summaryrefslogtreecommitdiff
path: root/libffi/src/x86/ffi64.c
blob: 653d45c243a8da71cba4c1b751fb43edbe838204 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
/* -----------------------------------------------------------------------
   ffi.c - Copyright (c) 2002  Bo Thorsen <bo@suse.de>
   
   x86-64 Foreign Function Interface 

   Permission is hereby granted, free of charge, to any person obtaining
   a copy of this software and associated documentation files (the
   ``Software''), to deal in the Software without restriction, including
   without limitation the rights to use, copy, modify, merge, publish,
   distribute, sublicense, and/or sell copies of the Software, and to
   permit persons to whom the Software is furnished to do so, subject to
   the following conditions:

   The above copyright notice and this permission notice shall be included
   in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
   IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
   OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
   ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
   OTHER DEALINGS IN THE SOFTWARE.
   ----------------------------------------------------------------------- */

#include <ffi.h>
#include <ffi_common.h>

#include <stdlib.h>
#include <stdarg.h>

/* ffi_prep_args is called by the assembly routine once stack space
   has been allocated for the function's arguments */

#ifdef __x86_64__

#define MAX_GPR_REGS 6
#define MAX_SSE_REGS 8
typedef struct
{
  /* Registers for argument passing.  */
  long gpr[MAX_GPR_REGS];
  __int128_t sse[MAX_SSE_REGS];

  /* Stack space for arguments.  */
  char argspace[0];
} stackLayout;

/* All reference to register classes here is identical to the code in
   gcc/config/i386/i386.c. Do *not* change one without the other.  */

/* Register class used for passing given 64bit part of the argument.
   These represent classes as documented by the PS ABI, with the exception
   of SSESF, SSEDF classes, that are basically SSE class, just gcc will
   use SF or DFmode move instead of DImode to avoid reformating penalties.

   Similary we play games with INTEGERSI_CLASS to use cheaper SImode moves
   whenever possible (upper half does contain padding).
 */
enum x86_64_reg_class
  {
    X86_64_NO_CLASS,
    X86_64_INTEGER_CLASS,
    X86_64_INTEGERSI_CLASS,
    X86_64_SSE_CLASS,
    X86_64_SSESF_CLASS,
    X86_64_SSEDF_CLASS,
    X86_64_SSEUP_CLASS,
    X86_64_X87_CLASS,
    X86_64_X87UP_CLASS,
    X86_64_MEMORY_CLASS
  };

#define MAX_CLASSES 4

/* x86-64 register passing implementation.  See x86-64 ABI for details.  Goal
   of this code is to classify each 8bytes of incoming argument by the register
   class and assign registers accordingly.  */

/* Return the union class of CLASS1 and CLASS2.
   See the x86-64 PS ABI for details.  */

static enum x86_64_reg_class
merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
{
  /* Rule #1: If both classes are equal, this is the resulting class.  */
  if (class1 == class2)
    return class1;

  /* Rule #2: If one of the classes is NO_CLASS, the resulting class is
     the other class.  */
  if (class1 == X86_64_NO_CLASS)
    return class2;
  if (class2 == X86_64_NO_CLASS)
    return class1;

  /* Rule #3: If one of the classes is MEMORY, the result is MEMORY.  */
  if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
    return X86_64_MEMORY_CLASS;

  /* Rule #4: If one of the classes is INTEGER, the result is INTEGER.  */
  if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
      || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
    return X86_64_INTEGERSI_CLASS;
  if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
      || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
    return X86_64_INTEGER_CLASS;

  /* Rule #5: If one of the classes is X87 or X87UP class, MEMORY is used.  */
  if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
      || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
    return X86_64_MEMORY_CLASS;

  /* Rule #6: Otherwise class SSE is used.  */
  return X86_64_SSE_CLASS;
}

/* Classify the argument of type TYPE and mode MODE.
   CLASSES will be filled by the register class used to pass each word
   of the operand.  The number of words is returned.  In case the parameter
   should be passed in memory, 0 is returned. As a special case for zero
   sized containers, classes[0] will be NO_CLASS and 1 is returned.

   See the x86-64 PS ABI for details.
*/
static int
classify_argument (ffi_type *type, enum x86_64_reg_class classes[],
		   int *byte_offset)
{
  /* First, align to the right place.  */
  *byte_offset = ALIGN(*byte_offset, type->alignment);

  switch (type->type)
    {
    case FFI_TYPE_UINT8:
    case FFI_TYPE_SINT8:
    case FFI_TYPE_UINT16:
    case FFI_TYPE_SINT16:
    case FFI_TYPE_UINT32:
    case FFI_TYPE_SINT32:
    case FFI_TYPE_UINT64:
    case FFI_TYPE_SINT64:
    case FFI_TYPE_POINTER:
      if (((*byte_offset) % 8 + type->size) <= 4)
	classes[0] = X86_64_INTEGERSI_CLASS;
      else
	classes[0] = X86_64_INTEGER_CLASS;
      return 1;
    case FFI_TYPE_FLOAT:
      if (((*byte_offset) % 8) == 0)
	classes[0] = X86_64_SSESF_CLASS;
      else
	classes[0] = X86_64_SSE_CLASS;
      return 1;
    case FFI_TYPE_DOUBLE:
      classes[0] = X86_64_SSEDF_CLASS;
      return 1;
    case FFI_TYPE_LONGDOUBLE:
      classes[0] = X86_64_X87_CLASS;
      classes[1] = X86_64_X87UP_CLASS;
      return 2;
    case FFI_TYPE_STRUCT:
      {
	const int UNITS_PER_WORD = 8;
	int words = (type->size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
	ffi_type **ptr; 
	int i;
	enum x86_64_reg_class subclasses[MAX_CLASSES];

	/* If the struct is larger than 16 bytes, pass it on the stack.  */
	if (type->size > 16)
	  return 0;

	for (i = 0; i < words; i++)
	  classes[i] = X86_64_NO_CLASS;

	/* Merge the fields of structure.  */
	for (ptr=type->elements; (*ptr)!=NULL; ptr++)
	  {
	    int num;

	    num = classify_argument (*ptr, subclasses, byte_offset);
	    if (num == 0)
	      return 0;
	    for (i = 0; i < num; i++)
	      {
		int pos = *byte_offset / 8;
		classes[i + pos] =
		  merge_classes (subclasses[i], classes[i + pos]);
	      }

	    if ((*ptr)->type != FFI_TYPE_STRUCT)
	      *byte_offset += (*ptr)->size;
	  }

	/* Final merger cleanup.  */
	for (i = 0; i < words; i++)
	  {
	    /* If one class is MEMORY, everything should be passed in
	       memory.  */
	    if (classes[i] == X86_64_MEMORY_CLASS)
	      return 0;

	    /* The X86_64_SSEUP_CLASS should be always preceded by
	       X86_64_SSE_CLASS.  */
	    if (classes[i] == X86_64_SSEUP_CLASS
		&& (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
	      classes[i] = X86_64_SSE_CLASS;

	    /*  X86_64_X87UP_CLASS should be preceded by X86_64_X87_CLASS.  */
	    if (classes[i] == X86_64_X87UP_CLASS
		&& (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
	      classes[i] = X86_64_SSE_CLASS;
	  }
	return words;
      }

    default:
      FFI_ASSERT(0);
    }
  return 0; /* Never reached.  */
}

/* Examine the argument and return set number of register required in each
   class.  Return 0 iff parameter should be passed in memory.  */
static int
examine_argument (ffi_type *type, int in_return, int *int_nregs,int *sse_nregs)
{
  enum x86_64_reg_class class[MAX_CLASSES];
  int offset = 0;
  int n;

  n = classify_argument (type, class, &offset);

  if (n == 0)
    return 0;

  *int_nregs = 0;
  *sse_nregs = 0;
  for (n--; n>=0; n--)
    switch (class[n])
      {
      case X86_64_INTEGER_CLASS:
      case X86_64_INTEGERSI_CLASS:
	(*int_nregs)++;
	break;
      case X86_64_SSE_CLASS:
      case X86_64_SSESF_CLASS:
      case X86_64_SSEDF_CLASS:
	(*sse_nregs)++;
	break;
      case X86_64_NO_CLASS:
      case X86_64_SSEUP_CLASS:
	break;
      case X86_64_X87_CLASS:
      case X86_64_X87UP_CLASS:
	if (!in_return)
	  return 0;
	break;
      default:
	abort ();
      }
  return 1;
}

/* Functions to load floats and double to an SSE register placeholder.  */
extern void float2sse (float, __int128_t *);
extern void double2sse (double, __int128_t *);
extern void floatfloat2sse (void *, __int128_t *);

/* Functions to put the floats and doubles back.  */
extern float sse2float (__int128_t *);
extern double sse2double (__int128_t *);
extern void sse2floatfloat(__int128_t *, void *);

/*@-exportheader@*/
void
ffi_prep_args (stackLayout *stack, extended_cif *ecif)
/*@=exportheader@*/
{
  int gprcount, ssecount, i, g, s;
  void **p_argv;
  void *argp = &stack->argspace;
  ffi_type **p_arg;

  /* First check if the return value should be passed in memory. If so,
     pass the pointer as the first argument.  */
  gprcount = ssecount = 0;
  if (ecif->cif->rtype->type != FFI_TYPE_VOID 
      && examine_argument (ecif->cif->rtype, 1, &g, &s) == 0)
    stack->gpr[gprcount++] = (long) ecif->rvalue;

  for (i=ecif->cif->nargs, p_arg=ecif->cif->arg_types, p_argv = ecif->avalue;
       i!=0; i--, p_arg++, p_argv++)
    {
      int in_register = 0;

      switch ((*p_arg)->type)
	{
	case FFI_TYPE_SINT8:
	case FFI_TYPE_SINT16:
	case FFI_TYPE_SINT32:
	case FFI_TYPE_SINT64:
	case FFI_TYPE_UINT8:
	case FFI_TYPE_UINT16:
	case FFI_TYPE_UINT32:
	case FFI_TYPE_UINT64:
	case FFI_TYPE_POINTER:
	  if (gprcount < MAX_GPR_REGS)
	    {
	      stack->gpr[gprcount] = 0;
	      stack->gpr[gprcount++] = *(long long *)(*p_argv);
	      in_register = 1;
	    }
	  break;

	case FFI_TYPE_FLOAT:
	  if (ssecount < MAX_SSE_REGS)
	    {
	      float2sse (*(float *)(*p_argv), &stack->sse[ssecount++]);
	      in_register = 1;
	    }
	  break;

	case FFI_TYPE_DOUBLE:
	  if (ssecount < MAX_SSE_REGS)
	    {
	      double2sse (*(double *)(*p_argv), &stack->sse[ssecount++]);
	      in_register = 1;
	    }
	  break;
	}

      if (in_register)
	continue;

      /* Either all places in registers where filled, or this is a
	 type that potentially goes into a memory slot.  */
      if (examine_argument (*p_arg, 0, &g, &s) == 0
	  || gprcount + g > MAX_GPR_REGS || ssecount + s > MAX_SSE_REGS)
	{
	  /* Pass this argument in memory.  */
	  argp = (void *)ALIGN(argp, (*p_arg)->alignment);
	  /* Stack arguments are *always* at least 8 byte aligned.  */
	  argp = (void *)ALIGN(argp, 8);
	  memcpy (argp, *p_argv, (*p_arg)->size);
	  argp += (*p_arg)->size;
	}
      else
	{
	  /* All easy cases are eliminated. Now fire the big guns.  */

	  enum x86_64_reg_class classes[MAX_CLASSES];
	  int offset = 0, j, num;
	  void *a;

	  num = classify_argument (*p_arg, classes, &offset);
	  for (j=0, a=*p_argv; j<num; j++, a+=8)
	    {
	      switch (classes[j])
		{
		case X86_64_INTEGER_CLASS:
		case X86_64_INTEGERSI_CLASS:
		  stack->gpr[gprcount++] = *(long long *)a;
		  break;
		case X86_64_SSE_CLASS:
		  floatfloat2sse (a, &stack->sse[ssecount++]);
		  break;
		case X86_64_SSESF_CLASS:
		  float2sse (*(float *)a, &stack->sse[ssecount++]);
		  break;
		case X86_64_SSEDF_CLASS:
		  double2sse (*(double *)a, &stack->sse[ssecount++]);
		  break;
		default:
		  abort();
		}
	    }
	}
    }
}

/* Perform machine dependent cif processing.  */
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
  int gprcount, ssecount, i, g, s;

  gprcount = ssecount = 0;

  /* Reset the byte count. We handle this size estimation here.  */
  cif->bytes = 0;

  /* If the return value should be passed in memory, pass the pointer
     as the first argument. The actual memory isn't allocated here.  */
  if (cif->rtype->type != FFI_TYPE_VOID 
      && examine_argument (cif->rtype, 1, &g, &s) == 0)
    gprcount = 1;

  /* Go over all arguments and determine the way they should be passed.
     If it's in a register and there is space for it, let that be so. If
     not, add it's size to the stack byte count.  */
  for (i=0; i<cif->nargs; i++)
    {
      if (examine_argument (cif->arg_types[i], 0, &g, &s) == 0
	  || gprcount + g > MAX_GPR_REGS || ssecount + s > MAX_SSE_REGS)
	{
	  /* This is passed in memory. First align to the basic type.  */
	  cif->bytes = ALIGN(cif->bytes, cif->arg_types[i]->alignment);

	  /* Stack arguments are *always* at least 8 byte aligned.  */
	  cif->bytes = ALIGN(cif->bytes, 8);

	  /* Now add the size of this argument.  */
	  cif->bytes += cif->arg_types[i]->size;
	}
      else
	{
	  gprcount += g;
	  ssecount += s;
	}
    }

  /* Set the flag for the closures return.  */
    switch (cif->rtype->type)
    {
    case FFI_TYPE_VOID:
    case FFI_TYPE_STRUCT:
    case FFI_TYPE_SINT64:
    case FFI_TYPE_FLOAT:
    case FFI_TYPE_DOUBLE:
    case FFI_TYPE_LONGDOUBLE:
      cif->flags = (unsigned) cif->rtype->type;
      break;

    case FFI_TYPE_UINT64:
      cif->flags = FFI_TYPE_SINT64;
      break;

    default:
      cif->flags = FFI_TYPE_INT;
      break;
    }

  return FFI_OK;
}

typedef struct
{
  long gpr[2];
  __int128_t sse[2];
  long double st0;
} return_value;

void
ffi_fill_return_value (return_value *rv, extended_cif *ecif)
{
  enum x86_64_reg_class classes[MAX_CLASSES];
  int i = 0, num;
  long *gpr = rv->gpr;
  __int128_t *sse = rv->sse;
  signed char sc;
  signed short ss;

  /* This is needed because of the way x86-64 handles signed short
     integers.  */
  switch (ecif->cif->rtype->type)
    {
    case FFI_TYPE_SINT8:
      sc = *(signed char *)gpr;
      *(long long *)ecif->rvalue = (long long)sc;
      return;
    case FFI_TYPE_SINT16:
      ss = *(signed short *)gpr;
      *(long long *)ecif->rvalue = (long long)ss;
      return;
    default:
      /* Just continue.  */
      ;
    }

  num = classify_argument (ecif->cif->rtype, classes, &i);

  if (num == 0)
    /* Return in memory.  */
    ecif->rvalue = (void *) rv->gpr[0];
  else if (num == 2 && classes[0] == X86_64_X87_CLASS &&
	classes[1] == X86_64_X87UP_CLASS)
    /* This is a long double (this is easiest to handle this way instead
       of an eightbyte at a time as in the loop below.  */
    *((long double *)ecif->rvalue) = rv->st0;
  else
    {
      void *a;

      for (i=0, a=ecif->rvalue; i<num; i++, a+=8)
	{
	  switch (classes[i])
	    {
	    case X86_64_INTEGER_CLASS:
	    case X86_64_INTEGERSI_CLASS:
	      *(long long *)a = *gpr;
	      gpr++;
	      break;
	    case X86_64_SSE_CLASS:
	      sse2floatfloat (sse++, a);
	      break;
	    case X86_64_SSESF_CLASS:
	      *(float *)a = sse2float (sse++);
	      break;
	    case X86_64_SSEDF_CLASS:
	      *(double *)a = sse2double (sse++);
	      break;
	    default:
	      abort();
	    }
	}
    }
}

/*@-declundef@*/
/*@-exportheader@*/
extern void ffi_call_UNIX64(void (*)(stackLayout *, extended_cif *),
			    void (*) (return_value *, extended_cif *),
			    /*@out@*/ extended_cif *, 
			    unsigned, /*@out@*/ unsigned *, void (*fn)());
/*@=declundef@*/
/*@=exportheader@*/

void ffi_call(/*@dependent@*/ ffi_cif *cif, 
	      void (*fn)(), 
	      /*@out@*/ void *rvalue, 
	      /*@dependent@*/ void **avalue)
{
  extended_cif ecif;
  int dummy;

  ecif.cif = cif;
  ecif.avalue = avalue;
  
  /* If the return value is a struct and we don't have a return	*/
  /* value address then we need to make one		        */

  if ((rvalue == NULL) && 
      (examine_argument (cif->rtype, 1, &dummy, &dummy) == 0))
    {
      /*@-sysunrecog@*/
      ecif.rvalue = alloca(cif->rtype->size);
      /*@=sysunrecog@*/
    }
  else
    ecif.rvalue = rvalue;
    
  /* Stack must always be 16byte aligned. Make it so.  */
  cif->bytes = ALIGN(cif->bytes, 16);
  
  switch (cif->abi) 
    {
    case FFI_SYSV:
      /* Calling 32bit code from 64bit is not possible  */
      FFI_ASSERT(0);
      break;

    case FFI_UNIX64:
      /*@-usedef@*/
      ffi_call_UNIX64 (ffi_prep_args, ffi_fill_return_value, &ecif,
		       cif->bytes, ecif.rvalue, fn);
      /*@=usedef@*/
      break;

    default:
      FFI_ASSERT(0);
      break;
    }
}

extern void ffi_closure_UNIX64(void);

ffi_status
ffi_prep_closure (ffi_closure* closure,
		  ffi_cif* cif,
		  void (*fun)(ffi_cif*, void*, void**, void*),
		  void *user_data)
{
  volatile unsigned short *tramp;

  /* FFI_ASSERT (cif->abi == FFI_OSF);  */

  tramp = (volatile unsigned short *) &closure->tramp[0];
  tramp[0] = 0xbb49;		/* mov <code>, %r11	*/
  tramp[5] = 0xba49;		/* mov <data>, %r10	*/
  tramp[10] = 0xff49;		/* jmp *%r11	*/
  tramp[11] = 0x00e3;
  *(void * volatile *) &tramp[1] = ffi_closure_UNIX64;
  *(void * volatile *) &tramp[6] = closure;

  closure->cif = cif;
  closure->fun = fun;
  closure->user_data = user_data;

  return FFI_OK;
}

int
ffi_closure_UNIX64_inner(ffi_closure *closure, va_list l, void *rp)
{
  ffi_cif *cif;
  void **avalue;
  ffi_type **arg_types;
  long i, avn, argn;

  cif = closure->cif;
  avalue = alloca(cif->nargs * sizeof(void *));

  argn = 0;

  i = 0;
  avn = cif->nargs;
  arg_types = cif->arg_types;
  
  /* Grab the addresses of the arguments from the stack frame.  */
  while (i < avn)
    {
      switch (arg_types[i]->type)
	{
	case FFI_TYPE_SINT8:
	case FFI_TYPE_UINT8:
	case FFI_TYPE_SINT16:
	case FFI_TYPE_UINT16:
	case FFI_TYPE_SINT32:
	case FFI_TYPE_UINT32:
	case FFI_TYPE_SINT64:
	case FFI_TYPE_UINT64:
	case FFI_TYPE_POINTER:
	  {
	    if (l->gp_offset > 48-8)
	      {
		avalue[i] = l->overflow_arg_area;
		l->overflow_arg_area = (char *)l->overflow_arg_area + 8;
	      }
	    else
	      {
		avalue[i] = (char *)l->reg_save_area + l->gp_offset;
		l->gp_offset += 8;
	      }
	  }
	  break;

	case FFI_TYPE_STRUCT:
	  /* FIXME  */
	  FFI_ASSERT(0);
	  break;

	case FFI_TYPE_DOUBLE:
	  {
	    if (l->fp_offset > 176-16)
	      {
		avalue[i] = l->overflow_arg_area;
		l->overflow_arg_area = (char *)l->overflow_arg_area + 8;
	      }
	    else
	      {
		avalue[i] = (char *)l->reg_save_area + l->fp_offset;
		l->fp_offset += 16;
	      }
	  }
#if DEBUG_FFI
	  fprintf (stderr, "double arg %d = %g\n", i, *(double *)avalue[i]);
#endif
	  break;
	  
	case FFI_TYPE_FLOAT:
	  {
	    if (l->fp_offset > 176-16)
	      {
		avalue[i] = l->overflow_arg_area;
		l->overflow_arg_area = (char *)l->overflow_arg_area + 8;
	      }
	    else
	      {
		avalue[i] = (char *)l->reg_save_area + l->fp_offset;
		l->fp_offset += 16;
	      }
	  }
#if DEBUG_FFI
	  fprintf (stderr, "float arg %d = %g\n", i, *(float *)avalue[i]);
#endif
	  break;
	  
	default:
	  FFI_ASSERT(0);
	}

      argn += ALIGN(arg_types[i]->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
      i++;
    }

  /* Invoke the closure.  */
  (closure->fun) (cif, rp, avalue, closure->user_data);

  /* FIXME: Structs not supported.  */
  FFI_ASSERT(cif->rtype->type != FFI_TYPE_STRUCT);

  /* Tell ffi_closure_UNIX64 how to perform return type promotions.  */

  return cif->rtype->type;
}
#endif /* ifndef __x86_64__ */