1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
/* Implementation of the ALL intrinsic
Copyright 2002 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfor).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include "libgfortran.h"
void
__all_l4 (gfc_array_l4 * retarray, gfc_array_l4 *array, index_type *pdim)
{
index_type count[GFC_MAX_DIMENSIONS - 1];
index_type extent[GFC_MAX_DIMENSIONS - 1];
index_type sstride[GFC_MAX_DIMENSIONS - 1];
index_type dstride[GFC_MAX_DIMENSIONS - 1];
GFC_LOGICAL_4 *base;
GFC_LOGICAL_4 *dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
assert (rank == GFC_DESCRIPTOR_RANK (retarray));
if (array->dim[0].stride == 0)
array->dim[0].stride = 1;
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
delta = array->dim[dim].stride;
for (n = 0; n < dim; n++)
{
sstride[n] = array->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
}
for (n = dim; n < rank; n++)
{
sstride[n] = array->dim[n + 1].stride;
extent[n] =
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
}
if (retarray->data == NULL)
{
for (n = 0; n < rank; n++)
{
retarray->dim[n].lbound = 0;
retarray->dim[n].ubound = extent[n]-1;
if (n == 0)
retarray->dim[n].stride = 1;
else
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
}
retarray->data
= internal_malloc_size (sizeof (GFC_LOGICAL_4)
* retarray->dim[rank-1].stride
* extent[rank-1]);
retarray->base = 0;
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = retarray->dim[n].stride;
if (extent[n] <= 0)
len = 0;
}
base = array->data;
dest = retarray->data;
while (base)
{
GFC_LOGICAL_4 *src;
GFC_LOGICAL_4 result;
src = base;
{
/* Return true only if all the elements are set. */
result = 1;
if (len <= 0)
*dest = 1;
else
{
for (n = 0; n < len; n++, src += delta)
{
if (! *src)
{
result = 0;
break;
}
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so proabably not worth it. */
base -= sstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
dest += dstride[n];
}
}
}
}
|