summaryrefslogtreecommitdiff
path: root/libgcc/config/libbid/bid128_string.c
blob: 313d1bd57c5d744a7060d4fbe0b581164247a616 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/* Copyright (C) 2007  Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

/*****************************************************************************
 *    BID128_to_string
 ****************************************************************************/

#define BID_128RES
#include <stdio.h>
#include "bid_internal.h"
#include "bid128_2_str.h"
#include "bid128_2_str_macros.h"

extern int bid128_coeff_2_string (UINT64 X_hi, UINT64 X_lo,
				  char *char_ptr);

#if DECIMAL_CALL_BY_REFERENCE

void
bid128_to_string (char *str,
		  UINT128 *
		  px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
		  _EXC_INFO_PARAM) {
  UINT128 x;
#else

void
bid128_to_string (char *str, UINT128 x 
    _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
  UINT64 x_sign;
  UINT64 x_exp;
  int exp; 	// unbiased exponent
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
  int ind;
  UINT128 C1;
  unsigned int k = 0; // pointer in the string
  unsigned int d0, d123;
  UINT64 HI_18Dig, LO_18Dig, Tmp;
  UINT32 MiDi[12], *ptr;
  char *c_ptr_start, *c_ptr;
  int midi_ind, k_lcv, len;

#if DECIMAL_CALL_BY_REFERENCE
  x = *px;
#endif

  BID_SWAP128(x);
  // check for NaN or Infinity
  if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
    // x is special
    if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN
      if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN
	// set invalid flag
    str[0] = ((SINT64)x.w[1]<0)? '-':'+'; 
	str[1] = 'S';
	str[2] = 'N';
	str[3] = 'a';
	str[4] = 'N';
	str[5] = '\0';
      } else { // x is QNaN
    str[0] = ((SINT64)x.w[1]<0)? '-':'+'; 
	str[1] = 'Q';
	str[2] = 'N';
	str[3] = 'a';
	str[4] = 'N';
	str[5] = '\0';
      }
    } else { // x is not a NaN, so it must be infinity
      if ((x.w[1] & MASK_SIGN) == 0x0ull) { // x is +inf
	str[0] = '+';
	str[1] = 'I';
	str[2] = 'n';
	str[3] = 'f';
	str[4] = '\0';
      } else { // x is -inf 
	str[0] = '-';
	str[1] = 'I';
	str[2] = 'n';
	str[3] = 'f';
	str[4] = '\0';
      }
    }
    return;
  } else if (((x.w[1] & MASK_COEFF) == 0x0ull) && (x.w[0] == 0x0ull)) {
    // x is 0
    len = 0;

    //determine if +/-
    if (x.w[1] & MASK_SIGN)
      str[len++] = '-';
    else
      str[len++] = '+';
    str[len++] = '0';
    str[len++] = 'E';

    // extract the exponent and print
    exp = (int) (((x.w[1] & MASK_EXP) >> 49) - 6176);
	if(exp > (((0x5ffe)>>1) - (6176))) {
		exp = (int) ((((x.w[1]<<2) & MASK_EXP) >> 49) - 6176);
	}
    if (exp >= 0) {
      str[len++] = '+';
      len += sprintf (str + len, "%u", exp);// should not use sprintf (should 
      // use sophisticated algorithm, since we know range of exp is limited)
      str[len++] = '\0';
    } else {
      len += sprintf (str + len, "%d", exp);// should not use sprintf (should 
      // use sophisticated algorithm, since we know range of exp is limited)
      str[len++] = '\0';
    }
    return;
  } else { // x is not special and is not zero
    // unpack x
    x_sign = x.w[1] & MASK_SIGN;// 0 for positive, MASK_SIGN for negative
    x_exp = x.w[1] & MASK_EXP;// biased and shifted left 49 bit positions
    if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)
       x_exp = (x.w[1]<<2) & MASK_EXP;// biased and shifted left 49 bit positions
    C1.w[1] = x.w[1] & MASK_COEFF;
    C1.w[0] = x.w[0];
    exp = (x_exp >> 49) - 6176;

    // determine sign's representation as a char
    if (x_sign)
      str[k++] = '-';// negative number
    else
      str[k++] = '+';// positive number

    // determine coefficient's representation as a decimal string

    // if zero or non-canonical, set coefficient to '0'
    if ((C1.w[1] > 0x0001ed09bead87c0ull) || 
        (C1.w[1] == 0x0001ed09bead87c0ull && 
        (C1.w[0] > 0x378d8e63ffffffffull)) || 
        ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) || 
        ((C1.w[1] == 0) && (C1.w[0] == 0))) {
      str[k++] = '0';
    } else {
      /* ****************************************************
         This takes a bid coefficient in C1.w[1],C1.w[0] 
         and put the converted character sequence at location 
         starting at &(str[k]). The function returns the number
         of MiDi returned. Note that the character sequence 
         does not have leading zeros EXCEPT when the input is of
         zero value. It will then output 1 character '0'
         The algorithm essentailly tries first to get a sequence of
         Millenial Digits "MiDi" and then uses table lookup to get the
         character strings of these MiDis.
         **************************************************** */
      /* Algorithm first decompose possibly 34 digits in hi and lo
         18 digits. (The high can have at most 16 digits). It then
         uses macro that handle 18 digit portions.
         The first step is to get hi and lo such that
         2^(64) C1.w[1] + C1.w[0] = hi * 10^18  + lo,   0 <= lo < 10^18.
         We use a table lookup method to obtain the hi and lo 18 digits.
         [C1.w[1],C1.w[0]] = c_8 2^(107) + c_7 2^(101) + ... + c_0 2^(59) + d
         where 0 <= d < 2^59 and each c_j has 6 bits. Because d fits in
         18 digits,  we set hi = 0, and lo = d to begin with.
         We then retrieve from a table, for j = 0, 1, ..., 8
         that gives us A and B where c_j 2^(59+6j) = A * 10^18 + B.
         hi += A ; lo += B; After each accumulation into lo, we normalize 
         immediately. So at the end, we have the decomposition as we need. */

      Tmp = C1.w[0] >> 59;
      LO_18Dig = (C1.w[0] << 5) >> 5;
      Tmp += (C1.w[1] << 5);
      HI_18Dig = 0;
      k_lcv = 0;
      // Tmp = {C1.w[1]{49:0}, C1.w[0]{63:59}}
      // Lo_18Dig = {C1.w[0]{58:0}}

      while (Tmp) {
	midi_ind = (int) (Tmp & 0x000000000000003FLL);
	midi_ind <<= 1;
	Tmp >>= 6;
	HI_18Dig += mod10_18_tbl[k_lcv][midi_ind++];
	LO_18Dig += mod10_18_tbl[k_lcv++][midi_ind];
	__L0_Normalize_10to18 (HI_18Dig, LO_18Dig);
      }
      ptr = MiDi;
      if (HI_18Dig == 0LL) {
	__L1_Split_MiDi_6_Lead (LO_18Dig, ptr);
      } else {
	__L1_Split_MiDi_6_Lead (HI_18Dig, ptr);
	__L1_Split_MiDi_6 (LO_18Dig, ptr);
      }
      len = ptr - MiDi;
      c_ptr_start = &(str[k]);
      c_ptr = c_ptr_start;

      /* now convert the MiDi into character strings */
      __L0_MiDi2Str_Lead (MiDi[0], c_ptr);
      for (k_lcv = 1; k_lcv < len; k_lcv++) {
	__L0_MiDi2Str (MiDi[k_lcv], c_ptr);
      }
      k = k + (c_ptr - c_ptr_start);
    }

    // print E and sign of exponent
    str[k++] = 'E';
    if (exp < 0) {
      exp = -exp;
      str[k++] = '-';
    } else {
      str[k++] = '+';
    }

    // determine exponent's representation as a decimal string
    // d0 = exp / 1000;
    // Use Property 1
    d0 = (exp * 0x418a) >> 24;// 0x418a * 2^-24 = (10^(-3))RP,15
    d123 = exp - 1000 * d0;

    if (d0) { // 1000 <= exp <= 6144 => 4 digits to return
      str[k++] = d0 + 0x30;// ASCII for decimal digit d0
      ind = 3 * d123;
      str[k++] = char_table3[ind];
      str[k++] = char_table3[ind + 1];
      str[k++] = char_table3[ind + 2];
    } else { // 0 <= exp <= 999 => d0 = 0
      if (d123 < 10) { // 0 <= exp <= 9 => 1 digit to return
	str[k++] = d123 + 0x30;// ASCII
      } else if (d123 < 100) { // 10 <= exp <= 99 => 2 digits to return
	ind = 2 * (d123 - 10);
	str[k++] = char_table2[ind];
	str[k++] = char_table2[ind + 1];
      } else { // 100 <= exp <= 999 => 3 digits to return
	ind = 3 * d123;
	str[k++] = char_table3[ind];
	str[k++] = char_table3[ind + 1];
	str[k++] = char_table3[ind + 2];
      }
    }
    str[k] = '\0';

  }
  return;

}


#define MAX_FORMAT_DIGITS_128   34
#define MAX_STRING_DIGITS_128   100
#define MAX_SEARCH              MAX_STRING_DIGITS_128-MAX_FORMAT_DIGITS_128-1


#if DECIMAL_CALL_BY_REFERENCE

void
bid128_from_string (UINT128 * pres,
                    char *ps _RND_MODE_PARAM _EXC_FLAGS_PARAM
                    _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#else

UINT128
bid128_from_string (char *ps _RND_MODE_PARAM _EXC_FLAGS_PARAM
                    _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
  UINT128 CX, res;
  UINT64 sign_x, coeff_high, coeff_low, coeff2, coeff_l2, carry = 0x0ull,
    scale_high, right_radix_leading_zeros;
  int ndigits_before, ndigits_after, ndigits_total, dec_expon, sgn_exp,
    i, d2, rdx_pt_enc;
  char c, buffer[MAX_STRING_DIGITS_128];
  int save_rnd_mode;
  int save_fpsf;

#if DECIMAL_CALL_BY_REFERENCE
#if !DECIMAL_GLOBAL_ROUNDING
  _IDEC_round rnd_mode = *prnd_mode;
#endif
#endif

  save_rnd_mode = rnd_mode; // dummy
  save_fpsf = *pfpsf; // dummy

  right_radix_leading_zeros = rdx_pt_enc = 0;

  // if null string, return NaN
  if (!ps) {
    res.w[1] = 0x7c00000000000000ull;
    res.w[0] = 0;
    BID_RETURN (res);
  }
  // eliminate leading white space
  while ((*ps == ' ') || (*ps == '\t'))
    ps++;

  // c gets first character
  c = *ps;


  // if c is null or not equal to a (radix point, negative sign, 
  // positive sign, or number) it might be SNaN, sNaN, Infinity
  if (!c
      || (c != '.' && c != '-' && c != '+'
          && ((unsigned) (c - '0') > 9))) {
    res.w[0] = 0;
    // Infinity?
    if ((tolower_macro (ps[0]) == 'i' && tolower_macro (ps[1]) == 'n'
         && tolower_macro (ps[2]) == 'f')
        && (!ps[3]
            || (tolower_macro (ps[3]) == 'i'
                && tolower_macro (ps[4]) == 'n'
                && tolower_macro (ps[5]) == 'i'
                && tolower_macro (ps[6]) == 't'
                && tolower_macro (ps[7]) == 'y' && !ps[8])
        )) {
      res.w[1] = 0x7800000000000000ull;
      BID_RETURN (res);
    }
    // return sNaN
    if (tolower_macro (ps[0]) == 's' && tolower_macro (ps[1]) == 'n' && 
        tolower_macro (ps[2]) == 'a' && tolower_macro (ps[3]) == 'n') {        
        // case insensitive check for snan
      res.w[1] = 0x7e00000000000000ull;
      BID_RETURN (res);
    } else {
      // return qNaN
      res.w[1] = 0x7c00000000000000ull;
      BID_RETURN (res);
    }
  }
  // if +Inf, -Inf, +Infinity, or -Infinity (case insensitive check for inf)   
  if ((tolower_macro (ps[1]) == 'i' && tolower_macro (ps[2]) == 'n' && 
      tolower_macro (ps[3]) == 'f') && (!ps[4] || 
      (tolower_macro (ps[4]) == 'i' && tolower_macro (ps[5]) == 'n' && 
      tolower_macro (ps[6]) == 'i' && tolower_macro (ps[7]) == 't' && 
      tolower_macro (ps[8]) == 'y' && !ps[9]))) { // ci check for infinity
    res.w[0] = 0;

    if (c == '+')
      res.w[1] = 0x7800000000000000ull;
    else if (c == '-')
      res.w[1] = 0xf800000000000000ull;
    else
      res.w[1] = 0x7c00000000000000ull;

    BID_RETURN (res);
  }
  // if +sNaN, +SNaN, -sNaN, or -SNaN
  if (tolower_macro (ps[1]) == 's' && tolower_macro (ps[2]) == 'n'
      && tolower_macro (ps[3]) == 'a' && tolower_macro (ps[4]) == 'n') {
    res.w[0] = 0;
    if (c == '-')
      res.w[1] = 0xfe00000000000000ull;
    else
      res.w[1] = 0x7e00000000000000ull;
    BID_RETURN (res);
  }
  // set up sign_x to be OR'ed with the upper word later
  if (c == '-')
    sign_x = 0x8000000000000000ull;
  else
    sign_x = 0;

  // go to next character if leading sign
  if (c == '-' || c == '+')
    ps++;

  c = *ps;

  // if c isn't a decimal point or a decimal digit, return NaN
  if (c != '.' && ((unsigned) (c - '0') > 9)) {
    res.w[1] = 0x7c00000000000000ull | sign_x;
    res.w[0] = 0;
    BID_RETURN (res);
  }
  // detect zero (and eliminate/ignore leading zeros)
  if (*(ps) == '0') {

    // if all numbers are zeros (with possibly 1 radix point, the number is zero
    // should catch cases such as: 000.0
    while (*ps == '0') {

      ps++;

      // for numbers such as 0.0000000000000000000000000000000000001001, 
      // we want to count the leading zeros
      if (rdx_pt_enc) {
        right_radix_leading_zeros++;
      }
      // if this character is a radix point, make sure we haven't already 
      // encountered one
      if (*(ps) == '.') {
        if (rdx_pt_enc == 0) {
          rdx_pt_enc = 1;
          // if this is the first radix point, and the next character is NULL, 
          // we have a zero
          if (!*(ps + 1)) {
            res.w[1] =
              (0x3040000000000000ull -
               (right_radix_leading_zeros << 49)) | sign_x;
            res.w[0] = 0;
            BID_RETURN (res);
          }
          ps = ps + 1;
        } else {
          // if 2 radix points, return NaN
          res.w[1] = 0x7c00000000000000ull | sign_x;
          res.w[0] = 0;
          BID_RETURN (res);
        }
      } else if (!*(ps)) {
        //res.w[1] = 0x3040000000000000ull | sign_x;
        res.w[1] =
          (0x3040000000000000ull -
           (right_radix_leading_zeros << 49)) | sign_x;
        res.w[0] = 0;
        BID_RETURN (res);
      }
    }
  }

  c = *ps;

  // initialize local variables
  ndigits_before = ndigits_after = ndigits_total = 0;
  sgn_exp = 0;
  // pstart_coefficient = ps;

  if (!rdx_pt_enc) {
    // investigate string (before radix point)
    while ((unsigned) (c - '0') <= 9
           && ndigits_before < MAX_STRING_DIGITS_128) {
      buffer[ndigits_before] = c;
      ps++;
      c = *ps;
      ndigits_before++;
    }

    ndigits_total = ndigits_before;
    if (c == '.') {
      ps++;
      if ((c = *ps)) {

        // investigate string (after radix point)
        while ((unsigned) (c - '0') <= 9
               && ndigits_total < MAX_STRING_DIGITS_128) {
          buffer[ndigits_total] = c;
          ps++;
          c = *ps;
          ndigits_total++;
        }
        ndigits_after = ndigits_total - ndigits_before;
      }
    }
  } else {
    // we encountered a radix point while detecting zeros
    //if (c = *ps){

    c = *ps;
    ndigits_total = 0;
    // investigate string (after radix point)
    while ((unsigned) (c - '0') <= 9
           && ndigits_total < MAX_STRING_DIGITS_128) {
      buffer[ndigits_total] = c;
      ps++;
      c = *ps;
      ndigits_total++;
    }
    ndigits_after = ndigits_total - ndigits_before;
  }

  // get exponent
  dec_expon = 0;
  if (ndigits_total < MAX_STRING_DIGITS_128) {
    if (c) {
      if (c != 'e' && c != 'E') {
        // return NaN
        res.w[1] = 0x7c00000000000000ull;
        res.w[0] = 0;
        BID_RETURN (res);
      }
      ps++;
      c = *ps;

      if (((unsigned) (c - '0') > 9)
          && ((c != '+' && c != '-') || (unsigned) (ps[1] - '0') > 9)) {
        // return NaN
        res.w[1] = 0x7c00000000000000ull;
        res.w[0] = 0;
        BID_RETURN (res);
      }

      if (c == '-') {
        sgn_exp = -1;
        ps++;
        c = *ps;
      } else if (c == '+') {
        ps++;
        c = *ps;
      }

      dec_expon = c - '0';
      i = 1;
      ps++;
      c = *ps - '0';
      while (((unsigned) c) <= 9 && i < 7) {
        d2 = dec_expon + dec_expon;
        dec_expon = (d2 << 2) + d2 + c;
        ps++;
        c = *ps - '0';
        i++;
      }
    }

    dec_expon = (dec_expon + sgn_exp) ^ sgn_exp;
  }


  if (ndigits_total <= MAX_FORMAT_DIGITS_128) {
    dec_expon +=
      DECIMAL_EXPONENT_BIAS_128 - ndigits_after -
      right_radix_leading_zeros;
    if (dec_expon < 0) {
      res.w[1] = 0 | sign_x;
      res.w[0] = 0;
    }
    if (ndigits_total == 0) {
      CX.w[0] = 0;
      CX.w[1] = 0;
    } else if (ndigits_total <= 19) {
      coeff_high = buffer[0] - '0';
      for (i = 1; i < ndigits_total; i++) {
        coeff2 = coeff_high + coeff_high;
        coeff_high = (coeff2 << 2) + coeff2 + buffer[i] - '0';
      }
      CX.w[0] = coeff_high;
      CX.w[1] = 0;
    } else {
      coeff_high = buffer[0] - '0';
      for (i = 1; i < ndigits_total - 17; i++) {
        coeff2 = coeff_high + coeff_high;
        coeff_high = (coeff2 << 2) + coeff2 + buffer[i] - '0';
      }
      coeff_low = buffer[i] - '0';
      i++;
      for (; i < ndigits_total; i++) {
        coeff_l2 = coeff_low + coeff_low;
        coeff_low = (coeff_l2 << 2) + coeff_l2 + buffer[i] - '0';
      }
      // now form the coefficient as coeff_high*10^19+coeff_low+carry
      scale_high = 100000000000000000ull;
      __mul_64x64_to_128_fast (CX, coeff_high, scale_high);

      CX.w[0] += coeff_low;
      if (CX.w[0] < coeff_low)
        CX.w[1]++;
    }
    get_BID128 (&res, sign_x, dec_expon, CX,&rnd_mode,pfpsf);
    BID_RETURN (res);
  } else {
    // simply round using the digits that were read

    dec_expon +=
      ndigits_before + DECIMAL_EXPONENT_BIAS_128 -
      MAX_FORMAT_DIGITS_128 - right_radix_leading_zeros;

    if (dec_expon < 0) {
      res.w[1] = 0 | sign_x;
      res.w[0] = 0;
    }

    coeff_high = buffer[0] - '0';
    for (i = 1; i < MAX_FORMAT_DIGITS_128 - 17; i++) {
      coeff2 = coeff_high + coeff_high;
      coeff_high = (coeff2 << 2) + coeff2 + buffer[i] - '0';
    }
    coeff_low = buffer[i] - '0';
    i++;
    for (; i < MAX_FORMAT_DIGITS_128; i++) {
      coeff_l2 = coeff_low + coeff_low;
      coeff_low = (coeff_l2 << 2) + coeff_l2 + buffer[i] - '0';
    }
	switch(rnd_mode) {
	case ROUNDING_TO_NEAREST:
    carry = ((unsigned) ('4' - buffer[i])) >> 31;
    if ((buffer[i] == '5' && !(coeff_low & 1)) || dec_expon < 0) {
      if (dec_expon >= 0) {
        carry = 0;
        i++;
      }
      for (; i < ndigits_total; i++) {
        if (buffer[i] > '0') {
          carry = 1;
          break;
        }
      }
    }
	break;

	case ROUNDING_DOWN:
		if(sign_x) 
      for (; i < ndigits_total; i++) {
        if (buffer[i] > '0') {
          carry = 1;
          break;
        }
      }
		break;
	case ROUNDING_UP:
		if(!sign_x) 
      for (; i < ndigits_total; i++) {
        if (buffer[i] > '0') {
          carry = 1;
          break;
        }
      }
		break;
	case ROUNDING_TO_ZERO:
		carry=0;
		break;
	case ROUNDING_TIES_AWAY:
    carry = ((unsigned) ('4' - buffer[i])) >> 31;
    if (dec_expon < 0) {
      for (; i < ndigits_total; i++) {
        if (buffer[i] > '0') {
          carry = 1;
          break;
        }
      }
    }
		break;


	}
    // now form the coefficient as coeff_high*10^17+coeff_low+carry
    scale_high = 100000000000000000ull;
    if (dec_expon < 0) {
      if (dec_expon > -MAX_FORMAT_DIGITS_128) {
        scale_high = 1000000000000000000ull;
        coeff_low = (coeff_low << 3) + (coeff_low << 1);
        dec_expon--;
      }
      if (dec_expon == -MAX_FORMAT_DIGITS_128
          && coeff_high > 50000000000000000ull)
        carry = 0; 
    }

    __mul_64x64_to_128_fast (CX, coeff_high, scale_high);

    coeff_low += carry;
    CX.w[0] += coeff_low;
    if (CX.w[0] < coeff_low)
      CX.w[1]++;


    get_BID128(&res, sign_x, dec_expon, CX, &rnd_mode, pfpsf);
    BID_RETURN (res);
  }
}