summaryrefslogtreecommitdiff
path: root/libgcc/libgcov-util.c
blob: f59f4a2ef78711794d7e8cd92f0f483fd6978cba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
/* Utility functions for reading gcda files into in-memory
   gcov_info structures and offline profile processing. */
/* Copyright (C) 2014-2015 Free Software Foundation, Inc.
   Contributed by Rong Xu <xur@google.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */


#define IN_GCOV_TOOL 1

#include "libgcov.h"
#include "intl.h"
#include "diagnostic.h"
#include "version.h"
#include "demangle.h"

/* Borrowed from basic-block.h.  */
#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))

extern gcov_position_t gcov_position();
extern int gcov_is_error();

/* Verbose mode for debug.  */
static int verbose;

/* Set verbose flag.  */
void gcov_set_verbose (void)
{
  verbose = 1;
}

/* The following part is to read Gcda and reconstruct GCOV_INFO.  */

#include "obstack.h"
#include <unistd.h>
#ifdef HAVE_FTW_H
#include <ftw.h>
#endif

static void tag_function (unsigned, unsigned);
static void tag_blocks (unsigned, unsigned);
static void tag_arcs (unsigned, unsigned);
static void tag_lines (unsigned, unsigned);
static void tag_counters (unsigned, unsigned);
static void tag_summary (unsigned, unsigned);

/* The gcov_info for the first module.  */
static struct gcov_info *curr_gcov_info;
/* The gcov_info being processed.  */
static struct gcov_info *gcov_info_head;
/* This variable contains all the functions in current module.  */
static struct obstack fn_info;
/* The function being processed.  */
static struct gcov_fn_info *curr_fn_info;
/* The number of functions seen so far.  */
static unsigned num_fn_info;
/* This variable contains all the counters for current module.  */
static int k_ctrs_mask[GCOV_COUNTERS];
/* The kind of counters that have been seen.  */
static struct gcov_ctr_info k_ctrs[GCOV_COUNTERS];
/* Number of kind of counters that have been seen.  */
static int k_ctrs_types;

/* Merge functions for counters.  */
#define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) __gcov_merge ## FN_TYPE,
static gcov_merge_fn ctr_merge_functions[GCOV_COUNTERS] = {
#include "gcov-counter.def"
};
#undef DEF_GCOV_COUNTER

/* Set the ctrs field in gcov_fn_info object FN_INFO.  */

static void
set_fn_ctrs (struct gcov_fn_info *fn_info)
{
  int j = 0, i;

  for (i = 0; i < GCOV_COUNTERS; i++)
    {
      if (k_ctrs_mask[i] == 0)
        continue;
      fn_info->ctrs[j].num = k_ctrs[i].num;
      fn_info->ctrs[j].values = k_ctrs[i].values;
      j++;
    }
  if (k_ctrs_types == 0)
    k_ctrs_types = j;
  else
    gcc_assert (j == k_ctrs_types);
}

/* For each tag in gcda file, we have an entry here.
   TAG is the tag value; NAME is the tag name; and
   PROC is the handler function.  */

typedef struct tag_format
{
    unsigned tag;
    char const *name;
    void (*proc) (unsigned, unsigned);
} tag_format_t;

/* Handler table for various Tags.  */

static const tag_format_t tag_table[] =
{
  {0, "NOP", NULL},
  {0, "UNKNOWN", NULL},
  {0, "COUNTERS", tag_counters},
  {GCOV_TAG_FUNCTION, "FUNCTION", tag_function},
  {GCOV_TAG_BLOCKS, "BLOCKS", tag_blocks},
  {GCOV_TAG_ARCS, "ARCS", tag_arcs},
  {GCOV_TAG_LINES, "LINES", tag_lines},
  {GCOV_TAG_OBJECT_SUMMARY, "OBJECT_SUMMARY", tag_summary},
  {GCOV_TAG_PROGRAM_SUMMARY, "PROGRAM_SUMMARY", tag_summary},
  {0, NULL, NULL}
};

/* Handler for reading function tag.  */

static void
tag_function (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
  int i;

  /* write out previous fn_info.  */
  if (num_fn_info)
    {
      set_fn_ctrs (curr_fn_info);
      obstack_ptr_grow (&fn_info, curr_fn_info);
    }

  /* Here we over allocate a bit, using GCOV_COUNTERS instead of the actual active
     counter types.  */
  curr_fn_info = (struct gcov_fn_info *) xcalloc (sizeof (struct gcov_fn_info)
                   + GCOV_COUNTERS * sizeof (struct gcov_ctr_info), 1);

  for (i = 0; i < GCOV_COUNTERS; i++)
     k_ctrs[i].num = 0;
  k_ctrs_types = 0;

  curr_fn_info->key = curr_gcov_info;
  curr_fn_info->ident = gcov_read_unsigned ();
  curr_fn_info->lineno_checksum = gcov_read_unsigned ();
  curr_fn_info->cfg_checksum = gcov_read_unsigned ();
  num_fn_info++;

  if (verbose)
    fnotice (stdout, "tag one function id=%d\n", curr_fn_info->ident);
}

/* Handler for reading block tag.  */

static void
tag_blocks (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
  /* TBD: gcov-tool currently does not handle gcno files. Assert here.  */
  gcc_unreachable ();
}

/* Handler for reading flow arc tag.  */

static void
tag_arcs (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
  /* TBD: gcov-tool currently does not handle gcno files. Assert here.  */
  gcc_unreachable ();
}

/* Handler for reading line tag.  */

static void
tag_lines (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
  /* TBD: gcov-tool currently does not handle gcno files. Assert here.  */
  gcc_unreachable ();
}

/* Handler for reading counters array tag with value as TAG and length of LENGTH.  */

static void
tag_counters (unsigned tag, unsigned length)
{
  unsigned n_counts = GCOV_TAG_COUNTER_NUM (length);
  gcov_type *values;
  unsigned ix;
  unsigned tag_ix;

  tag_ix = GCOV_COUNTER_FOR_TAG (tag);
  gcc_assert (tag_ix < GCOV_COUNTERS);
  k_ctrs_mask [tag_ix] = 1;
  gcc_assert (k_ctrs[tag_ix].num == 0);
  k_ctrs[tag_ix].num = n_counts;

  k_ctrs[tag_ix].values = values = (gcov_type *) xmalloc (n_counts * sizeof (gcov_type));
  gcc_assert (values);

  for (ix = 0; ix != n_counts; ix++)
    values[ix] = gcov_read_counter ();
}

/* Handler for reading summary tag.  */

static void
tag_summary (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
{
  struct gcov_summary summary;

  gcov_read_summary (&summary);
}

/* This function is called at the end of reading a gcda file.
   It flushes the contents in curr_fn_info to gcov_info object OBJ_INFO.  */

static void
read_gcda_finalize (struct gcov_info *obj_info)
{
  int i;

  set_fn_ctrs (curr_fn_info);
  obstack_ptr_grow (&fn_info, curr_fn_info);

  /* We set the following fields: merge, n_functions, and functions.  */
  obj_info->n_functions = num_fn_info;
  obj_info->functions = (const struct gcov_fn_info**) obstack_finish (&fn_info);

  /* wrap all the counter array.  */
  for (i=0; i< GCOV_COUNTERS; i++)
    {
      if (k_ctrs_mask[i])
        obj_info->merge[i] = ctr_merge_functions[i];
    }
}

/* Read the content of a gcda file FILENAME, and return a gcov_info data structure.
   Program level summary CURRENT_SUMMARY will also be updated.  */

static struct gcov_info *
read_gcda_file (const char *filename)
{
  unsigned tags[4];
  unsigned depth = 0;
  unsigned magic, version;
  struct gcov_info *obj_info;
  int i;

  for (i=0; i< GCOV_COUNTERS; i++)
    k_ctrs_mask[i] = 0;
  k_ctrs_types = 0;

  if (!gcov_open (filename))
    {
      fnotice (stderr, "%s:cannot open\n", filename);
      return NULL;
    }

  /* Read magic.  */
  magic = gcov_read_unsigned ();
  if (magic != GCOV_DATA_MAGIC)
    {
      fnotice (stderr, "%s:not a gcov data file\n", filename);
      gcov_close ();
      return NULL;
    }

  /* Read version.  */
  version = gcov_read_unsigned ();
  if (version != GCOV_VERSION)
    {
      fnotice (stderr, "%s:incorrect gcov version %d vs %d \n", filename, version, GCOV_VERSION);
      gcov_close ();
      return NULL;
    }

  /* Instantiate a gcov_info object.  */
  curr_gcov_info = obj_info = (struct gcov_info *) xcalloc (sizeof (struct gcov_info) +
             sizeof (struct gcov_ctr_info) * GCOV_COUNTERS, 1);

  obj_info->version = version;
  obstack_init (&fn_info);
  num_fn_info = 0;
  curr_fn_info = 0;
  {
    size_t len = strlen (filename) + 1;
    char *str_dup = (char*) xmalloc (len);

    memcpy (str_dup, filename, len);
    obj_info->filename = str_dup;
  }

  /* Read stamp.  */
  obj_info->stamp = gcov_read_unsigned ();

  while (1)
    {
      gcov_position_t base;
      unsigned tag, length;
      tag_format_t const *format;
      unsigned tag_depth;
      int error;
      unsigned mask;

      tag = gcov_read_unsigned ();
      if (!tag)
        break;
      length = gcov_read_unsigned ();
      base = gcov_position ();
      mask = GCOV_TAG_MASK (tag) >> 1;
      for (tag_depth = 4; mask; mask >>= 8)
        {
          if (((mask & 0xff) != 0xff))
            {
              warning (0, "%s:tag `%x' is invalid\n", filename, tag);
              break;
            }
          tag_depth--;
        }
      for (format = tag_table; format->name; format++)
        if (format->tag == tag)
          goto found;
      format = &tag_table[GCOV_TAG_IS_COUNTER (tag) ? 2 : 1];
    found:;
      if (tag)
        {
          if (depth && depth < tag_depth)
            {
              if (!GCOV_TAG_IS_SUBTAG (tags[depth - 1], tag))
                warning (0, "%s:tag `%x' is incorrectly nested\n",
                         filename, tag);
            }
          depth = tag_depth;
          tags[depth - 1] = tag;
        }

      if (format->proc)
        {
          unsigned long actual_length;

          (*format->proc) (tag, length);

          actual_length = gcov_position () - base;
          if (actual_length > length)
            warning (0, "%s:record size mismatch %lu bytes overread\n",
                     filename, actual_length - length);
          else if (length > actual_length)
            warning (0, "%s:record size mismatch %lu bytes unread\n",
                     filename, length - actual_length);
       }

      gcov_sync (base, length);
      if ((error = gcov_is_error ()))
        {
          warning (0, error < 0 ? "%s:counter overflow at %lu\n" :
                                  "%s:read error at %lu\n", filename,
                   (long unsigned) gcov_position ());
          break;
        }
    }

  read_gcda_finalize (obj_info);
  gcov_close ();

  return obj_info;
}

#ifdef HAVE_FTW_H
/* This will be called by ftw(). It opens and read a gcda file FILENAME.
   Return a non-zero value to stop the tree walk.  */

static int
ftw_read_file (const char *filename,
               const struct stat *status ATTRIBUTE_UNUSED,
               int type)
{
  int filename_len;
  int suffix_len;
  struct gcov_info *obj_info;

  /* Only read regular files.  */
  if (type != FTW_F)
    return 0;

  filename_len = strlen (filename);
  suffix_len = strlen (GCOV_DATA_SUFFIX);

  if (filename_len <= suffix_len)
    return 0;

  if (strcmp(filename + filename_len - suffix_len, GCOV_DATA_SUFFIX))
    return 0;

  if (verbose)
    fnotice (stderr, "reading file: %s\n", filename);

  obj_info = read_gcda_file (filename);
  if (!obj_info)
    return 0;

  obj_info->next = gcov_info_head;
  gcov_info_head = obj_info;

  return 0;
}
#endif

/* Initializer for reading a profile dir.  */

static inline void
read_profile_dir_init (void)
{
  gcov_info_head = 0;
}

/* Driver for read a profile directory and convert into gcov_info list in memory.
   Return NULL on error,
   Return the head of gcov_info list on success.  */

struct gcov_info *
gcov_read_profile_dir (const char* dir_name, int recompute_summary ATTRIBUTE_UNUSED)
{
  char *pwd;
  int ret;

  read_profile_dir_init ();

  if (access (dir_name, R_OK) != 0)
    {
      fnotice (stderr, "cannot access directory %s\n", dir_name);
      return NULL;
    }
  pwd = getcwd (NULL, 0);
  gcc_assert (pwd);
  ret = chdir (dir_name);
  if (ret !=0)
    {
      fnotice (stderr, "%s is not a directory\n", dir_name);
      return NULL;
    }
#ifdef HAVE_FTW_H
  ftw (".", ftw_read_file, 50);
#endif
  ret = chdir (pwd);
  free (pwd);


  return gcov_info_head;;
}

/* This part of the code is to merge profile counters. These
   variables are set in merge_wrapper and to be used by
   global function gcov_read_counter_mem() and gcov_get_merge_weight.  */

/* We save the counter value address to this variable.  */
static gcov_type *gcov_value_buf;

/* The number of counter values to be read by current merging.  */
static gcov_unsigned_t gcov_value_buf_size;

/* The index of counter values being read.  */
static gcov_unsigned_t gcov_value_buf_pos;

/* The weight of current merging.  */
static unsigned gcov_merge_weight;

/* Read a counter value from gcov_value_buf array.  */

gcov_type
gcov_read_counter_mem (void)
{
  gcov_type ret;
  gcc_assert (gcov_value_buf_pos < gcov_value_buf_size);
  ret = *(gcov_value_buf + gcov_value_buf_pos);
  ++gcov_value_buf_pos;
  return ret;
}

/* Return the recorded merge weight.  */

unsigned
gcov_get_merge_weight (void)
{
  return gcov_merge_weight;
}

/* A wrapper function for merge functions. It sets up the
   value buffer and weights and then calls the merge function.  */

static void
merge_wrapper (gcov_merge_fn f, gcov_type *v1, gcov_unsigned_t n,
               gcov_type *v2, unsigned w)
{
  gcov_value_buf = v2;
  gcov_value_buf_pos = 0;
  gcov_value_buf_size = n;
  gcov_merge_weight = w;
  (*f) (v1, n);
}

/* Offline tool to manipulate profile data.
   This tool targets on matched profiles. But it has some tolerance on
   unmatched profiles.
   When merging p1 to p2 (p2 is the dst),
   * m.gcda in p1 but not in p2: append m.gcda to p2 with specified weight;
     emit warning
   * m.gcda in p2 but not in p1: keep m.gcda in p2 and multiply by
     specified weight; emit warning.
   * m.gcda in both p1 and p2:
   ** p1->m.gcda->f checksum matches p2->m.gcda->f: simple merge.
   ** p1->m.gcda->f checksum does not matches p2->m.gcda->f: keep
      p2->m.gcda->f and
      drop p1->m.gcda->f. A warning is emitted.  */

/* Add INFO2's counter to INFO1, multiplying by weight W.  */

static int
gcov_merge (struct gcov_info *info1, struct gcov_info *info2, int w)
{
  unsigned f_ix;
  unsigned n_functions = info1->n_functions;
  int has_mismatch = 0;

  gcc_assert (info2->n_functions == n_functions);
  for (f_ix = 0; f_ix < n_functions; f_ix++)
    {
      unsigned t_ix;
      const struct gcov_fn_info *gfi_ptr1 = info1->functions[f_ix];
      const struct gcov_fn_info *gfi_ptr2 = info2->functions[f_ix];
      const struct gcov_ctr_info *ci_ptr1, *ci_ptr2;

      if (!gfi_ptr1 || gfi_ptr1->key != info1)
        continue;
      if (!gfi_ptr2 || gfi_ptr2->key != info2)
        continue;

      if (gfi_ptr1->cfg_checksum != gfi_ptr2->cfg_checksum)
        {
          fnotice (stderr, "in %s, cfg_checksum mismatch, skipping\n",
                  info1->filename);
          has_mismatch = 1;
          continue;
        }
      ci_ptr1 = gfi_ptr1->ctrs;
      ci_ptr2 = gfi_ptr2->ctrs;
      for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
        {
          gcov_merge_fn merge1 = info1->merge[t_ix];
          gcov_merge_fn merge2 = info2->merge[t_ix];

          gcc_assert (merge1 == merge2);
          if (!merge1)
            continue;
          gcc_assert (ci_ptr1->num == ci_ptr2->num);
          merge_wrapper (merge1, ci_ptr1->values, ci_ptr1->num, ci_ptr2->values, w);
          ci_ptr1++;
          ci_ptr2++;
        }
    }

  return has_mismatch;
}

/* Find and return the match gcov_info object for INFO from ARRAY.
   SIZE is the length of ARRAY.
   Return NULL if there is no match.  */

static struct gcov_info *
find_match_gcov_info (struct gcov_info **array, int size,
		      struct gcov_info *info)
{
  struct gcov_info *gi_ptr;
  struct gcov_info *ret = NULL;
  int i;

  for (i = 0; i < size; i++)
    {
      gi_ptr = array[i];
      if (gi_ptr == 0)
        continue;
      if (!strcmp (gi_ptr->filename, info->filename))
        {
          ret = gi_ptr;
          array[i] = 0;
          break;
        }
    }

  if (ret && ret->n_functions != info->n_functions)
    {
      fnotice (stderr, "mismatched profiles in %s (%d functions"
                       " vs %d functions)\n",
                       ret->filename,
                       ret->n_functions,
                       info->n_functions);
      ret = NULL;
    }
  return ret;
}

/* Merge the list of gcov_info objects from SRC_PROFILE to TGT_PROFILE.
   Return 0 on success: without mismatch.
   Reutrn 1 on error.  */

int
gcov_profile_merge (struct gcov_info *tgt_profile, struct gcov_info *src_profile,
                    int w1, int w2)
{
  struct gcov_info *gi_ptr;
  struct gcov_info **tgt_infos;
  struct gcov_info *tgt_tail;
  struct gcov_info **in_src_not_tgt;
  unsigned tgt_cnt = 0, src_cnt = 0;
  unsigned unmatch_info_cnt = 0;
  unsigned int i;

  for (gi_ptr = tgt_profile; gi_ptr; gi_ptr = gi_ptr->next)
    tgt_cnt++;
  for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next)
    src_cnt++;
  tgt_infos = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *)
                 * tgt_cnt);
  gcc_assert (tgt_infos);
  in_src_not_tgt = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *)
                     * src_cnt);
  gcc_assert (in_src_not_tgt);

  for (gi_ptr = tgt_profile, i = 0; gi_ptr; gi_ptr = gi_ptr->next, i++)
    tgt_infos[i] = gi_ptr;

  tgt_tail = tgt_infos[tgt_cnt - 1];

  /* First pass on tgt_profile, we multiply w1 to all counters.  */
  if (w1 > 1)
    {
       for (i = 0; i < tgt_cnt; i++)
         gcov_merge (tgt_infos[i], tgt_infos[i], w1-1);
    }

  /* Second pass, add src_profile to the tgt_profile.  */
  for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next)
    {
      struct gcov_info *gi_ptr1;

      gi_ptr1 = find_match_gcov_info (tgt_infos, tgt_cnt, gi_ptr);
      if (gi_ptr1 == NULL)
        {
          in_src_not_tgt[unmatch_info_cnt++] = gi_ptr;
          continue;
        }
      gcov_merge (gi_ptr1, gi_ptr, w2);
    }

  /* For modules in src but not in tgt. We adjust the counter and append.  */
  for (i = 0; i < unmatch_info_cnt; i++)
    {
      gi_ptr = in_src_not_tgt[i];
      gcov_merge (gi_ptr, gi_ptr, w2 - 1);
      tgt_tail->next = gi_ptr;
      tgt_tail = gi_ptr;
    }

  return 0;
}

typedef gcov_type (*counter_op_fn) (gcov_type, void*, void*);

/* Performing FN upon arc counters.  */

static void
__gcov_add_counter_op (gcov_type *counters, unsigned n_counters,
                       counter_op_fn fn, void *data1, void *data2)
{
  for (; n_counters; counters++, n_counters--)
    {
      gcov_type val = *counters;
      *counters = fn(val, data1, data2);
    }
}

/* Performing FN upon ior counters.  */

static void
__gcov_ior_counter_op (gcov_type *counters ATTRIBUTE_UNUSED,
                       unsigned n_counters ATTRIBUTE_UNUSED,
                       counter_op_fn fn ATTRIBUTE_UNUSED,
                       void *data1 ATTRIBUTE_UNUSED,
                       void *data2 ATTRIBUTE_UNUSED)
{
  /* Do nothing.  */
}

/* Performing FN upon time-profile counters.  */

static void
__gcov_time_profile_counter_op (gcov_type *counters ATTRIBUTE_UNUSED,
                                unsigned n_counters ATTRIBUTE_UNUSED,
                                counter_op_fn fn ATTRIBUTE_UNUSED,
                                void *data1 ATTRIBUTE_UNUSED,
                                void *data2 ATTRIBUTE_UNUSED)
{
  /* Do nothing.  */
}

/* Performaing FN upon delta counters.  */

static void
__gcov_delta_counter_op (gcov_type *counters, unsigned n_counters,
                         counter_op_fn fn, void *data1, void *data2)
{
  unsigned i, n_measures;

  gcc_assert (!(n_counters % 4));
  n_measures = n_counters / 4;
  for (i = 0; i < n_measures; i++, counters += 4)
    {
      counters[2] = fn (counters[2], data1, data2);
      counters[3] = fn (counters[3], data1, data2);
    }
}

/* Performing FN upon single counters.  */

static void
__gcov_single_counter_op (gcov_type *counters, unsigned n_counters,
                          counter_op_fn fn, void *data1, void *data2)
{
  unsigned i, n_measures;

  gcc_assert (!(n_counters % 3));
  n_measures = n_counters / 3;
  for (i = 0; i < n_measures; i++, counters += 3)
    {
      counters[1] = fn (counters[1], data1, data2);
      counters[2] = fn (counters[2], data1, data2);
    }
}

/* Performing FN upon indirect-call profile counters.  */

static void
__gcov_icall_topn_counter_op (gcov_type *counters, unsigned n_counters,
                              counter_op_fn fn, void *data1, void *data2)
{
  unsigned i;

  gcc_assert (!(n_counters % GCOV_ICALL_TOPN_NCOUNTS));
  for (i = 0; i < n_counters; i += GCOV_ICALL_TOPN_NCOUNTS)
    {
      unsigned j;
      gcov_type *value_array = &counters[i + 1];

      for (j = 0; j < GCOV_ICALL_TOPN_NCOUNTS - 1; j += 2)
        value_array[j + 1] = fn (value_array[j + 1], data1, data2);
    }
}

/* Scaling the counter value V by multiplying *(float*) DATA1.  */

static gcov_type
fp_scale (gcov_type v, void *data1, void *data2 ATTRIBUTE_UNUSED)
{
  float f = *(float *) data1;
  return (gcov_type) (v * f);
}

/* Scaling the counter value V by multiplying DATA2/DATA1.  */

static gcov_type
int_scale (gcov_type v, void *data1, void *data2)
{
  int n = *(int *) data1;
  int d = *(int *) data2;
  return (gcov_type) ( RDIV (v,d) * n);
}

/* Type of function used to process counters.  */
typedef void (*gcov_counter_fn) (gcov_type *, gcov_unsigned_t,
                          counter_op_fn, void *, void *);

/* Function array to process profile counters.  */
#define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) \
  __gcov ## FN_TYPE ## _counter_op,
static gcov_counter_fn ctr_functions[GCOV_COUNTERS] = {
#include "gcov-counter.def"
};
#undef DEF_GCOV_COUNTER

/* Driver for scaling profile counters.  */

int
gcov_profile_scale (struct gcov_info *profile, float scale_factor, int n, int d)
{
  struct gcov_info *gi_ptr;
  unsigned f_ix;

  if (verbose)
    fnotice (stdout, "scale_factor is %f or %d/%d\n", scale_factor, n, d);

  /* Scaling the counters.  */
  for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next)
    for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
      {
        unsigned t_ix;
        const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
        const struct gcov_ctr_info *ci_ptr;

        if (!gfi_ptr || gfi_ptr->key != gi_ptr)
          continue;

        ci_ptr = gfi_ptr->ctrs;
        for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
          {
            gcov_merge_fn merge = gi_ptr->merge[t_ix];

            if (!merge)
              continue;
            if (d == 0)
              (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num,
                                      fp_scale, &scale_factor, NULL);
            else
              (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num,
                                      int_scale, &n, &d);
            ci_ptr++;
          }
      }

  return 0;
}

/* Driver to normalize profile counters.  */

int
gcov_profile_normalize (struct gcov_info *profile, gcov_type max_val)
{
  struct gcov_info *gi_ptr;
  gcov_type curr_max_val = 0;
  unsigned f_ix;
  unsigned int i;
  float scale_factor;

  /* Find the largest count value.  */
  for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next)
    for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
      {
        unsigned t_ix;
        const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
        const struct gcov_ctr_info *ci_ptr;

        if (!gfi_ptr || gfi_ptr->key != gi_ptr)
          continue;

        ci_ptr = gfi_ptr->ctrs;
        for (t_ix = 0; t_ix < 1; t_ix++)
          {
            for (i = 0; i < ci_ptr->num; i++)
              if (ci_ptr->values[i] > curr_max_val)
                curr_max_val = ci_ptr->values[i];
            ci_ptr++;
          }
      }

  scale_factor = (float)max_val / curr_max_val;
  if (verbose)
    fnotice (stdout, "max_val is %" PRId64 "\n", curr_max_val);

  return gcov_profile_scale (profile, scale_factor, 0, 0);
}

/* The following variables are defined in gcc/gcov-tool.c.  */
extern int overlap_func_level;
extern int overlap_obj_level;
extern int overlap_hot_only;
extern int overlap_use_fullname;
extern double overlap_hot_threshold;

/* Compute the overlap score of two values. The score is defined as:
    min (V1/SUM_1, V2/SUM_2)  */

static double
calculate_2_entries (const unsigned long v1, const unsigned long v2,
                     const double sum_1, const double sum_2)
{
  double val1 = (sum_1 == 0.0 ? 0.0 : v1/sum_1);
  double val2 = (sum_2 == 0.0 ? 0.0 : v2/sum_2);

  if (val2 < val1)
    val1 = val2;

  return val1;
}

/*  Compute the overlap score between GCOV_INFO1 and GCOV_INFO2.
    SUM_1 is the sum_all for profile1 where GCOV_INFO1 belongs.
    SUM_2 is the sum_all for profile2 where GCOV_INFO2 belongs.
    This function also updates cumulative score CUM_1_RESULT and
    CUM_2_RESULT.  */

static double
compute_one_gcov (const struct gcov_info *gcov_info1,
                  const struct gcov_info *gcov_info2,
                  const double sum_1, const double sum_2,
                  double *cum_1_result, double *cum_2_result)
{
  unsigned f_ix;
  double ret = 0;
  double cum_1 = 0, cum_2 = 0;
  const struct gcov_info *gcov_info = 0;
  double *cum_p;
  double sum;

  gcc_assert (gcov_info1 || gcov_info2);
  if (!gcov_info1)
    {
      gcov_info = gcov_info2;
      cum_p = cum_2_result;
      sum = sum_2;
      *cum_1_result = 0;
    } else
  if (!gcov_info2)
    {
      gcov_info = gcov_info1;
      cum_p = cum_1_result;
      sum = sum_1;
      *cum_2_result = 0;
    }

  if (gcov_info)
  {
    for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++)
      {
        unsigned t_ix;
        const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix];
        if (!gfi_ptr || gfi_ptr->key != gcov_info)
          continue;
        const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
        for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
          {
            unsigned c_num;

            if (!gcov_info->merge[t_ix])
              continue;

            for (c_num = 0; c_num < ci_ptr->num; c_num++)
              {
                cum_1 += ci_ptr->values[c_num] / sum;
              }
            ci_ptr++;
          }
      }
    *cum_p = cum_1;
    return 0.0;
  }

  for (f_ix = 0; f_ix < gcov_info1->n_functions; f_ix++)
    {
      unsigned t_ix;
      double func_cum_1 = 0.0;
      double func_cum_2 = 0.0;
      double func_val = 0.0;
      int nonzero = 0;
      int hot = 0;
      const struct gcov_fn_info *gfi_ptr1 = gcov_info1->functions[f_ix];
      const struct gcov_fn_info *gfi_ptr2 = gcov_info2->functions[f_ix];

      if (!gfi_ptr1 || gfi_ptr1->key != gcov_info1)
        continue;
      if (!gfi_ptr2 || gfi_ptr2->key != gcov_info2)
        continue;

      const struct gcov_ctr_info *ci_ptr1 = gfi_ptr1->ctrs;
      const struct gcov_ctr_info *ci_ptr2 = gfi_ptr2->ctrs;
      for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
        {
          unsigned c_num;

          if (!gcov_info1->merge[t_ix])
            continue;

          for (c_num = 0; c_num < ci_ptr1->num; c_num++)
            {
              if (ci_ptr1->values[c_num] | ci_ptr2->values[c_num])
                {
                  func_val += calculate_2_entries (ci_ptr1->values[c_num],
                                          ci_ptr2->values[c_num],
                                          sum_1, sum_2);

                  func_cum_1 += ci_ptr1->values[c_num] / sum_1;
                  func_cum_2 += ci_ptr2->values[c_num] / sum_2;
                  nonzero = 1;
                  if (ci_ptr1->values[c_num] / sum_1 >= overlap_hot_threshold ||
                      ci_ptr2->values[c_num] / sum_2 >= overlap_hot_threshold)
                    hot = 1;
                }
            }
          ci_ptr1++;
          ci_ptr2++;
        }
      ret += func_val;
      cum_1 += func_cum_1;
      cum_2 += func_cum_2;
      if (overlap_func_level && nonzero && (!overlap_hot_only || hot))
        {
          printf("   \tfunc_id=%10d \toverlap =%6.5f%% (%5.5f%% %5.5f%%)\n",
                 gfi_ptr1->ident, func_val*100, func_cum_1*100, func_cum_2*100);
        }
    }
  *cum_1_result = cum_1;
  *cum_2_result = cum_2;
  return ret;
}

/* Test if all counter values in this GCOV_INFO are cold.
   "Cold" is defined as the counter value being less than
   or equal to THRESHOLD.  */

static bool
gcov_info_count_all_cold (const struct gcov_info *gcov_info,
                          gcov_type threshold)
{
  unsigned f_ix;

  for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++)
    {
      unsigned t_ix;
      const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix];

      if (!gfi_ptr || gfi_ptr->key != gcov_info)
        continue;
      const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
      for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
        {
          unsigned c_num;

          if (!gcov_info->merge[t_ix])
            continue;

          for (c_num = 0; c_num < ci_ptr->num; c_num++)
            {
              if (ci_ptr->values[c_num] > threshold)
                return false;
            }
          ci_ptr++;
        }
    }

  return true;
}

/* Test if all counter values in this GCOV_INFO are 0.  */

static bool
gcov_info_count_all_zero (const struct gcov_info *gcov_info)
{
  return gcov_info_count_all_cold (gcov_info, 0);
}

/* A pair of matched GCOV_INFO.
   The flag is a bitvector:
     b0: obj1's all counts are 0;
     b1: obj1's all counts are cold (but no 0);
     b2: obj1 is hot;
     b3: no obj1 to match obj2;
     b4: obj2's all counts are 0;
     b5: obj2's all counts are cold (but no 0);
     b6: obj2 is hot;
     b7: no obj2 to match obj1;
 */
struct overlap_t {
   const struct gcov_info *obj1;
   const struct gcov_info *obj2;
   char flag;
};

#define FLAG_BOTH_ZERO(flag) ((flag & 0x1) && (flag & 0x10))
#define FLAG_BOTH_COLD(flag) ((flag & 0x2) && (flag & 0x20))
#define FLAG_ONE_HOT(flag) ((flag & 0x4) || (flag & 0x40))

/* Cumlative overlap dscore for profile1 and profile2.  */
static double overlap_sum_1, overlap_sum_2;

/* sum_all for profile1 and profile2.  */
static gcov_type p1_sum_all, p2_sum_all;

/* run_max for profile1 and profile2.  */
static gcov_type p1_run_max, p2_run_max;

/* The number of gcda files in the profiles.  */
static unsigned gcda_files[2];

/* The number of unique gcda files in the profiles
   (not existing in the other profile).  */
static unsigned unique_gcda_files[2];

/* The number of gcda files that all counter values are 0.  */
static unsigned zero_gcda_files[2];

/* The number of gcda files that all counter values are cold (but not 0).  */
static unsigned cold_gcda_files[2];

/* The number of gcda files that includes hot counter values.  */
static unsigned hot_gcda_files[2];

/* The number of gcda files with hot count value in either profiles.  */
static unsigned both_hot_cnt;

/* The number of gcda files with all counts cold (but not 0) in
   both profiles. */
static unsigned both_cold_cnt;

/* The number of gcda files with all counts 0 in both profiles.  */
static unsigned both_zero_cnt;

/* Extract the basename of the filename NAME.  */

static char *
extract_file_basename (const char *name)
{
  char *str;
  int len = 0;
  char *path = xstrdup (name);
  char sep_str[2];

  sep_str[0] = DIR_SEPARATOR;
  sep_str[1] = 0;
  str = strstr(path, sep_str);
  do{
      len = strlen(str) + 1;
      path = &path[strlen(path) - len + 2];
      str = strstr(path, sep_str);
  } while(str);

  return path;
}

/* Utility function to get the filename.  */

static const char *
get_file_basename (const char *name)
{
  if (overlap_use_fullname)
    return name;
  return extract_file_basename (name);
}

/* A utility function to set the flag for the gcda files.  */

static void
set_flag (struct overlap_t *e)
{
  char flag = 0;

  if (!e->obj1)
    {
      unique_gcda_files[1]++;
      flag = 0x8;
    }
  else
    {
      gcda_files[0]++;
      if (gcov_info_count_all_zero (e->obj1))
        {
          zero_gcda_files[0]++;
          flag = 0x1;
        }
      else
      if (gcov_info_count_all_cold (e->obj1, overlap_sum_1
			      * overlap_hot_threshold))
        {
          cold_gcda_files[0]++;
          flag = 0x2;
        }
      else
        {
          hot_gcda_files[0]++;
          flag = 0x4;
        }
    }

  if (!e->obj2)
    {
      unique_gcda_files[0]++;
      flag |= (0x8 << 4);
    }
  else
    {
      gcda_files[1]++;
      if (gcov_info_count_all_zero (e->obj2))
        {
          zero_gcda_files[1]++;
          flag |= (0x1 << 4);
        }
      else
      if (gcov_info_count_all_cold (e->obj2, overlap_sum_2
			      * overlap_hot_threshold))
        {
          cold_gcda_files[1]++;
          flag |= (0x2 << 4);
        }
      else
        {
          hot_gcda_files[1]++;
          flag |= (0x4 << 4);
        }
    }

  gcc_assert (flag);
  e->flag = flag;
}

/* Test if INFO1 and INFO2 are from the matched source file.
   Return 1 if they match; return 0 otherwise.  */

static int
matched_gcov_info (const struct gcov_info *info1, const struct gcov_info *info2)
{
  /* For FDO, we have to match the name. This can be expensive.
     Maybe we should use hash here.  */
  if (strcmp (info1->filename, info2->filename))
    return 0;

  if (info1->n_functions != info2->n_functions)
    {
      fnotice (stderr, "mismatched profiles in %s (%d functions"
                       " vs %d functions)\n",
                       info1->filename,
                       info1->n_functions,
                       info2->n_functions);
      return 0;
    }
  return 1;
}

/* Defined in libgcov-driver.c.  */
extern gcov_unsigned_t compute_summary (struct gcov_info *,
                 struct gcov_summary *, size_t *);

/* Compute the overlap score of two profiles with the head of GCOV_LIST1 and
   GCOV_LIST1. Return a number ranging from [0.0, 1.0], with 0.0 meaning no
   match and 1.0 meaning a perfect match.  */

static double
calculate_overlap (struct gcov_info *gcov_list1,
                   struct gcov_info *gcov_list2)
{
  struct gcov_summary this_prg;
  unsigned list1_cnt = 0, list2_cnt= 0, all_cnt;
  unsigned int i, j;
  size_t max_length;
  const struct gcov_info *gi_ptr;
  struct overlap_t *all_infos;

  compute_summary (gcov_list1, &this_prg, &max_length);
  overlap_sum_1 = (double) (this_prg.ctrs[0].sum_all);
  p1_sum_all = this_prg.ctrs[0].sum_all;
  p1_run_max = this_prg.ctrs[0].run_max;
  compute_summary (gcov_list2, &this_prg, &max_length);
  overlap_sum_2 = (double) (this_prg.ctrs[0].sum_all);
  p2_sum_all = this_prg.ctrs[0].sum_all;
  p2_run_max = this_prg.ctrs[0].run_max;

  for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next)
    list1_cnt++;
  for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next)
    list2_cnt++;
  all_cnt = list1_cnt + list2_cnt;
  all_infos = (struct overlap_t *) xmalloc (sizeof (struct overlap_t)
               * all_cnt * 2);
  gcc_assert (all_infos);

  i = 0;
  for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next, i++)
    {
      all_infos[i].obj1 = gi_ptr;
      all_infos[i].obj2 = 0;
    }

  for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next, i++)
    {
      all_infos[i].obj1 = 0;
      all_infos[i].obj2 = gi_ptr;
    }

  for (i = list1_cnt; i < all_cnt; i++)
    {
      if (all_infos[i].obj2 == 0)
        continue;
      for (j = 0; j < list1_cnt; j++)
        {
          if (all_infos[j].obj2 != 0)
            continue;
          if (matched_gcov_info (all_infos[i].obj2, all_infos[j].obj1))
            {
              all_infos[j].obj2 = all_infos[i].obj2;
              all_infos[i].obj2 = 0;
              break;
            }
        }
    }

  for (i = 0; i < all_cnt; i++)
    if (all_infos[i].obj1 || all_infos[i].obj2)
      {
        set_flag (all_infos + i);
        if (FLAG_ONE_HOT (all_infos[i].flag))
            both_hot_cnt++;
        if (FLAG_BOTH_COLD(all_infos[i].flag))
            both_cold_cnt++;
        if (FLAG_BOTH_ZERO(all_infos[i].flag))
            both_zero_cnt++;
      }

  double prg_val = 0;
  double sum_val = 0;
  double sum_cum_1 = 0;
  double sum_cum_2 = 0;

  for (i = 0; i < all_cnt; i++)
    {
      double val;
      double cum_1, cum_2;
      const char *filename;

      if (all_infos[i].obj1 == 0 && all_infos[i].obj2 == 0)
        continue;
      if (FLAG_BOTH_ZERO (all_infos[i].flag))
          continue;

      if (all_infos[i].obj1)
        filename = get_file_basename (all_infos[i].obj1->filename);
      else
        filename = get_file_basename (all_infos[i].obj2->filename);

      if (overlap_func_level)
        printf("\n   processing %36s:\n", filename);

      val = compute_one_gcov (all_infos[i].obj1, all_infos[i].obj2,
          overlap_sum_1, overlap_sum_2, &cum_1, &cum_2);

      if (overlap_obj_level && (!overlap_hot_only || FLAG_ONE_HOT (all_infos[i].flag)))
        {
          printf("   obj=%36s  overlap = %6.2f%% (%5.2f%% %5.2f%%)\n",
                  filename, val*100, cum_1*100, cum_2*100);
          sum_val += val;
          sum_cum_1 += cum_1;
          sum_cum_2 += cum_2;
        }

      prg_val += val;

    }

  if (overlap_obj_level)
    printf("   SUM:%36s  overlap = %6.2f%% (%5.2f%% %5.2f%%)\n",
           "", sum_val*100, sum_cum_1*100, sum_cum_2*100);

  printf ("  Statistics:\n"
          "                    profile1_#     profile2_#       overlap_#\n");
  printf ("    gcda files:  %12u\t%12u\t%12u\n", gcda_files[0], gcda_files[1],
	  gcda_files[0]-unique_gcda_files[0]);
  printf ("  unique files:  %12u\t%12u\n", unique_gcda_files[0],
	  unique_gcda_files[1]);
  printf ("     hot files:  %12u\t%12u\t%12u\n", hot_gcda_files[0],
	  hot_gcda_files[1], both_hot_cnt);
  printf ("    cold files:  %12u\t%12u\t%12u\n", cold_gcda_files[0],
	  cold_gcda_files[1], both_cold_cnt);
  printf ("    zero files:  %12u\t%12u\t%12u\n", zero_gcda_files[0],
	  zero_gcda_files[1], both_zero_cnt);
  printf ("       sum_all:  %12" PRId64 "\t%12" PRId64 "\n",
	  p1_sum_all, p2_sum_all);
  printf ("       run_max:  %12" PRId64 "\t%12" PRId64 "\n",
	  p1_run_max, p2_run_max);

  return prg_val;
}

/* Computer the overlap score of two lists of gcov_info objects PROFILE1 and PROFILE2.
   Return 0 on success: without mismatch. Reutrn 1 on error.  */

int
gcov_profile_overlap (struct gcov_info *profile1, struct gcov_info *profile2)
{
  double result;

  result = calculate_overlap (profile1, profile2);

  if (result > 0)
    {
      printf("\nProgram level overlap result is %3.2f%%\n\n", result*100);
      return 0;
    }
  return 1;
}