summaryrefslogtreecommitdiff
path: root/libgfortran/generated/matmul_r4.c
blob: cf3ffa352328f3246ffaf14e98d8a4b6f0fe354e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/* Implementation of the MATMUL intrinsic
   Copyright (C) 2002-2016 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>

This file is part of the GNU Fortran runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#include "libgfortran.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>


#if defined (HAVE_GFC_REAL_4)

/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
   passed to us by the front-end, in which case we call it for large
   matrices.  */

typedef void (*blas_call)(const char *, const char *, const int *, const int *,
                          const int *, const GFC_REAL_4 *, const GFC_REAL_4 *,
                          const int *, const GFC_REAL_4 *, const int *,
                          const GFC_REAL_4 *, GFC_REAL_4 *, const int *,
                          int, int);

/* The order of loops is different in the case of plain matrix
   multiplication C=MATMUL(A,B), and in the frequent special case where
   the argument A is the temporary result of a TRANSPOSE intrinsic:
   C=MATMUL(TRANSPOSE(A),B).  Transposed temporaries are detected by
   looking at their strides.

   The equivalent Fortran pseudo-code is:

   DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
   IF (.NOT.IS_TRANSPOSED(A)) THEN
     C = 0
     DO J=1,N
       DO K=1,COUNT
         DO I=1,M
           C(I,J) = C(I,J)+A(I,K)*B(K,J)
   ELSE
     DO J=1,N
       DO I=1,M
         S = 0
         DO K=1,COUNT
           S = S+A(I,K)*B(K,J)
         C(I,J) = S
   ENDIF
*/

/* If try_blas is set to a nonzero value, then the matmul function will
   see if there is a way to perform the matrix multiplication by a call
   to the BLAS gemm function.  */

extern void matmul_r4 (gfc_array_r4 * const restrict retarray, 
	gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
	int blas_limit, blas_call gemm);
export_proto(matmul_r4);

void
matmul_r4 (gfc_array_r4 * const restrict retarray, 
	gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
	int blas_limit, blas_call gemm)
{
  const GFC_REAL_4 * restrict abase;
  const GFC_REAL_4 * restrict bbase;
  GFC_REAL_4 * restrict dest;

  index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
  index_type x, y, n, count, xcount, ycount;

  assert (GFC_DESCRIPTOR_RANK (a) == 2
          || GFC_DESCRIPTOR_RANK (b) == 2);

/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]

   Either A or B (but not both) can be rank 1:

   o One-dimensional argument A is implicitly treated as a row matrix
     dimensioned [1,count], so xcount=1.

   o One-dimensional argument B is implicitly treated as a column matrix
     dimensioned [count, 1], so ycount=1.
*/

  if (retarray->base_addr == NULL)
    {
      if (GFC_DESCRIPTOR_RANK (a) == 1)
        {
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
        }
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
        {
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
        }
      else
        {
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);

          GFC_DIMENSION_SET(retarray->dim[1], 0,
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
			    GFC_DESCRIPTOR_EXTENT(retarray,0));
        }

      retarray->base_addr
	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4));
      retarray->offset = 0;
    }
  else if (unlikely (compile_options.bounds_check))
    {
      index_type ret_extent, arg_extent;

      if (GFC_DESCRIPTOR_RANK (a) == 1)
	{
	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
	  if (arg_extent != ret_extent)
	    runtime_error ("Incorrect extent in return array in"
			   " MATMUL intrinsic: is %ld, should be %ld",
			   (long int) ret_extent, (long int) arg_extent);
	}
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
	{
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
	  if (arg_extent != ret_extent)
	    runtime_error ("Incorrect extent in return array in"
			   " MATMUL intrinsic: is %ld, should be %ld",
			   (long int) ret_extent, (long int) arg_extent);
	}
      else
	{
	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
	  if (arg_extent != ret_extent)
	    runtime_error ("Incorrect extent in return array in"
			   " MATMUL intrinsic for dimension 1:"
			   " is %ld, should be %ld",
			   (long int) ret_extent, (long int) arg_extent);

	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
	  if (arg_extent != ret_extent)
	    runtime_error ("Incorrect extent in return array in"
			   " MATMUL intrinsic for dimension 2:"
			   " is %ld, should be %ld",
			   (long int) ret_extent, (long int) arg_extent);
	}
    }


  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
    {
      /* One-dimensional result may be addressed in the code below
	 either as a row or a column matrix. We want both cases to
	 work. */
      rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
    }
  else
    {
      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
      rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
    }


  if (GFC_DESCRIPTOR_RANK (a) == 1)
    {
      /* Treat it as a a row matrix A[1,count]. */
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
      aystride = 1;

      xcount = 1;
      count = GFC_DESCRIPTOR_EXTENT(a,0);
    }
  else
    {
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
      aystride = GFC_DESCRIPTOR_STRIDE(a,1);

      count = GFC_DESCRIPTOR_EXTENT(a,1);
      xcount = GFC_DESCRIPTOR_EXTENT(a,0);
    }

  if (count != GFC_DESCRIPTOR_EXTENT(b,0))
    {
      if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
	runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
    }

  if (GFC_DESCRIPTOR_RANK (b) == 1)
    {
      /* Treat it as a column matrix B[count,1] */
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);

      /* bystride should never be used for 1-dimensional b.
	 in case it is we want it to cause a segfault, rather than
	 an incorrect result. */
      bystride = 0xDEADBEEF;
      ycount = 1;
    }
  else
    {
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
      bystride = GFC_DESCRIPTOR_STRIDE(b,1);
      ycount = GFC_DESCRIPTOR_EXTENT(b,1);
    }

  abase = a->base_addr;
  bbase = b->base_addr;
  dest = retarray->base_addr;

  /* Now that everything is set up, we perform the multiplication
     itself.  */

#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
#define min(a,b) ((a) <= (b) ? (a) : (b))
#define max(a,b) ((a) >= (b) ? (a) : (b))

  if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
      && (bxstride == 1 || bystride == 1)
      && (((float) xcount) * ((float) ycount) * ((float) count)
          > POW3(blas_limit)))
    {
      const int m = xcount, n = ycount, k = count, ldc = rystride;
      const GFC_REAL_4 one = 1, zero = 0;
      const int lda = (axstride == 1) ? aystride : axstride,
		ldb = (bxstride == 1) ? bystride : bxstride;

      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
	{
	  assert (gemm != NULL);
	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
		&ldc, 1, 1);
	  return;
	}
    }

  if (rxstride == 1 && axstride == 1 && bxstride == 1)
    {
      /* This block of code implements a tuned matmul, derived from
         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1

               Bo Kagstrom and Per Ling
               Department of Computing Science
               Umea University
               S-901 87 Umea, Sweden

	 from netlib.org, translated to C, and modified for matmul.m4.  */

      const GFC_REAL_4 *a, *b;
      GFC_REAL_4 *c;
      const index_type m = xcount, n = ycount, k = count;

      /* System generated locals */
      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
		 i1, i2, i3, i4, i5, i6;

      /* Local variables */
      GFC_REAL_4 t1[65536], /* was [256][256] */
		 f11, f12, f21, f22, f31, f32, f41, f42,
		 f13, f14, f23, f24, f33, f34, f43, f44;
      index_type i, j, l, ii, jj, ll;
      index_type isec, jsec, lsec, uisec, ujsec, ulsec;

      a = abase;
      b = bbase;
      c = retarray->base_addr;

      /* Parameter adjustments */
      c_dim1 = rystride;
      c_offset = 1 + c_dim1;
      c -= c_offset;
      a_dim1 = aystride;
      a_offset = 1 + a_dim1;
      a -= a_offset;
      b_dim1 = bystride;
      b_offset = 1 + b_dim1;
      b -= b_offset;

      /* Early exit if possible */
      if (m == 0 || n == 0 || k == 0)
	return;

      /* Empty c first.  */
      for (j=1; j<=n; j++)
	for (i=1; i<=m; i++)
	  c[i + j * c_dim1] = (GFC_REAL_4)0;

      /* Start turning the crank. */
      i1 = n;
      for (jj = 1; jj <= i1; jj += 512)
	{
	  /* Computing MIN */
	  i2 = 512;
	  i3 = n - jj + 1;
	  jsec = min(i2,i3);
	  ujsec = jsec - jsec % 4;
	  i2 = k;
	  for (ll = 1; ll <= i2; ll += 256)
	    {
	      /* Computing MIN */
	      i3 = 256;
	      i4 = k - ll + 1;
	      lsec = min(i3,i4);
	      ulsec = lsec - lsec % 2;

	      i3 = m;
	      for (ii = 1; ii <= i3; ii += 256)
		{
		  /* Computing MIN */
		  i4 = 256;
		  i5 = m - ii + 1;
		  isec = min(i4,i5);
		  uisec = isec - isec % 2;
		  i4 = ll + ulsec - 1;
		  for (l = ll; l <= i4; l += 2)
		    {
		      i5 = ii + uisec - 1;
		      for (i = ii; i <= i5; i += 2)
			{
			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
					a[i + l * a_dim1];
			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
					a[i + (l + 1) * a_dim1];
			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
					a[i + 1 + l * a_dim1];
			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
					a[i + 1 + (l + 1) * a_dim1];
			}
		      if (uisec < isec)
			{
			  t1[l - ll + 1 + (isec << 8) - 257] =
				    a[ii + isec - 1 + l * a_dim1];
			  t1[l - ll + 2 + (isec << 8) - 257] =
				    a[ii + isec - 1 + (l + 1) * a_dim1];
			}
		    }
		  if (ulsec < lsec)
		    {
		      i4 = ii + isec - 1;
		      for (i = ii; i<= i4; ++i)
			{
			  t1[lsec + ((i - ii + 1) << 8) - 257] =
				    a[i + (ll + lsec - 1) * a_dim1];
			}
		    }

		  uisec = isec - isec % 4;
		  i4 = jj + ujsec - 1;
		  for (j = jj; j <= i4; j += 4)
		    {
		      i5 = ii + uisec - 1;
		      for (i = ii; i <= i5; i += 4)
			{
			  f11 = c[i + j * c_dim1];
			  f21 = c[i + 1 + j * c_dim1];
			  f12 = c[i + (j + 1) * c_dim1];
			  f22 = c[i + 1 + (j + 1) * c_dim1];
			  f13 = c[i + (j + 2) * c_dim1];
			  f23 = c[i + 1 + (j + 2) * c_dim1];
			  f14 = c[i + (j + 3) * c_dim1];
			  f24 = c[i + 1 + (j + 3) * c_dim1];
			  f31 = c[i + 2 + j * c_dim1];
			  f41 = c[i + 3 + j * c_dim1];
			  f32 = c[i + 2 + (j + 1) * c_dim1];
			  f42 = c[i + 3 + (j + 1) * c_dim1];
			  f33 = c[i + 2 + (j + 2) * c_dim1];
			  f43 = c[i + 3 + (j + 2) * c_dim1];
			  f34 = c[i + 2 + (j + 3) * c_dim1];
			  f44 = c[i + 3 + (j + 3) * c_dim1];
			  i6 = ll + lsec - 1;
			  for (l = ll; l <= i6; ++l)
			    {
			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
				      * b[l + j * b_dim1];
			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
				      * b[l + j * b_dim1];
			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
				      * b[l + (j + 1) * b_dim1];
			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
				      * b[l + (j + 1) * b_dim1];
			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
				      * b[l + (j + 2) * b_dim1];
			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
				      * b[l + (j + 2) * b_dim1];
			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
				      * b[l + (j + 3) * b_dim1];
			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
				      * b[l + (j + 3) * b_dim1];
			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
				      * b[l + j * b_dim1];
			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
				      * b[l + j * b_dim1];
			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
				      * b[l + (j + 1) * b_dim1];
			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
				      * b[l + (j + 1) * b_dim1];
			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
				      * b[l + (j + 2) * b_dim1];
			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
				      * b[l + (j + 2) * b_dim1];
			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
				      * b[l + (j + 3) * b_dim1];
			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
				      * b[l + (j + 3) * b_dim1];
			    }
			  c[i + j * c_dim1] = f11;
			  c[i + 1 + j * c_dim1] = f21;
			  c[i + (j + 1) * c_dim1] = f12;
			  c[i + 1 + (j + 1) * c_dim1] = f22;
			  c[i + (j + 2) * c_dim1] = f13;
			  c[i + 1 + (j + 2) * c_dim1] = f23;
			  c[i + (j + 3) * c_dim1] = f14;
			  c[i + 1 + (j + 3) * c_dim1] = f24;
			  c[i + 2 + j * c_dim1] = f31;
			  c[i + 3 + j * c_dim1] = f41;
			  c[i + 2 + (j + 1) * c_dim1] = f32;
			  c[i + 3 + (j + 1) * c_dim1] = f42;
			  c[i + 2 + (j + 2) * c_dim1] = f33;
			  c[i + 3 + (j + 2) * c_dim1] = f43;
			  c[i + 2 + (j + 3) * c_dim1] = f34;
			  c[i + 3 + (j + 3) * c_dim1] = f44;
			}
		      if (uisec < isec)
			{
			  i5 = ii + isec - 1;
			  for (i = ii + uisec; i <= i5; ++i)
			    {
			      f11 = c[i + j * c_dim1];
			      f12 = c[i + (j + 1) * c_dim1];
			      f13 = c[i + (j + 2) * c_dim1];
			      f14 = c[i + (j + 3) * c_dim1];
			      i6 = ll + lsec - 1;
			      for (l = ll; l <= i6; ++l)
				{
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
					  257] * b[l + j * b_dim1];
				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
					  257] * b[l + (j + 1) * b_dim1];
				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
					  257] * b[l + (j + 2) * b_dim1];
				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
					  257] * b[l + (j + 3) * b_dim1];
				}
			      c[i + j * c_dim1] = f11;
			      c[i + (j + 1) * c_dim1] = f12;
			      c[i + (j + 2) * c_dim1] = f13;
			      c[i + (j + 3) * c_dim1] = f14;
			    }
			}
		    }
		  if (ujsec < jsec)
		    {
		      i4 = jj + jsec - 1;
		      for (j = jj + ujsec; j <= i4; ++j)
			{
			  i5 = ii + uisec - 1;
			  for (i = ii; i <= i5; i += 4)
			    {
			      f11 = c[i + j * c_dim1];
			      f21 = c[i + 1 + j * c_dim1];
			      f31 = c[i + 2 + j * c_dim1];
			      f41 = c[i + 3 + j * c_dim1];
			      i6 = ll + lsec - 1;
			      for (l = ll; l <= i6; ++l)
				{
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
					  257] * b[l + j * b_dim1];
				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
					  257] * b[l + j * b_dim1];
				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
					  257] * b[l + j * b_dim1];
				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
					  257] * b[l + j * b_dim1];
				}
			      c[i + j * c_dim1] = f11;
			      c[i + 1 + j * c_dim1] = f21;
			      c[i + 2 + j * c_dim1] = f31;
			      c[i + 3 + j * c_dim1] = f41;
			    }
			  i5 = ii + isec - 1;
			  for (i = ii + uisec; i <= i5; ++i)
			    {
			      f11 = c[i + j * c_dim1];
			      i6 = ll + lsec - 1;
			      for (l = ll; l <= i6; ++l)
				{
				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
					  257] * b[l + j * b_dim1];
				}
			      c[i + j * c_dim1] = f11;
			    }
			}
		    }
		}
	    }
	}
      return;
    }
  else if (rxstride == 1 && aystride == 1 && bxstride == 1)
    {
      if (GFC_DESCRIPTOR_RANK (a) != 1)
	{
	  const GFC_REAL_4 *restrict abase_x;
	  const GFC_REAL_4 *restrict bbase_y;
	  GFC_REAL_4 *restrict dest_y;
	  GFC_REAL_4 s;

	  for (y = 0; y < ycount; y++)
	    {
	      bbase_y = &bbase[y*bystride];
	      dest_y = &dest[y*rystride];
	      for (x = 0; x < xcount; x++)
		{
		  abase_x = &abase[x*axstride];
		  s = (GFC_REAL_4) 0;
		  for (n = 0; n < count; n++)
		    s += abase_x[n] * bbase_y[n];
		  dest_y[x] = s;
		}
	    }
	}
      else
	{
	  const GFC_REAL_4 *restrict bbase_y;
	  GFC_REAL_4 s;

	  for (y = 0; y < ycount; y++)
	    {
	      bbase_y = &bbase[y*bystride];
	      s = (GFC_REAL_4) 0;
	      for (n = 0; n < count; n++)
		s += abase[n*axstride] * bbase_y[n];
	      dest[y*rystride] = s;
	    }
	}
    }
  else if (axstride < aystride)
    {
      for (y = 0; y < ycount; y++)
	for (x = 0; x < xcount; x++)
	  dest[x*rxstride + y*rystride] = (GFC_REAL_4)0;

      for (y = 0; y < ycount; y++)
	for (n = 0; n < count; n++)
	  for (x = 0; x < xcount; x++)
	    /* dest[x,y] += a[x,n] * b[n,y] */
	    dest[x*rxstride + y*rystride] +=
					abase[x*axstride + n*aystride] *
					bbase[n*bxstride + y*bystride];
    }
  else if (GFC_DESCRIPTOR_RANK (a) == 1)
    {
      const GFC_REAL_4 *restrict bbase_y;
      GFC_REAL_4 s;

      for (y = 0; y < ycount; y++)
	{
	  bbase_y = &bbase[y*bystride];
	  s = (GFC_REAL_4) 0;
	  for (n = 0; n < count; n++)
	    s += abase[n*axstride] * bbase_y[n*bxstride];
	  dest[y*rxstride] = s;
	}
    }
  else
    {
      const GFC_REAL_4 *restrict abase_x;
      const GFC_REAL_4 *restrict bbase_y;
      GFC_REAL_4 *restrict dest_y;
      GFC_REAL_4 s;

      for (y = 0; y < ycount; y++)
	{
	  bbase_y = &bbase[y*bystride];
	  dest_y = &dest[y*rystride];
	  for (x = 0; x < xcount; x++)
	    {
	      abase_x = &abase[x*axstride];
	      s = (GFC_REAL_4) 0;
	      for (n = 0; n < count; n++)
		s += abase_x[n*aystride] * bbase_y[n*bxstride];
	      dest_y[x*rxstride] = s;
	    }
	}
    }
}
#endif