC_MAX_DIMENSIONS - 1];
index_type stride[GFC_MAX_DIMENSIONS - 1];
index_type stride0;
index_type dim;
GFC_REAL_8 *dest;
int n;
dest = harv->data;
if (harv->dim[0].stride == 0)
harv->dim[0].stride = 1;
dim = GFC_DESCRIPTOR_RANK (harv);
for (n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = harv->dim[n].stride;
extent[n] = harv->dim[n].ubound + 1 - harv->dim[n].lbound;
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
while (dest)
{
/* Set the elements. */
/* regenerate if we need to, may waste one 32-bit value */
if ((i + 1) >= N)
random_generate ();
/* Convert two uint32 to a REAL(KIND=8). */
*dest = ((GFC_REAL_8) ((((GFC_UINTEGER_8) seed[i+1]) << 32) + seed[i])) /
(GFC_REAL_8) (~(GFC_UINTEGER_8) 0);
i += 2;
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension,
reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products,
but this is a less
frequently used path so proabably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
|