1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
/* Helper functions in C for IEEE modules
Copyright (C) 2013-2022 Free Software Foundation, Inc.
Contributed by Francois-Xavier Coudert <fxcoudert@gcc.gnu.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
/* Prototypes. */
extern int ieee_class_helper_4 (GFC_REAL_4 *);
internal_proto(ieee_class_helper_4);
extern int ieee_class_helper_8 (GFC_REAL_8 *);
internal_proto(ieee_class_helper_8);
#ifdef HAVE_GFC_REAL_10
extern int ieee_class_helper_10 (GFC_REAL_10 *);
internal_proto(ieee_class_helper_10);
#endif
#ifdef HAVE_GFC_REAL_16
extern int ieee_class_helper_16 (GFC_REAL_16 *);
internal_proto(ieee_class_helper_16);
#endif
/* Enumeration of the possible floating-point types. These values
correspond to the hidden arguments of the IEEE_CLASS_TYPE
derived-type of IEEE_ARITHMETIC. */
enum {
IEEE_OTHER_VALUE = 0,
IEEE_SIGNALING_NAN,
IEEE_QUIET_NAN,
IEEE_NEGATIVE_INF,
IEEE_NEGATIVE_NORMAL,
IEEE_NEGATIVE_DENORMAL,
IEEE_NEGATIVE_SUBNORMAL = IEEE_NEGATIVE_DENORMAL,
IEEE_NEGATIVE_ZERO,
IEEE_POSITIVE_ZERO,
IEEE_POSITIVE_DENORMAL,
IEEE_POSITIVE_SUBNORMAL = IEEE_POSITIVE_DENORMAL,
IEEE_POSITIVE_NORMAL,
IEEE_POSITIVE_INF
};
#define CLASSMACRO(TYPE) \
int ieee_class_helper_ ## TYPE (GFC_REAL_ ## TYPE *value) \
{ \
int res = __builtin_fpclassify (IEEE_QUIET_NAN, IEEE_POSITIVE_INF, \
IEEE_POSITIVE_NORMAL, \
IEEE_POSITIVE_DENORMAL, \
IEEE_POSITIVE_ZERO, *value); \
\
if (__builtin_signbit (*value)) \
{ \
if (res == IEEE_POSITIVE_NORMAL) \
return IEEE_NEGATIVE_NORMAL; \
else if (res == IEEE_POSITIVE_DENORMAL) \
return IEEE_NEGATIVE_DENORMAL; \
else if (res == IEEE_POSITIVE_ZERO) \
return IEEE_NEGATIVE_ZERO; \
else if (res == IEEE_POSITIVE_INF) \
return IEEE_NEGATIVE_INF; \
} \
\
if (res == IEEE_QUIET_NAN) \
{ \
if (__builtin_issignaling (*value)) \
return IEEE_SIGNALING_NAN; \
else \
return IEEE_QUIET_NAN; \
} \
\
return res; \
}
CLASSMACRO(4)
CLASSMACRO(8)
#ifdef HAVE_GFC_REAL_10
CLASSMACRO(10)
#endif
#ifdef HAVE_GFC_REAL_16
CLASSMACRO(16)
#endif
extern GFC_REAL_4 ieee_value_helper_4 (int);
internal_proto(ieee_value_helper_4);
extern GFC_REAL_8 ieee_value_helper_8 (int);
internal_proto(ieee_value_helper_8);
#ifdef HAVE_GFC_REAL_10
extern GFC_REAL_10 ieee_value_helper_10 (int);
internal_proto(ieee_value_helper_10);
#endif
#ifdef HAVE_GFC_REAL_16
extern GFC_REAL_16 ieee_value_helper_16 (int);
internal_proto(ieee_value_helper_16);
#endif
#define VALUEMACRO(TYPE, SUFFIX) \
GFC_REAL_ ## TYPE ieee_value_helper_ ## TYPE (int type) \
{ \
switch (type) \
{ \
case IEEE_SIGNALING_NAN: \
return __builtin_nans ## SUFFIX (""); \
\
case IEEE_QUIET_NAN: \
return __builtin_nan ## SUFFIX (""); \
\
case IEEE_NEGATIVE_INF: \
return - __builtin_inf ## SUFFIX (); \
\
case IEEE_NEGATIVE_NORMAL: \
return -42; \
\
case IEEE_NEGATIVE_DENORMAL: \
return -(GFC_REAL_ ## TYPE ## _TINY) / 2; \
\
case IEEE_NEGATIVE_ZERO: \
return -(GFC_REAL_ ## TYPE) 0; \
\
case IEEE_POSITIVE_ZERO: \
return 0; \
\
case IEEE_POSITIVE_DENORMAL: \
return (GFC_REAL_ ## TYPE ## _TINY) / 2; \
\
case IEEE_POSITIVE_NORMAL: \
return 42; \
\
case IEEE_POSITIVE_INF: \
return __builtin_inf ## SUFFIX (); \
\
default: \
return 0; \
} \
}
VALUEMACRO(4, f)
VALUEMACRO(8, )
#ifdef HAVE_GFC_REAL_10
VALUEMACRO(10, l)
#endif
#ifdef HAVE_GFC_REAL_16
# ifdef GFC_REAL_16_IS_FLOAT128
VALUEMACRO(16, f128)
# else
VALUEMACRO(16, l)
# endif
#endif
#define GFC_FPE_ALL (GFC_FPE_INVALID | GFC_FPE_DENORMAL | \
GFC_FPE_ZERO | GFC_FPE_OVERFLOW | \
GFC_FPE_UNDERFLOW | GFC_FPE_INEXACT)
/* Functions to save and restore floating-point state, clear and restore
exceptions on procedure entry/exit. The rules we follow are set
in Fortran 2008's 14.3 paragraph 3, note 14.4, 14.4 paragraph 4,
14.5 paragraph 2, and 14.6 paragraph 1. */
void ieee_procedure_entry (void *);
export_proto(ieee_procedure_entry);
void
ieee_procedure_entry (void *state)
{
/* Save the floating-point state in the space provided by the caller. */
get_fpu_state (state);
/* Clear the floating-point exceptions. */
set_fpu_except_flags (0, GFC_FPE_ALL);
}
void ieee_procedure_exit (void *);
export_proto(ieee_procedure_exit);
void
ieee_procedure_exit (void *state)
{
/* Get the flags currently signaling. */
int flags = get_fpu_except_flags ();
/* Restore the floating-point state we had on entry. */
set_fpu_state (state);
/* And re-raised the flags that were raised since entry. */
set_fpu_except_flags (flags, 0);
}
|