summaryrefslogtreecommitdiff
path: root/libgfortran/generated/matmul_l8.c
blob: 49243afd9ad316dea3920c5dcd5935114fa6f99f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/* Implementation of the MATMUL intrinsic
   Copyright 2002 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>

This file is part of the GNU Fortran 95 runtime library (libgfor).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB.  If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include "libgfortran.h"

/* Dimensions: retarray(x,y) a(x, count) b(count,y).
   Either a or b can be rank 1.  In this case x or y is 1.  */
void
__matmul_l8 (gfc_array_l8 * retarray, gfc_array_l4 * a, gfc_array_l4 * b)
{
  GFC_INTEGER_4 *abase;
  GFC_INTEGER_4 *bbase;
  GFC_LOGICAL_8 *dest;
  index_type rxstride;
  index_type rystride;
  index_type xcount;
  index_type ycount;
  index_type xstride;
  index_type ystride;
  index_type x;
  index_type y;

  GFC_INTEGER_4 *pa;
  GFC_INTEGER_4 *pb;
  index_type astride;
  index_type bstride;
  index_type count;
  index_type n;

  assert (GFC_DESCRIPTOR_RANK (a) == 2
          || GFC_DESCRIPTOR_RANK (b) == 2);
  abase = a->data;
  if (GFC_DESCRIPTOR_SIZE (a) != 4)
    {
      assert (GFC_DESCRIPTOR_SIZE (a) == 8);
      abase = GFOR_POINTER_L8_TO_L4 (abase);
      astride <<= 1;
    }
  bbase = b->data;
  if (GFC_DESCRIPTOR_SIZE (b) != 4)
    {
      assert (GFC_DESCRIPTOR_SIZE (b) == 8);
      bbase = GFOR_POINTER_L8_TO_L4 (bbase);
      bstride <<= 1;
    }
  dest = retarray->data;

  if (retarray->dim[0].stride == 0)
    retarray->dim[0].stride = 1;
  if (a->dim[0].stride == 0)
    a->dim[0].stride = 1;
  if (b->dim[0].stride == 0)
    b->dim[0].stride = 1;


  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
    {
      rxstride = retarray->dim[0].stride;
      rystride = rxstride;
    }
  else
    {
      rxstride = retarray->dim[0].stride;
      rystride = retarray->dim[1].stride;
    }

  /* If we have rank 1 parameters, zero the absent stride, and set the size to
     one.  */
  if (GFC_DESCRIPTOR_RANK (a) == 1)
    {
      astride = a->dim[0].stride;
      count = a->dim[0].ubound + 1 - a->dim[0].lbound;
      xstride = 0;
      rxstride = 0;
      xcount = 1;
    }
  else
    {
      astride = a->dim[1].stride;
      count = a->dim[1].ubound + 1 - a->dim[1].lbound;
      xstride = a->dim[0].stride;
      xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
    }
  if (GFC_DESCRIPTOR_RANK (b) == 1)
    {
      bstride = b->dim[0].stride;
      assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
      ystride = 0;
      rystride = 0;
      ycount = 1;
    }
  else
    {
      bstride = b->dim[0].stride;
      assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
      ystride = b->dim[1].stride;
      ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
    }

  for (y = 0; y < ycount; y++)
    {
      for (x = 0; x < xcount; x++)
        {
          /* Do the summation for this element.  For real and integer types
             this is the same as DOT_PRODUCT.  For complex types we use do
             a*b, not conjg(a)*b.  */
          pa = abase;
          pb = bbase;
          *dest = 0;

          for (n = 0; n < count; n++)
            {
              if (*pa && *pb)
                {
                  *dest = 1;
                  break;
                }
              pa += astride;
              pb += bstride;
            }

          dest += rxstride;
          abase += xstride;
        }
      abase -= xstride * xcount;
      bbase += ystride;
      dest += rystride - (rxstride * xcount);
    }
}