1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
|
/* Copyright (C) 2007-2020 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/*****************************************************************************
* BID64 square root
*****************************************************************************
*
* Algorithm description:
*
* if(exponent_x is odd)
* scale coefficient_x by 10, adjust exponent
* - get lower estimate for number of digits in coefficient_x
* - scale coefficient x to between 31 and 33 decimal digits
* - in parallel, check for exact case and return if true
* - get high part of result coefficient using double precision sqrt
* - compute remainder and refine coefficient in one iteration (which
* modifies it by at most 1)
* - result exponent is easy to compute from the adjusted arg. exponent
*
****************************************************************************/
#include "bid_internal.h"
#include "bid_sqrt_macros.h"
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#include <fenv.h>
#define FE_ALL_FLAGS FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT
#endif
extern double sqrt (double);
#if DECIMAL_CALL_BY_REFERENCE
void
bid64_sqrt (UINT64 * pres,
UINT64 *
px _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
_EXC_INFO_PARAM) {
UINT64 x;
#else
UINT64
bid64_sqrt (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
UINT128 CA, CT;
UINT64 sign_x, coefficient_x;
UINT64 Q, Q2, A10, C4, R, R2, QE, res;
SINT64 D;
int_double t_scale;
int_float tempx;
double da, dq, da_h, da_l, dqe;
int exponent_x, exponent_q, bin_expon_cx;
int digits_x;
int scale;
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
fexcept_t binaryflags = 0;
#endif
#if DECIMAL_CALL_BY_REFERENCE
#if !DECIMAL_GLOBAL_ROUNDING
_IDEC_round rnd_mode = *prnd_mode;
#endif
x = *px;
#endif
// unpack arguments, check for NaN or Infinity
if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
// x is Inf. or NaN or 0
if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
res = coefficient_x;
if ((coefficient_x & SSNAN_MASK64) == SINFINITY_MASK64) // -Infinity
{
res = NAN_MASK64;
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
}
#ifdef SET_STATUS_FLAGS
if ((x & SNAN_MASK64) == SNAN_MASK64) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (res & QUIET_MASK64);
}
// x is 0
exponent_x = (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1;
res = sign_x | (((UINT64) exponent_x) << 53);
BID_RETURN (res);
}
// x<0?
if (sign_x && coefficient_x) {
res = NAN_MASK64;
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (res);
}
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
(void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
//--- get number of bits in the coefficient of x ---
tempx.d = (float) coefficient_x;
bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
digits_x = estimate_decimal_digits[bin_expon_cx];
// add test for range
if (coefficient_x >= power10_index_binexp[bin_expon_cx])
digits_x++;
A10 = coefficient_x;
if (exponent_x & 1) {
A10 = (A10 << 2) + A10;
A10 += A10;
}
dqe = sqrt ((double) A10);
QE = (UINT32) dqe;
if (QE * QE == A10) {
res =
very_fast_get_BID64 (0, (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1,
QE);
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
BID_RETURN (res);
}
// if exponent is odd, scale coefficient by 10
scale = 31 - digits_x;
exponent_q = exponent_x - scale;
scale += (exponent_q & 1); // exp. bias is even
CT = power10_table_128[scale];
__mul_64x128_short (CA, coefficient_x, CT);
// 2^64
t_scale.i = 0x43f0000000000000ull;
// convert CA to DP
da_h = CA.w[1];
da_l = CA.w[0];
da = da_h * t_scale.d + da_l;
dq = sqrt (da);
Q = (UINT64) dq;
// get sign(sqrt(CA)-Q)
R = CA.w[0] - Q * Q;
R = ((SINT64) R) >> 63;
D = R + R + 1;
exponent_q = (exponent_q + DECIMAL_EXPONENT_BIAS) >> 1;
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
#endif
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
if (!((rnd_mode) & 3)) {
#endif
#endif
// midpoint to check
Q2 = Q + Q + D;
C4 = CA.w[0] << 2;
// get sign(-sqrt(CA)+Midpoint)
R2 = Q2 * Q2 - C4;
R2 = ((SINT64) R2) >> 63;
// adjust Q if R!=R2
Q += (D & (R ^ R2));
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
} else {
C4 = CA.w[0];
Q += D;
if ((SINT64) (Q * Q - C4) > 0)
Q--;
if (rnd_mode == ROUNDING_UP)
Q++;
}
#endif
#endif
res = fast_get_BID64 (0, exponent_q, Q);
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
BID_RETURN (res);
}
TYPE0_FUNCTION_ARG1 (UINT64, bid64q_sqrt, x)
UINT256 M256, C4, C8;
UINT128 CX, CX2, A10, S2, T128, CS, CSM, CS2, C256, CS1,
mul_factor2_long = { {0x0ull, 0x0ull} }, QH, Tmp, TP128, Qh, Ql;
UINT64 sign_x, Carry, B10, res, mul_factor, mul_factor2 = 0x0ull, CS0;
SINT64 D;
int_float fx, f64;
int exponent_x, bin_expon_cx, done = 0;
int digits, scale, exponent_q = 0, exact = 1, amount, extra_digits;
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
fexcept_t binaryflags = 0;
#endif
// unpack arguments, check for NaN or Infinity
if (!unpack_BID128_value (&sign_x, &exponent_x, &CX, x)) {
res = CX.w[1];
// NaN ?
if ((x.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
#ifdef SET_STATUS_FLAGS
if ((x.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
Tmp.w[1] = (CX.w[1] & 0x00003fffffffffffull);
Tmp.w[0] = CX.w[0];
TP128 = reciprocals10_128[18];
__mul_128x128_full (Qh, Ql, Tmp, TP128);
amount = recip_scale[18];
__shr_128 (Tmp, Qh, amount);
res = (CX.w[1] & 0xfc00000000000000ull) | Tmp.w[0];
BID_RETURN (res);
}
// x is Infinity?
if ((x.w[1] & 0x7800000000000000ull) == 0x7800000000000000ull) {
if (sign_x) {
// -Inf, return NaN
res = 0x7c00000000000000ull;
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
}
BID_RETURN (res);
}
// x is 0 otherwise
exponent_x =
((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
DECIMAL_EXPONENT_BIAS;
if (exponent_x < 0)
exponent_x = 0;
if (exponent_x > DECIMAL_MAX_EXPON_64)
exponent_x = DECIMAL_MAX_EXPON_64;
//res= sign_x | (((UINT64)exponent_x)<<53);
res = get_BID64 (sign_x, exponent_x, 0, rnd_mode, pfpsf);
BID_RETURN (res);
}
if (sign_x) {
res = 0x7c00000000000000ull;
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (res);
}
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
(void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
// 2^64
f64.i = 0x5f800000;
// fx ~ CX
fx.d = (float) CX.w[1] * f64.d + (float) CX.w[0];
bin_expon_cx = ((fx.i >> 23) & 0xff) - 0x7f;
digits = estimate_decimal_digits[bin_expon_cx];
A10 = CX;
if (exponent_x & 1) {
A10.w[1] = (CX.w[1] << 3) | (CX.w[0] >> 61);
A10.w[0] = CX.w[0] << 3;
CX2.w[1] = (CX.w[1] << 1) | (CX.w[0] >> 63);
CX2.w[0] = CX.w[0] << 1;
__add_128_128 (A10, A10, CX2);
}
C256.w[1] = A10.w[1];
C256.w[0] = A10.w[0];
CS.w[0] = short_sqrt128 (A10);
CS.w[1] = 0;
mul_factor = 0;
// check for exact result
if (CS.w[0] < 10000000000000000ull) {
if (CS.w[0] * CS.w[0] == A10.w[0]) {
__sqr64_fast (S2, CS.w[0]);
if (S2.w[1] == A10.w[1]) // && S2.w[0]==A10.w[0])
{
res =
get_BID64 (0,
((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
DECIMAL_EXPONENT_BIAS, CS.w[0], rnd_mode, pfpsf);
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
BID_RETURN (res);
}
}
if (CS.w[0] >= 1000000000000000ull) {
done = 1;
exponent_q = exponent_x;
C256.w[1] = A10.w[1];
C256.w[0] = A10.w[0];
}
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
#endif
exact = 0;
} else {
B10 = 0x3333333333333334ull;
__mul_64x64_to_128_full (CS2, CS.w[0], B10);
CS0 = CS2.w[1] >> 1;
if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
#endif
exact = 0;
}
done = 1;
CS.w[0] = CS0;
exponent_q = exponent_x + 2;
mul_factor = 10;
mul_factor2 = 100;
if (CS.w[0] >= 10000000000000000ull) {
__mul_64x64_to_128_full (CS2, CS.w[0], B10);
CS0 = CS2.w[1] >> 1;
if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
#endif
exact = 0;
}
exponent_q += 2;
CS.w[0] = CS0;
mul_factor = 100;
mul_factor2 = 10000;
}
if (exact) {
CS0 = CS.w[0] * mul_factor;
__sqr64_fast (CS1, CS0)
if ((CS1.w[0] != A10.w[0]) || (CS1.w[1] != A10.w[1])) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
#endif
exact = 0;
}
}
}
if (!done) {
// get number of digits in CX
D = CX.w[1] - power10_index_binexp_128[bin_expon_cx].w[1];
if (D > 0
|| (!D && CX.w[0] >= power10_index_binexp_128[bin_expon_cx].w[0]))
digits++;
// if exponent is odd, scale coefficient by 10
scale = 31 - digits;
exponent_q = exponent_x - scale;
scale += (exponent_q & 1); // exp. bias is even
T128 = power10_table_128[scale];
__mul_128x128_low (C256, CX, T128);
CS.w[0] = short_sqrt128 (C256);
}
//printf("CS=%016I64x\n",CS.w[0]);
exponent_q =
((exponent_q - DECIMAL_EXPONENT_BIAS_128) >> 1) +
DECIMAL_EXPONENT_BIAS;
if ((exponent_q < 0) && (exponent_q + MAX_FORMAT_DIGITS >= 0)) {
extra_digits = -exponent_q;
exponent_q = 0;
// get coeff*(2^M[extra_digits])/10^extra_digits
__mul_64x64_to_128 (QH, CS.w[0], reciprocals10_64[extra_digits]);
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
amount = short_recip_scale[extra_digits];
CS0 = QH.w[1] >> amount;
#ifdef SET_STATUS_FLAGS
if (exact) {
if (CS.w[0] != CS0 * power10_table_128[extra_digits].w[0])
exact = 0;
}
if (!exact)
__set_status_flags (pfpsf, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
CS.w[0] = CS0;
if (!mul_factor)
mul_factor = 1;
mul_factor *= power10_table_128[extra_digits].w[0];
__mul_64x64_to_128 (mul_factor2_long, mul_factor, mul_factor);
if (mul_factor2_long.w[1])
mul_factor2 = 0;
else
mul_factor2 = mul_factor2_long.w[1];
}
// 4*C256
C4.w[1] = (C256.w[1] << 2) | (C256.w[0] >> 62);
C4.w[0] = C256.w[0] << 2;
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
if (!((rnd_mode) & 3)) {
#endif
#endif
// compare to midpoints
CSM.w[0] = (CS.w[0] + CS.w[0]) | 1;
//printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C4.w[1],C4.w[0],CSM.w[1],CSM.w[0], CS.w[0]);
if (mul_factor)
CSM.w[0] *= mul_factor;
// CSM^2
__mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
//__mul_128x128_to_256(M256, CSM, CSM);
if (C4.w[1] > M256.w[1] ||
(C4.w[1] == M256.w[1] && C4.w[0] > M256.w[0])) {
// round up
CS.w[0]++;
} else {
C8.w[0] = CS.w[0] << 3;
C8.w[1] = 0;
if (mul_factor) {
if (mul_factor2) {
__mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
} else {
__mul_64x128_low (C8, C8.w[0], mul_factor2_long);
}
}
// M256 - 8*CSM
__sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
M256.w[1] = M256.w[1] - C8.w[1] - Carry;
// if CSM' > C256, round up
if (M256.w[1] > C4.w[1] ||
(M256.w[1] == C4.w[1] && M256.w[0] > C4.w[0])) {
// round down
if (CS.w[0])
CS.w[0]--;
}
}
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
} else {
CS.w[0]++;
CSM.w[0] = CS.w[0];
C8.w[0] = CSM.w[0] << 1;
if (mul_factor)
CSM.w[0] *= mul_factor;
__mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
C8.w[1] = 0;
if (mul_factor) {
if (mul_factor2) {
__mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
} else {
__mul_64x128_low (C8, C8.w[0], mul_factor2_long);
}
}
//printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C256.w[1],C256.w[0],M256.w[1],M256.w[0], CS.w[0]);
if (M256.w[1] > C256.w[1] ||
(M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) {
__sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
M256.w[1] = M256.w[1] - Carry - C8.w[1];
M256.w[0]++;
if (!M256.w[0]) {
M256.w[1]++;
}
if ((M256.w[1] > C256.w[1] ||
(M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
&& (CS.w[0] > 1)) {
CS.w[0]--;
if (CS.w[0] > 1) {
__sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
M256.w[1] = M256.w[1] - Carry - C8.w[1];
M256.w[0]++;
if (!M256.w[0]) {
M256.w[1]++;
}
if (M256.w[1] > C256.w[1] ||
(M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
CS.w[0]--;
}
}
}
else {
/*__add_carry_out(M256.w[0], Carry, M256.w[0], C8.w[0]);
M256.w[1] = M256.w[1] + Carry + C8.w[1];
M256.w[0]++;
if(!M256.w[0])
{
M256.w[1]++;
}
CS.w[0]++;
if(M256.w[1]<C256.w[1] ||
(M256.w[1]==C256.w[1] && M256.w[0]<=C256.w[0]))
{
CS.w[0]++;
}*/
CS.w[0]++;
}
//printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
// RU?
if (((rnd_mode) != ROUNDING_UP) || exact) {
if (CS.w[0])
CS.w[0]--;
}
}
#endif
#endif
//printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
res = get_BID64 (0, exponent_q, CS.w[0], rnd_mode, pfpsf);
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
BID_RETURN (res);
}
|