1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
/* Copyright (C) 2008-2013 Free Software Foundation, Inc.
Contributor: Joern Rennecke <joern.rennecke@embecosm.com>
on behalf of Synopsys Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/*
to calculate a := b/x as b*y, with y := 1/x:
- x is in the range [1..2)
- calculate 15..18 bit inverse y0 using a table of approximating polynoms.
Precision is higher for polynoms used to evaluate input with larger
value.
- Do one newton-raphson iteration step to double the precision,
then multiply this with the divisor
-> more time to decide if dividend is subnormal
- the worst error propagation is on the side of the value range
with the least initial defect, thus giving us about 30 bits precision.
The truncation error for the either is less than 1 + x/2 ulp.
A 31 bit inverse can be simply calculated by using x with implicit 1
and chaining the multiplies. For a 32 bit inverse, we multiply y0^2
with the bare fraction part of x, then add in y0^2 for the implicit
1 of x.
- If calculating a 31 bit inverse, the systematic error is less than
-1 ulp; likewise, for 32 bit, it is less than -2 ulp.
- If we calculate our seed with a 32 bit fraction, we can archive a
tentative result strictly better than -2 / +2.5 (1) ulp/128, i.e. we
only need to take the step to calculate the 2nd stage rest and
rounding adjust 1/32th of the time. However, if we use a 20 bit
fraction for the seed, the negative error can exceed -2 ulp/128, (2)
thus for a simple add / tst check, we need to do the 2nd stage
rest calculation/ rounding adjust 1/16th of the time.
(1): The inexactness of the 32 bit inverse contributes an error in the
range of (-1 .. +(1+x/2) ) ulp/128. Leaving out the low word of the
rest contributes an error < +1/x ulp/128 . In the interval [1,2),
x/2 + 1/x <= 1.5 .
(2): Unless proven otherwise. I have not actually looked for an
example where -2 ulp/128 is exceeded, and my calculations indicate
that the excess, if existent, is less than -1/512 ulp.
??? The algorithm is still based on the ARC700 optimized code.
Maybe we could make better use of 32x16 bit multiply, or 64 bit multiply
results.
*/
#include "../arc-ieee-754.h"
#define mlo acc2
#define mhi acc1
#define mul64(b,c) mullw 0,b,c` machlw 0,b,c
#define mulu64(b,c) mululw 0,b,c` machulw 0,b,c
/* N.B. fp-bit.c does double rounding on denormal numbers. */
#if 0 /* DEBUG */
.global __divdf3
FUNC(__divdf3)
.balign 4
__divdf3:
push_s blink
push_s r2
push_s r3
push_s r0
bl.d __divdf3_c
push_s r1
ld_s r2,[sp,12]
ld_s r3,[sp,8]
st_s r0,[sp,12]
st_s r1,[sp,8]
pop_s r1
bl.d __divdf3_asm
pop_s r0
pop_s r3
pop_s r2
pop_s blink
cmp r0,r2
cmp.eq r1,r3
jeq_s [blink]
and r12,DBL0H,DBL1H
bic.f 0,0x7ff80000,r12 ; both NaN -> OK
jeq_s [blink]
bl abort
ENDFUNC(__divdf3)
#define __divdf3 __divdf3_asm
#endif /* DEBUG */
FUNC(__divdf3)
.balign 4
.L7ff00000:
.long 0x7ff00000
.Ldivtab:
.long 0xfc0fffe1
.long 0xf46ffdfb
.long 0xed1ffa54
.long 0xe61ff515
.long 0xdf7fee75
.long 0xd91fe680
.long 0xd2ffdd52
.long 0xcd1fd30c
.long 0xc77fc7cd
.long 0xc21fbbb6
.long 0xbcefaec0
.long 0xb7efa100
.long 0xb32f92bf
.long 0xae8f83b7
.long 0xaa2f7467
.long 0xa5ef6479
.long 0xa1cf53fa
.long 0x9ddf433e
.long 0x9a0f3216
.long 0x965f2091
.long 0x92df0f11
.long 0x8f6efd05
.long 0x8c1eeacc
.long 0x88eed876
.long 0x85dec615
.long 0x82eeb3b9
.long 0x800ea10b
.long 0x7d3e8e0f
.long 0x7a8e7b3f
.long 0x77ee6836
.long 0x756e5576
.long 0x72fe4293
.long 0x709e2f93
.long 0x6e4e1c7f
.long 0x6c0e095e
.long 0x69edf6c5
.long 0x67cde3a5
.long 0x65cdd125
.long 0x63cdbe25
.long 0x61ddab3f
.long 0x600d991f
.long 0x5e3d868c
.long 0x5c6d7384
.long 0x5abd615f
.long 0x590d4ecd
.long 0x576d3c83
.long 0x55dd2a89
.long 0x545d18e9
.long 0x52dd06e9
.long 0x516cf54e
.long 0x4ffce356
.long 0x4e9cd1ce
.long 0x4d3cbfec
.long 0x4becae86
.long 0x4aac9da4
.long 0x496c8c73
.long 0x483c7bd3
.long 0x470c6ae8
.long 0x45dc59af
.long 0x44bc4915
.long 0x43ac3924
.long 0x428c27fb
.long 0x418c187a
.long 0x407c07bd
__divdf3_support: /* This label makes debugger output saner. */
.balign 4
.Ldenorm_dbl1:
brge r6, \
0x43500000,.Linf_NaN ; large number / denorm -> Inf
bmsk.f r12,DBL1H,19
mov.eq r12,DBL1L
mov.eq DBL1L,0
sub.eq r7,r7,32
norm.f r11,r12 ; flag for x/0 -> Inf check
beq_s .Linf_NaN
mov.mi r11,0
add.pl r11,r11,1
add_s r12,r12,r12
asl r8,r12,r11
rsub r12,r11,31
lsr r12,DBL1L,r12
tst_s DBL1H,DBL1H
or r8,r8,r12
lsr r4,r8,26
lsr DBL1H,r8,12
ld.as r4,[r10,r4]
bxor.mi DBL1H,DBL1H,31
sub r11,r11,11
asl DBL1L,DBL1L,r11
sub r11,r11,1
mulu64 (r4,r8)
sub r7,r7,r11
b.d .Lpast_denorm_dbl1
asl r7,r7,20
.Linf_NaN:
tst_s DBL0L,DBL0L ; 0/0 -> NaN
xor_s DBL1H,DBL1H,DBL0H
bclr.eq.f DBL0H,DBL0H,31
bmsk DBL0H,DBL1H,30
xor_s DBL0H,DBL0H,DBL1H
sub.eq DBL0H,DBL0H,1
mov_s DBL0L,0
j_s.d [blink]
or DBL0H,DBL0H,r9
.balign 4
.Lret0_2:
xor_s DBL1H,DBL1H,DBL0H
mov_s DBL0L,0
bmsk DBL0H,DBL1H,30
j_s.d [blink]
xor_s DBL0H,DBL0H,DBL1H
.balign 4
.global __divdf3
/* N.B. the spacing between divtab and the sub3 to get its address must
be a multiple of 8. */
__divdf3:
asl r8,DBL1H,12
lsr r4,r8,26
sub3 r10,pcl,51;(.-.Ldivtab) >> 3
ld.as r9,[pcl,-104]; [pcl,(-((.-.L7ff00000) >> 2))] ; 0x7ff00000
ld.as r4,[r10,r4]
lsr r12,DBL1L,20
and.f r7,DBL1H,r9
or r8,r8,r12
mulu64 (r4,r8)
beq.d .Ldenorm_dbl1
.Lpast_denorm_dbl1:
and.f r6,DBL0H,r9
breq.d r7,r9,.Linf_nan_dbl1
asl r4,r4,12
sub r4,r4,mhi
mululw 0,r4,r4
machulw r5,r4,r4
bne.d .Lnormal_dbl0
lsr r8,r8,1
.balign 4
.Ldenorm_dbl0:
bmsk.f r12,DBL0H,19
; wb stall
mov.eq r12,DBL0L
sub.eq r6,r6,32
norm.f r11,r12 ; flag for 0/x -> 0 check
brge r7, \
0x43500000, .Lret0_2 ; denorm/large number -> 0
beq_s .Lret0_2
mov.mi r11,0
add.pl r11,r11,1
asl r12,r12,r11
sub r6,r6,r11
add.f 0,r6,31
lsr r10,DBL0L,r6
mov.mi r10,0
add r6,r6,11+32
neg.f r11,r6
asl DBL0L,DBL0L,r11
mov.pl DBL0L,0
sub r6,r6,32-1
b.d .Lpast_denorm_dbl0
asl r6,r6,20
.balign 4
.Linf_nan_dbl1: ; 0/Inf -> NaN Inf/Inf -> NaN x/Inf-> 0 x/NaN -> NaN
or.f 0,r6,DBL0L
cmp.ne r6,r9
not_s DBL0L,DBL1H
sub_s.ne DBL0L,DBL0L,DBL0L
tst_s DBL0H,DBL0H
add_s DBL0H,DBL1H,DBL0L
j_s.d [blink]
bxor.mi DBL0H,DBL0H,31
.balign 4
.Lnormal_dbl0:
breq.d r6,r9,.Linf_nan_dbl0
asl r12,DBL0H,11
lsr r10,DBL0L,21
.Lpast_denorm_dbl0:
bset r8,r8,31
mulu64 (r5,r8)
add_s r12,r12,r10
bset r5,r12,31
cmp r5,r8
cmp.eq DBL0L,DBL1L
lsr.cc r5,r5,1
sub r4,r4,mhi ; u1.31 inverse, about 30 bit
mululw 0,r5,r4
machulw r11,r5,r4 ; result fraction highpart
lsr r8,r8,2 ; u3.29
add r5,r6, /* wait for immediate */ \
0x3fe00000
mulu64 (r11,r8) ; u-28.31
asl_s DBL1L,DBL1L,9 ; u-29.23:9
sbc r6,r5,r7
mov r12,mlo ; u-28.31
mulu64 (r11,DBL1L) ; mhi: u-28.23:9
add.cs DBL0L,DBL0L,DBL0L
asl_s DBL0L,DBL0L,6 ; u-26.25:7
asl r10,r11,23
sub_l DBL0L,DBL0L,r12
lsr r7,r11,9
sub r5,DBL0L,mhi ; rest msw ; u-26.31:0
mul64 (r5,r4) ; mhi: result fraction lowpart
xor.f 0,DBL0H,DBL1H
and DBL0H,r6,r9
add_s DBL0H,DBL0H,r7
bclr r12,r9,20 ; 0x7fe00000
brhs.d r6,r12,.Linf_denorm
bxor.mi DBL0H,DBL0H,31
add.f r12,mhi,0x11
asr r9,r12,5
sub.mi DBL0H,DBL0H,1
add.f DBL0L,r9,r10
tst r12,0x1c
jne.d [blink]
add.cs DBL0H,DBL0H,1
/* work out exact rounding if we fall through here. */
/* We know that the exact result cannot be represented in double
precision. Find the mid-point between the two nearest
representable values, multiply with the divisor, and check if
the result is larger than the dividend. Since we want to know
only the sign bit, it is sufficient to calculate only the
highpart of the lower 64 bits. */
mulu64 (r11,DBL1L) ; rest before considering r12 in r5 : -mlo
sub.f DBL0L,DBL0L,1
asl r12,r9,2 ; u-22.30:2
sub.cs DBL0H,DBL0H,1
sub.f r12,r12,2
mov r10,mlo ; rest before considering r12 in r5 : -r10
mululw 0,r12,DBL1L
machulw r7,r12,DBL1L ; mhi: u-51.32
asl r5,r5,25 ; s-51.7:25
lsr r10,r10,7 ; u-51.30:2
mulu64 (r12,r8) ; mlo: u-51.31:1
sub r5,r5,r10
add.mi r5,r5,DBL1L ; signed multiply adjust for r12*DBL1L
bset r7,r7,0 ; make sure that the result is not zero, and that
sub r5,r5,r7 ; a highpart zero appears negative
sub.f r5,r5,mlo ; rest msw
add.pl.f DBL0L,DBL0L,1
j_s.d [blink]
add.eq DBL0H,DBL0H,1
.Linf_nan_dbl0:
tst_s DBL1H,DBL1H
j_s.d [blink]
bxor.mi DBL0H,DBL0H,31
.balign 4
.Linf_denorm:
lsr r12,r6,28
brlo.d r12,0xc,.Linf
.Ldenorm:
asr r6,r6,20
neg r9,r6
mov_s DBL0H,0
brhs.d r9,54,.Lret0
bxor.mi DBL0H,DBL0H,31
add r12,mhi,1
and r12,r12,-4
rsub r7,r6,5
asr r10,r12,28
bmsk r4,r12,27
min r7,r7,31
asr DBL0L,r4,r7
add DBL1H,r11,r10
abs.f r10,r4
sub.mi r10,r10,1
add.f r7,r6,32-5
asl r4,r4,r7
mov.mi r4,r10
add.f r10,r6,23
rsub r7,r6,9
lsr r7,DBL1H,r7
asl r10,DBL1H,r10
or.pnz DBL0H,DBL0H,r7
or.mi r4,r4,r10
mov.mi r10,r7
add.f DBL0L,r10,DBL0L
add.cs.f DBL0H,DBL0H,1 ; carry clear after this point
bxor.f 0,r4,31
add.pnz.f DBL0L,DBL0L,1
add.cs.f DBL0H,DBL0H,1
jne_s [blink]
/* Calculation so far was not conclusive; calculate further rest. */
mulu64 (r11,DBL1L) ; rest before considering r12 in r5 : -mlo
asr.f r12,r12,3
asl r5,r5,25 ; s-51.7:25
mov r11,mlo ; rest before considering r12 in r5 : -r11
mulu64 (r12,r8) ; u-51.31:1
and r9,DBL0L,1 ; tie-breaker: round to even
lsr r11,r11,7 ; u-51.30:2
mov DBL1H,mlo ; u-51.31:1
mulu64 (r12,DBL1L) ; u-51.62:2
sub.mi r11,r11,DBL1L ; signed multiply adjust for r12*DBL1L
add_s DBL1H,DBL1H,r11
sub DBL1H,DBL1H,r5 ; -rest msw
add_s DBL1H,DBL1H,mhi ; -rest msw
add.f 0,DBL1H,DBL1H ; can't ror.f by 32 :-(
tst_s DBL1H,DBL1H
cmp.eq mlo,r9
add.cs.f DBL0L,DBL0L,1
j_s.d [blink]
add.cs DBL0H,DBL0H,1
.Lret0:
/* return +- 0 */
j_s.d [blink]
mov_s DBL0L,0
.Linf:
mov_s DBL0H,r9
mov_s DBL0L,0
j_s.d [blink]
bxor.mi DBL0H,DBL0H,31
ENDFUNC(__divdf3)
|