summaryrefslogtreecommitdiff
path: root/libffi/src/arm/ffi.c
blob: 9c8732d158cd1573544e095cd5e568e7c4a1e9f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
/* -----------------------------------------------------------------------
   ffi.c - Copyright (c) 2011 Timothy Wall
           Copyright (c) 2011 Plausible Labs Cooperative, Inc.
           Copyright (c) 2011 Anthony Green
	   Copyright (c) 2011 Free Software Foundation
           Copyright (c) 1998, 2008, 2011  Red Hat, Inc.

   ARM Foreign Function Interface

   Permission is hereby granted, free of charge, to any person obtaining
   a copy of this software and associated documentation files (the
   ``Software''), to deal in the Software without restriction, including
   without limitation the rights to use, copy, modify, merge, publish,
   distribute, sublicense, and/or sell copies of the Software, and to
   permit persons to whom the Software is furnished to do so, subject to
   the following conditions:

   The above copyright notice and this permission notice shall be included
   in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
   NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
   HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
   WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
   DEALINGS IN THE SOFTWARE.
   ----------------------------------------------------------------------- */

#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include "internal.h"

/* Forward declares. */
static int vfp_type_p (const ffi_type *);
static void layout_vfp_args (ffi_cif *);

static void *
ffi_align (ffi_type *ty, void *p)
{
  /* Align if necessary */
  size_t alignment;
#ifdef _WIN32_WCE
  alignment = 4;
#else
  alignment = ty->alignment;
  if (alignment < 4)
    alignment = 4;
#endif
  return (void *) ALIGN (p, alignment);
}

static size_t
ffi_put_arg (ffi_type *ty, void *src, void *dst)
{
  size_t z = ty->size;

  switch (ty->type)
    {
    case FFI_TYPE_SINT8:
      *(UINT32 *)dst = *(SINT8 *)src;
      break;
    case FFI_TYPE_UINT8:
      *(UINT32 *)dst = *(UINT8 *)src;
      break;
    case FFI_TYPE_SINT16:
      *(UINT32 *)dst = *(SINT16 *)src;
      break;
    case FFI_TYPE_UINT16:
      *(UINT32 *)dst = *(UINT16 *)src;
      break;

    case FFI_TYPE_INT:
    case FFI_TYPE_SINT32:
    case FFI_TYPE_UINT32:
    case FFI_TYPE_POINTER:
    case FFI_TYPE_FLOAT:
      *(UINT32 *)dst = *(UINT32 *)src;
      break;

    case FFI_TYPE_SINT64:
    case FFI_TYPE_UINT64:
    case FFI_TYPE_DOUBLE:
      *(UINT64 *)dst = *(UINT64 *)src;
      break;

    case FFI_TYPE_STRUCT:
    case FFI_TYPE_COMPLEX:
      memcpy (dst, src, z);
      break;

    default:
      abort();
    }

  return ALIGN (z, 4);
}

/* ffi_prep_args is called once stack space has been allocated
   for the function's arguments.

   The vfp_space parameter is the load area for VFP regs, the return
   value is cif->vfp_used (word bitset of VFP regs used for passing
   arguments). These are only used for the VFP hard-float ABI.
*/
static void
ffi_prep_args_SYSV (ffi_cif *cif, int flags, void *rvalue,
		    void **avalue, char *argp)
{
  ffi_type **arg_types = cif->arg_types;
  int i, n;

  if (flags == ARM_TYPE_STRUCT)
    {
      *(void **) argp = rvalue;
      argp += 4;
    }

  for (i = 0, n = cif->nargs; i < n; i++)
    {
      ffi_type *ty = arg_types[i];
      argp = ffi_align (ty, argp);
      argp += ffi_put_arg (ty, avalue[i], argp);
    }
}

static void
ffi_prep_args_VFP (ffi_cif *cif, int flags, void *rvalue,
                   void **avalue, char *stack, char *vfp_space)
{
  ffi_type **arg_types = cif->arg_types;
  int i, n, vi = 0;
  char *argp, *regp, *eo_regp;
  char stack_used = 0;
  char done_with_regs = 0;

  /* The first 4 words on the stack are used for values
     passed in core registers.  */
  regp = stack;
  eo_regp = argp = regp + 16;

  /* If the function returns an FFI_TYPE_STRUCT in memory,
     that address is passed in r0 to the function.  */
  if (flags == ARM_TYPE_STRUCT)
    {
      *(void **) regp = rvalue;
      regp += 4;
    }

  for (i = 0, n = cif->nargs; i < n; i++)
    {
      ffi_type *ty = arg_types[i];
      void *a = avalue[i];
      int is_vfp_type = vfp_type_p (ty);

      /* Allocated in VFP registers. */
      if (vi < cif->vfp_nargs && is_vfp_type)
	{
	  char *vfp_slot = vfp_space + cif->vfp_args[vi++] * 4;
	  ffi_put_arg (ty, a, vfp_slot);
	  continue;
	}
      /* Try allocating in core registers. */
      else if (!done_with_regs && !is_vfp_type)
	{
	  char *tregp = ffi_align (ty, regp);
	  size_t size = ty->size;
	  size = (size < 4) ? 4 : size;	// pad
	  /* Check if there is space left in the aligned register
	     area to place the argument.  */
	  if (tregp + size <= eo_regp)
	    {
	      regp = tregp + ffi_put_arg (ty, a, tregp);
	      done_with_regs = (regp == argp);
	      // ensure we did not write into the stack area
	      FFI_ASSERT (regp <= argp);
	      continue;
	    }
	  /* In case there are no arguments in the stack area yet,
	     the argument is passed in the remaining core registers
	     and on the stack.  */
	  else if (!stack_used)
	    {
	      stack_used = 1;
	      done_with_regs = 1;
	      argp = tregp + ffi_put_arg (ty, a, tregp);
	      FFI_ASSERT (eo_regp < argp);
	      continue;
	    }
	}
      /* Base case, arguments are passed on the stack */
      stack_used = 1;
      argp = ffi_align (ty, argp);
      argp += ffi_put_arg (ty, a, argp);
    }
}

/* Perform machine dependent cif processing */
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
  int flags = 0, cabi = cif->abi;
  size_t bytes = cif->bytes;

  /* Map out the register placements of VFP register args.  The VFP
     hard-float calling conventions are slightly more sophisticated
     than the base calling conventions, so we do it here instead of
     in ffi_prep_args(). */
  if (cabi == FFI_VFP)
    layout_vfp_args (cif);

  /* Set the return type flag */
  switch (cif->rtype->type)
    {
    case FFI_TYPE_VOID:
      flags = ARM_TYPE_VOID;
      break;

    case FFI_TYPE_INT:
    case FFI_TYPE_UINT8:
    case FFI_TYPE_SINT8:
    case FFI_TYPE_UINT16:
    case FFI_TYPE_SINT16:
    case FFI_TYPE_UINT32:
    case FFI_TYPE_SINT32:
    case FFI_TYPE_POINTER:
      flags = ARM_TYPE_INT;
      break;

    case FFI_TYPE_SINT64:
    case FFI_TYPE_UINT64:
      flags = ARM_TYPE_INT64;
      break;

    case FFI_TYPE_FLOAT:
      flags = (cabi == FFI_VFP ? ARM_TYPE_VFP_S : ARM_TYPE_INT);
      break;
    case FFI_TYPE_DOUBLE:
      flags = (cabi == FFI_VFP ? ARM_TYPE_VFP_D : ARM_TYPE_INT64);
      break;

    case FFI_TYPE_STRUCT:
    case FFI_TYPE_COMPLEX:
      if (cabi == FFI_VFP)
	{
	  int h = vfp_type_p (cif->rtype);

	  flags = ARM_TYPE_VFP_N;
	  if (h == 0x100 + FFI_TYPE_FLOAT)
	    flags = ARM_TYPE_VFP_S;
	  if (h == 0x100 + FFI_TYPE_DOUBLE)
	    flags = ARM_TYPE_VFP_D;
	  if (h != 0)
	      break;
	}

      /* A Composite Type not larger than 4 bytes is returned in r0.
	 A Composite Type larger than 4 bytes, or whose size cannot
	 be determined statically ... is stored in memory at an
	 address passed [in r0].  */
      if (cif->rtype->size <= 4)
	flags = ARM_TYPE_INT;
      else
	{
	  flags = ARM_TYPE_STRUCT;
	  bytes += 4;
	}
      break;

    default:
      abort();
    }

  /* Round the stack up to a multiple of 8 bytes.  This isn't needed
     everywhere, but it is on some platforms, and it doesn't harm anything
     when it isn't needed.  */
  bytes = ALIGN (bytes, 8);

  /* Minimum stack space is the 4 register arguments that we pop.  */
  if (bytes < 4*4)
    bytes = 4*4;

  cif->bytes = bytes;
  cif->flags = flags;

  return FFI_OK;
}

/* Perform machine dependent cif processing for variadic calls */
ffi_status
ffi_prep_cif_machdep_var (ffi_cif * cif,
			  unsigned int nfixedargs, unsigned int ntotalargs)
{
  /* VFP variadic calls actually use the SYSV ABI */
  if (cif->abi == FFI_VFP)
    cif->abi = FFI_SYSV;

  return ffi_prep_cif_machdep (cif);
}

/* Prototypes for assembly functions, in sysv.S.  */

struct call_frame
{
  void *fp;
  void *lr;
  void *rvalue;
  int flags;
  void *closure;
};

extern void ffi_call_SYSV (void *stack, struct call_frame *,
			   void (*fn) (void)) FFI_HIDDEN;
extern void ffi_call_VFP (void *vfp_space, struct call_frame *,
			   void (*fn) (void), unsigned vfp_used) FFI_HIDDEN;

static void
ffi_call_int (ffi_cif * cif, void (*fn) (void), void *rvalue,
	      void **avalue, void *closure)
{
  int flags = cif->flags;
  ffi_type *rtype = cif->rtype;
  size_t bytes, rsize, vfp_size;
  char *stack, *vfp_space, *new_rvalue;
  struct call_frame *frame;

  rsize = 0;
  if (rvalue == NULL)
    {
      /* If the return value is a struct and we don't have a return
	 value address then we need to make one.  Otherwise the return
	 value is in registers and we can ignore them.  */
      if (flags == ARM_TYPE_STRUCT)
	rsize = rtype->size;
      else
	flags = ARM_TYPE_VOID;
    }
  else if (flags == ARM_TYPE_VFP_N)
    {
      /* Largest case is double x 4. */
      rsize = 32;
    }
  else if (flags == ARM_TYPE_INT && rtype->type == FFI_TYPE_STRUCT)
    rsize = 4;

  /* Largest case.  */
  vfp_size = (cif->abi == FFI_VFP && cif->vfp_used ? 8*8: 0);

  bytes = cif->bytes;
  stack = alloca (vfp_size + bytes + sizeof(struct call_frame) + rsize);

  vfp_space = NULL;
  if (vfp_size)
    {
      vfp_space = stack;
      stack += vfp_size;
    }

  frame = (struct call_frame *)(stack + bytes);

  new_rvalue = rvalue;
  if (rsize)
    new_rvalue = (void *)(frame + 1);

  frame->rvalue = new_rvalue;
  frame->flags = flags;
  frame->closure = closure;

  if (vfp_space)
    {
      ffi_prep_args_VFP (cif, flags, new_rvalue, avalue, stack, vfp_space);
      ffi_call_VFP (vfp_space, frame, fn, cif->vfp_used);
    }
  else
    {
      ffi_prep_args_SYSV (cif, flags, new_rvalue, avalue, stack);
      ffi_call_SYSV (stack, frame, fn);
    }

  if (rvalue && rvalue != new_rvalue)
    memcpy (rvalue, new_rvalue, rtype->size);
}

void
ffi_call (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue)
{
  ffi_call_int (cif, fn, rvalue, avalue, NULL);
}

void
ffi_call_go (ffi_cif *cif, void (*fn) (void), void *rvalue,
	     void **avalue, void *closure)
{
  ffi_call_int (cif, fn, rvalue, avalue, closure);
}

static void *
ffi_prep_incoming_args_SYSV (ffi_cif *cif, void *rvalue,
			     char *argp, void **avalue)
{
  ffi_type **arg_types = cif->arg_types;
  int i, n;

  if (cif->flags == ARM_TYPE_STRUCT)
    {
      rvalue = *(void **) argp;
      argp += 4;
    }

  for (i = 0, n = cif->nargs; i < n; i++)
    {
      ffi_type *ty = arg_types[i];
      size_t z = ty->size;

      argp = ffi_align (ty, argp);
      avalue[i] = (void *) argp;
      argp += z;
    }

  return rvalue;
}

static void *
ffi_prep_incoming_args_VFP (ffi_cif *cif, void *rvalue, char *stack,
			    char *vfp_space, void **avalue)
{
  ffi_type **arg_types = cif->arg_types;
  int i, n, vi = 0;
  char *argp, *regp, *eo_regp;
  char done_with_regs = 0;
  char stack_used = 0;

  regp = stack;
  eo_regp = argp = regp + 16;

  if (cif->flags == ARM_TYPE_STRUCT)
    {
      rvalue = *(void **) regp;
      regp += 4;
    }

  for (i = 0, n = cif->nargs; i < n; i++)
    {
      ffi_type *ty = arg_types[i];
      int is_vfp_type = vfp_type_p (ty);
      size_t z = ty->size;

      if (vi < cif->vfp_nargs && is_vfp_type)
	{
	  avalue[i] = vfp_space + cif->vfp_args[vi++] * 4;
	  continue;
	}
      else if (!done_with_regs && !is_vfp_type)
	{
	  char *tregp = ffi_align (ty, regp);

	  z = (z < 4) ? 4 : z;	// pad

	  /* If the arguments either fits into the registers or uses registers
	     and stack, while we haven't read other things from the stack */
	  if (tregp + z <= eo_regp || !stack_used)
	    {
	      /* Because we're little endian, this is what it turns into.  */
	      avalue[i] = (void *) tregp;
	      regp = tregp + z;

	      /* If we read past the last core register, make sure we
		 have not read from the stack before and continue
		 reading after regp.  */
	      if (regp > eo_regp)
		{
		  FFI_ASSERT (!stack_used);
		  argp = regp;
		}
	      if (regp >= eo_regp)
		{
		  done_with_regs = 1;
		  stack_used = 1;
		}
	      continue;
	    }
	}

      stack_used = 1;
      argp = ffi_align (ty, argp);
      avalue[i] = (void *) argp;
      argp += z;
    }

  return rvalue;
}

struct closure_frame
{
  char vfp_space[8*8] __attribute__((aligned(8)));
  char result[8*4];
  char argp[];
};

int FFI_HIDDEN
ffi_closure_inner_SYSV (ffi_cif *cif,
		        void (*fun) (ffi_cif *, void *, void **, void *),
		        void *user_data,
		        struct closure_frame *frame)
{
  void **avalue = (void **) alloca (cif->nargs * sizeof (void *));
  void *rvalue = ffi_prep_incoming_args_SYSV (cif, frame->result,
					      frame->argp, avalue);
  fun (cif, rvalue, avalue, user_data);
  return cif->flags;
}

int FFI_HIDDEN
ffi_closure_inner_VFP (ffi_cif *cif,
		       void (*fun) (ffi_cif *, void *, void **, void *),
		       void *user_data,
		       struct closure_frame *frame)
{
  void **avalue = (void **) alloca (cif->nargs * sizeof (void *));
  void *rvalue = ffi_prep_incoming_args_VFP (cif, frame->result, frame->argp,
					     frame->vfp_space, avalue);
  fun (cif, rvalue, avalue, user_data);
  return cif->flags;
}

void ffi_closure_SYSV (void) FFI_HIDDEN;
void ffi_closure_VFP (void) FFI_HIDDEN;
void ffi_go_closure_SYSV (void) FFI_HIDDEN;
void ffi_go_closure_VFP (void) FFI_HIDDEN;

#if FFI_EXEC_TRAMPOLINE_TABLE

#include <mach/mach.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

extern void *ffi_closure_trampoline_table_page;

typedef struct ffi_trampoline_table ffi_trampoline_table;
typedef struct ffi_trampoline_table_entry ffi_trampoline_table_entry;

struct ffi_trampoline_table
{
  /* contiguous writable and executable pages */
  vm_address_t config_page;
  vm_address_t trampoline_page;

  /* free list tracking */
  uint16_t free_count;
  ffi_trampoline_table_entry *free_list;
  ffi_trampoline_table_entry *free_list_pool;

  ffi_trampoline_table *prev;
  ffi_trampoline_table *next;
};

struct ffi_trampoline_table_entry
{
  void *(*trampoline) ();
  ffi_trampoline_table_entry *next;
};

/* Override the standard architecture trampoline size */
// XXX TODO - Fix
#undef FFI_TRAMPOLINE_SIZE
#define FFI_TRAMPOLINE_SIZE 12

/* The trampoline configuration is placed at 4080 bytes prior to the trampoline's entry point */
#define FFI_TRAMPOLINE_CODELOC_CONFIG(codeloc) ((void **) (((uint8_t *) codeloc) - 4080));

/* The first 16 bytes of the config page are unused, as they are unaddressable from the trampoline page. */
#define FFI_TRAMPOLINE_CONFIG_PAGE_OFFSET 16

/* Total number of trampolines that fit in one trampoline table */
#define FFI_TRAMPOLINE_COUNT ((PAGE_SIZE - FFI_TRAMPOLINE_CONFIG_PAGE_OFFSET) / FFI_TRAMPOLINE_SIZE)

static pthread_mutex_t ffi_trampoline_lock = PTHREAD_MUTEX_INITIALIZER;
static ffi_trampoline_table *ffi_trampoline_tables = NULL;

static ffi_trampoline_table *
ffi_trampoline_table_alloc ()
{
  ffi_trampoline_table *table = NULL;

  /* Loop until we can allocate two contiguous pages */
  while (table == NULL)
    {
      vm_address_t config_page = 0x0;
      kern_return_t kt;

      /* Try to allocate two pages */
      kt =
	vm_allocate (mach_task_self (), &config_page, PAGE_SIZE * 2,
		     VM_FLAGS_ANYWHERE);
      if (kt != KERN_SUCCESS)
	{
	  fprintf (stderr, "vm_allocate() failure: %d at %s:%d\n", kt,
		   __FILE__, __LINE__);
	  break;
	}

      /* Now drop the second half of the allocation to make room for the trampoline table */
      vm_address_t trampoline_page = config_page + PAGE_SIZE;
      kt = vm_deallocate (mach_task_self (), trampoline_page, PAGE_SIZE);
      if (kt != KERN_SUCCESS)
	{
	  fprintf (stderr, "vm_deallocate() failure: %d at %s:%d\n", kt,
		   __FILE__, __LINE__);
	  break;
	}

      /* Remap the trampoline table to directly follow the config page */
      vm_prot_t cur_prot;
      vm_prot_t max_prot;

      kt =
	vm_remap (mach_task_self (), &trampoline_page, PAGE_SIZE, 0x0, FALSE,
		  mach_task_self (),
		  (vm_address_t) & ffi_closure_trampoline_table_page, FALSE,
		  &cur_prot, &max_prot, VM_INHERIT_SHARE);

      /* If we lost access to the destination trampoline page, drop our config allocation mapping and retry */
      if (kt != KERN_SUCCESS)
	{
	  /* Log unexpected failures */
	  if (kt != KERN_NO_SPACE)
	    {
	      fprintf (stderr, "vm_remap() failure: %d at %s:%d\n", kt,
		       __FILE__, __LINE__);
	    }

	  vm_deallocate (mach_task_self (), config_page, PAGE_SIZE);
	  continue;
	}

      /* We have valid trampoline and config pages */
      table = calloc (1, sizeof (ffi_trampoline_table));
      table->free_count = FFI_TRAMPOLINE_COUNT;
      table->config_page = config_page;
      table->trampoline_page = trampoline_page;

      /* Create and initialize the free list */
      table->free_list_pool =
	calloc (FFI_TRAMPOLINE_COUNT, sizeof (ffi_trampoline_table_entry));

      uint16_t i;
      for (i = 0; i < table->free_count; i++)
	{
	  ffi_trampoline_table_entry *entry = &table->free_list_pool[i];
	  entry->trampoline =
	    (void *) (table->trampoline_page + (i * FFI_TRAMPOLINE_SIZE));

	  if (i < table->free_count - 1)
	    entry->next = &table->free_list_pool[i + 1];
	}

      table->free_list = table->free_list_pool;
    }

  return table;
}

void *
ffi_closure_alloc (size_t size, void **code)
{
  /* Create the closure */
  ffi_closure *closure = malloc (size);
  if (closure == NULL)
    return NULL;

  pthread_mutex_lock (&ffi_trampoline_lock);

  /* Check for an active trampoline table with available entries. */
  ffi_trampoline_table *table = ffi_trampoline_tables;
  if (table == NULL || table->free_list == NULL)
    {
      table = ffi_trampoline_table_alloc ();
      if (table == NULL)
	{
	  free (closure);
	  return NULL;
	}

      /* Insert the new table at the top of the list */
      table->next = ffi_trampoline_tables;
      if (table->next != NULL)
	table->next->prev = table;

      ffi_trampoline_tables = table;
    }

  /* Claim the free entry */
  ffi_trampoline_table_entry *entry = ffi_trampoline_tables->free_list;
  ffi_trampoline_tables->free_list = entry->next;
  ffi_trampoline_tables->free_count--;
  entry->next = NULL;

  pthread_mutex_unlock (&ffi_trampoline_lock);

  /* Initialize the return values */
  *code = entry->trampoline;
  closure->trampoline_table = table;
  closure->trampoline_table_entry = entry;

  return closure;
}

void
ffi_closure_free (void *ptr)
{
  ffi_closure *closure = ptr;

  pthread_mutex_lock (&ffi_trampoline_lock);

  /* Fetch the table and entry references */
  ffi_trampoline_table *table = closure->trampoline_table;
  ffi_trampoline_table_entry *entry = closure->trampoline_table_entry;

  /* Return the entry to the free list */
  entry->next = table->free_list;
  table->free_list = entry;
  table->free_count++;

  /* If all trampolines within this table are free, and at least one other table exists, deallocate
   * the table */
  if (table->free_count == FFI_TRAMPOLINE_COUNT
      && ffi_trampoline_tables != table)
    {
      /* Remove from the list */
      if (table->prev != NULL)
	table->prev->next = table->next;

      if (table->next != NULL)
	table->next->prev = table->prev;

      /* Deallocate pages */
      kern_return_t kt;
      kt = vm_deallocate (mach_task_self (), table->config_page, PAGE_SIZE);
      if (kt != KERN_SUCCESS)
	fprintf (stderr, "vm_deallocate() failure: %d at %s:%d\n", kt,
		 __FILE__, __LINE__);

      kt =
	vm_deallocate (mach_task_self (), table->trampoline_page, PAGE_SIZE);
      if (kt != KERN_SUCCESS)
	fprintf (stderr, "vm_deallocate() failure: %d at %s:%d\n", kt,
		 __FILE__, __LINE__);

      /* Deallocate free list */
      free (table->free_list_pool);
      free (table);
    }
  else if (ffi_trampoline_tables != table)
    {
      /* Otherwise, bump this table to the top of the list */
      table->prev = NULL;
      table->next = ffi_trampoline_tables;
      if (ffi_trampoline_tables != NULL)
	ffi_trampoline_tables->prev = table;

      ffi_trampoline_tables = table;
    }

  pthread_mutex_unlock (&ffi_trampoline_lock);

  /* Free the closure */
  free (closure);
}

#else

extern unsigned int ffi_arm_trampoline[2] FFI_HIDDEN;

#endif

/* the cif must already be prep'ed */

ffi_status
ffi_prep_closure_loc (ffi_closure * closure,
		      ffi_cif * cif,
		      void (*fun) (ffi_cif *, void *, void **, void *),
		      void *user_data, void *codeloc)
{
  void (*closure_func) (void) = ffi_closure_SYSV;

  if (cif->abi == FFI_VFP)
    {
      /* We only need take the vfp path if there are vfp arguments.  */
      if (cif->vfp_used)
	closure_func = ffi_closure_VFP;
    }
  else if (cif->abi != FFI_SYSV)
    return FFI_BAD_ABI;

#if FFI_EXEC_TRAMPOLINE_TABLE
  void **config = FFI_TRAMPOLINE_CODELOC_CONFIG (codeloc);
  config[0] = closure;
  config[1] = closure_func;
#else
  memcpy (closure->tramp, ffi_arm_trampoline, 8);
  __clear_cache(closure->tramp, closure->tramp + 8);	/* clear data map */
  __clear_cache(codeloc, codeloc + 8);			/* clear insn map */
  *(void (**)(void))(closure->tramp + 8) = closure_func;
#endif

  closure->cif = cif;
  closure->fun = fun;
  closure->user_data = user_data;

  return FFI_OK;
}

ffi_status
ffi_prep_go_closure (ffi_go_closure *closure, ffi_cif *cif,
		     void (*fun) (ffi_cif *, void *, void **, void *))
{
  void (*closure_func) (void) = ffi_go_closure_SYSV;

  if (cif->abi == FFI_VFP)
    {
      /* We only need take the vfp path if there are vfp arguments.  */
      if (cif->vfp_used)
	closure_func = ffi_go_closure_VFP;
    }
  else if (cif->abi != FFI_SYSV)
    return FFI_BAD_ABI;

  closure->tramp = closure_func;
  closure->cif = cif;
  closure->fun = fun;

  return FFI_OK;
}

/* Below are routines for VFP hard-float support. */

/* A subroutine of vfp_type_p.  Given a structure type, return the type code
   of the first non-structure element.  Recurse for structure elements.
   Return -1 if the structure is in fact empty, i.e. no nested elements.  */

static int
is_hfa0 (const ffi_type *ty)
{
  ffi_type **elements = ty->elements;
  int i, ret = -1;

  if (elements != NULL)
    for (i = 0; elements[i]; ++i)
      {
        ret = elements[i]->type;
        if (ret == FFI_TYPE_STRUCT || ret == FFI_TYPE_COMPLEX)
          {
            ret = is_hfa0 (elements[i]);
            if (ret < 0)
              continue;
          }
        break;
      }

  return ret;
}

/* A subroutine of vfp_type_p.  Given a structure type, return true if all
   of the non-structure elements are the same as CANDIDATE.  */

static int
is_hfa1 (const ffi_type *ty, int candidate)
{
  ffi_type **elements = ty->elements;
  int i;

  if (elements != NULL)
    for (i = 0; elements[i]; ++i)
      {
        int t = elements[i]->type;
        if (t == FFI_TYPE_STRUCT || t == FFI_TYPE_COMPLEX)
          {
            if (!is_hfa1 (elements[i], candidate))
              return 0;
          }
        else if (t != candidate)
          return 0;
      }

  return 1;
}

/* Determine if TY is an homogenous floating point aggregate (HFA).
   That is, a structure consisting of 1 to 4 members of all the same type,
   where that type is a floating point scalar.

   Returns non-zero iff TY is an HFA.  The result is an encoded value where
   bits 0-7 contain the type code, and bits 8-10 contain the element count.  */

static int
vfp_type_p (const ffi_type *ty)
{
  ffi_type **elements;
  int candidate, i;
  size_t size, ele_count;

  /* Quickest tests first.  */
  candidate = ty->type;
  switch (ty->type)
    {
    default:
      return 0;
    case FFI_TYPE_FLOAT:
    case FFI_TYPE_DOUBLE:
      ele_count = 1;
      goto done;
    case FFI_TYPE_COMPLEX:
      candidate = ty->elements[0]->type;
      if (candidate != FFI_TYPE_FLOAT && candidate != FFI_TYPE_DOUBLE)
	return 0;
      ele_count = 2;
      goto done;
    case FFI_TYPE_STRUCT:
      break;
    }

  /* No HFA types are smaller than 4 bytes, or larger than 32 bytes.  */
  size = ty->size;
  if (size < 4 || size > 32)
    return 0;

  /* Find the type of the first non-structure member.  */
  elements = ty->elements;
  candidate = elements[0]->type;
  if (candidate == FFI_TYPE_STRUCT || candidate == FFI_TYPE_COMPLEX)
    {
      for (i = 0; ; ++i)
        {
          candidate = is_hfa0 (elements[i]);
          if (candidate >= 0)
            break;
        }
    }

  /* If the first member is not a floating point type, it's not an HFA.
     Also quickly re-check the size of the structure.  */
  switch (candidate)
    {
    case FFI_TYPE_FLOAT:
      ele_count = size / sizeof(float);
      if (size != ele_count * sizeof(float))
        return 0;
      break;
    case FFI_TYPE_DOUBLE:
      ele_count = size / sizeof(double);
      if (size != ele_count * sizeof(double))
        return 0;
      break;
    default:
      return 0;
    }
  if (ele_count > 4)
    return 0;

  /* Finally, make sure that all scalar elements are the same type.  */
  for (i = 0; elements[i]; ++i)
    {
      int t = elements[i]->type;
      if (t == FFI_TYPE_STRUCT || t == FFI_TYPE_COMPLEX)
        {
          if (!is_hfa1 (elements[i], candidate))
            return 0;
        }
      else if (t != candidate)
        return 0;
    }

  /* All tests succeeded.  Encode the result.  */
 done:
  return (ele_count << 8) | candidate;
}

static int
place_vfp_arg (ffi_cif *cif, int h)
{
  unsigned short reg = cif->vfp_reg_free;
  int align = 1, nregs = h >> 8;

  if ((h & 0xff) == FFI_TYPE_DOUBLE)
    align = 2, nregs *= 2;

  /* Align register number. */
  if ((reg & 1) && align == 2)
    reg++;

  while (reg + nregs <= 16)
    {
      int s, new_used = 0;
      for (s = reg; s < reg + nregs; s++)
	{
	  new_used |= (1 << s);
	  if (cif->vfp_used & (1 << s))
	    {
	      reg += align;
	      goto next_reg;
	    }
	}
      /* Found regs to allocate. */
      cif->vfp_used |= new_used;
      cif->vfp_args[cif->vfp_nargs++] = reg;

      /* Update vfp_reg_free. */
      if (cif->vfp_used & (1 << cif->vfp_reg_free))
	{
	  reg += nregs;
	  while (cif->vfp_used & (1 << reg))
	    reg += 1;
	  cif->vfp_reg_free = reg;
	}
      return 0;
    next_reg:;
    }
  // done, mark all regs as used
  cif->vfp_reg_free = 16;
  cif->vfp_used = 0xFFFF;
  return 1;
}

static void
layout_vfp_args (ffi_cif * cif)
{
  int i;
  /* Init VFP fields */
  cif->vfp_used = 0;
  cif->vfp_nargs = 0;
  cif->vfp_reg_free = 0;
  memset (cif->vfp_args, -1, 16);	/* Init to -1. */

  for (i = 0; i < cif->nargs; i++)
    {
      int h = vfp_type_p (cif->arg_types[i]);
      if (h && place_vfp_arg (cif, h) == 1)
	break;
    }
}