1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
|
/* Operations with very long integers. -*- C++ -*-
Copyright (C) 2012-2016 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef WIDE_INT_H
#define WIDE_INT_H
/* wide-int.[cc|h] implements a class that efficiently performs
mathematical operations on finite precision integers. wide_ints
are designed to be transient - they are not for long term storage
of values. There is tight integration between wide_ints and the
other longer storage GCC representations (rtl and tree).
The actual precision of a wide_int depends on the flavor. There
are three predefined flavors:
1) wide_int (the default). This flavor does the math in the
precision of its input arguments. It is assumed (and checked)
that the precisions of the operands and results are consistent.
This is the most efficient flavor. It is not possible to examine
bits above the precision that has been specified. Because of
this, the default flavor has semantics that are simple to
understand and in general model the underlying hardware that the
compiler is targetted for.
This flavor must be used at the RTL level of gcc because there
is, in general, not enough information in the RTL representation
to extend a value beyond the precision specified in the mode.
This flavor should also be used at the TREE and GIMPLE levels of
the compiler except for the circumstances described in the
descriptions of the other two flavors.
The default wide_int representation does not contain any
information inherent about signedness of the represented value,
so it can be used to represent both signed and unsigned numbers.
For operations where the results depend on signedness (full width
multiply, division, shifts, comparisons, and operations that need
overflow detected), the signedness must be specified separately.
2) offset_int. This is a fixed-precision integer that can hold
any address offset, measured in either bits or bytes, with at
least one extra sign bit. At the moment the maximum address
size GCC supports is 64 bits. With 8-bit bytes and an extra
sign bit, offset_int therefore needs to have at least 68 bits
of precision. We round this up to 128 bits for efficiency.
Values of type T are converted to this precision by sign- or
zero-extending them based on the signedness of T.
The extra sign bit means that offset_int is effectively a signed
128-bit integer, i.e. it behaves like int128_t.
Since the values are logically signed, there is no need to
distinguish between signed and unsigned operations. Sign-sensitive
comparison operators <, <=, > and >= are therefore supported.
Shift operators << and >> are also supported, with >> being
an _arithmetic_ right shift.
[ Note that, even though offset_int is effectively int128_t,
it can still be useful to use unsigned comparisons like
wi::leu_p (a, b) as a more efficient short-hand for
"a >= 0 && a <= b". ]
3) widest_int. This representation is an approximation of
infinite precision math. However, it is not really infinite
precision math as in the GMP library. It is really finite
precision math where the precision is 4 times the size of the
largest integer that the target port can represent.
Like offset_int, widest_int is wider than all the values that
it needs to represent, so the integers are logically signed.
Sign-sensitive comparison operators <, <=, > and >= are supported,
as are << and >>.
There are several places in the GCC where this should/must be used:
* Code that does induction variable optimizations. This code
works with induction variables of many different types at the
same time. Because of this, it ends up doing many different
calculations where the operands are not compatible types. The
widest_int makes this easy, because it provides a field where
nothing is lost when converting from any variable,
* There are a small number of passes that currently use the
widest_int that should use the default. These should be
changed.
There are surprising features of offset_int and widest_int
that the users should be careful about:
1) Shifts and rotations are just weird. You have to specify a
precision in which the shift or rotate is to happen in. The bits
above this precision are zeroed. While this is what you
want, it is clearly non obvious.
2) Larger precision math sometimes does not produce the same
answer as would be expected for doing the math at the proper
precision. In particular, a multiply followed by a divide will
produce a different answer if the first product is larger than
what can be represented in the input precision.
The offset_int and the widest_int flavors are more expensive
than the default wide int, so in addition to the caveats with these
two, the default is the prefered representation.
All three flavors of wide_int are represented as a vector of
HOST_WIDE_INTs. The default and widest_int vectors contain enough elements
to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only
enough elements to hold ADDR_MAX_PRECISION bits. The values are stored
in the vector with the least significant HOST_BITS_PER_WIDE_INT bits
in element 0.
The default wide_int contains three fields: the vector (VAL),
the precision and a length (LEN). The length is the number of HWIs
needed to represent the value. widest_int and offset_int have a
constant precision that cannot be changed, so they only store the
VAL and LEN fields.
Since most integers used in a compiler are small values, it is
generally profitable to use a representation of the value that is
as small as possible. LEN is used to indicate the number of
elements of the vector that are in use. The numbers are stored as
sign extended numbers as a means of compression. Leading
HOST_WIDE_INTs that contain strings of either -1 or 0 are removed
as long as they can be reconstructed from the top bit that is being
represented.
The precision and length of a wide_int are always greater than 0.
Any bits in a wide_int above the precision are sign-extended from the
most significant bit. For example, a 4-bit value 0x8 is represented as
VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer
constants to be represented with undefined bits above the precision.
This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN,
so that the INTEGER_CST representation can be used both in TYPE_PRECISION
and in wider precisions.
There are constructors to create the various forms of wide_int from
trees, rtl and constants. For trees you can simply say:
tree t = ...;
wide_int x = t;
However, a little more syntax is required for rtl constants since
they do not have an explicit precision. To make an rtl into a
wide_int, you have to pair it with a mode. The canonical way to do
this is with std::make_pair as in:
rtx r = ...
wide_int x = std::make_pair (r, mode);
Similarly, a wide_int can only be constructed from a host value if
the target precision is given explicitly, such as in:
wide_int x = wi::shwi (c, prec); // sign-extend C if necessary
wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary
However, offset_int and widest_int have an inherent precision and so
can be initialized directly from a host value:
offset_int x = (int) c; // sign-extend C
widest_int x = (unsigned int) c; // zero-extend C
It is also possible to do arithmetic directly on trees, rtxes and
constants. For example:
wi::add (t1, t2); // add equal-sized INTEGER_CSTs t1 and t2
wi::add (t1, 1); // add 1 to INTEGER_CST t1
wi::add (r1, r2); // add equal-sized rtx constants r1 and r2
wi::lshift (1, 100); // 1 << 100 as a widest_int
Many binary operations place restrictions on the combinations of inputs,
using the following rules:
- {tree, rtx, wide_int} op {tree, rtx, wide_int} -> wide_int
The inputs must be the same precision. The result is a wide_int
of the same precision
- {tree, rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int
(un)signed HOST_WIDE_INT op {tree, rtx, wide_int} -> wide_int
The HOST_WIDE_INT is extended or truncated to the precision of
the other input. The result is a wide_int of the same precision
as that input.
- (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int
The inputs are extended to widest_int precision and produce a
widest_int result.
- offset_int op offset_int -> offset_int
offset_int op (un)signed HOST_WIDE_INT -> offset_int
(un)signed HOST_WIDE_INT op offset_int -> offset_int
- widest_int op widest_int -> widest_int
widest_int op (un)signed HOST_WIDE_INT -> widest_int
(un)signed HOST_WIDE_INT op widest_int -> widest_int
Other combinations like:
- widest_int op offset_int and
- wide_int op offset_int
are not allowed. The inputs should instead be extended or truncated
so that they match.
The inputs to comparison functions like wi::eq_p and wi::lts_p
follow the same compatibility rules, although their return types
are different. Unary functions on X produce the same result as
a binary operation X + X. Shift functions X op Y also produce
the same result as X + X; the precision of the shift amount Y
can be arbitrarily different from X. */
/* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very
early examination of the target's mode file. The WIDE_INT_MAX_ELTS
can accomodate at least 1 more bit so that unsigned numbers of that
mode can be represented as a signed value. Note that it is still
possible to create fixed_wide_ints that have precisions greater than
MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a
double-width multiplication result, for example. */
#define WIDE_INT_MAX_ELTS \
((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT)
#define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT)
/* This is the max size of any pointer on any machine. It does not
seem to be as easy to sniff this out of the machine description as
it is for MAX_BITSIZE_MODE_ANY_INT since targets may support
multiple address sizes and may have different address sizes for
different address spaces. However, currently the largest pointer
on any platform is 64 bits. When that changes, then it is likely
that a target hook should be defined so that targets can make this
value larger for those targets. */
#define ADDR_MAX_BITSIZE 64
/* This is the internal precision used when doing any address
arithmetic. The '4' is really 3 + 1. Three of the bits are for
the number of extra bits needed to do bit addresses and the other bit
is to allow everything to be signed without loosing any precision.
Then everything is rounded up to the next HWI for efficiency. */
#define ADDR_MAX_PRECISION \
((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \
& ~(HOST_BITS_PER_WIDE_INT - 1))
/* The number of HWIs needed to store an offset_int. */
#define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT)
/* The type of result produced by a binary operation on types T1 and T2.
Defined purely for brevity. */
#define WI_BINARY_RESULT(T1, T2) \
typename wi::binary_traits <T1, T2>::result_type
/* The type of result produced by T1 << T2. Leads to substitution failure
if the operation isn't supported. Defined purely for brevity. */
#define WI_SIGNED_SHIFT_RESULT(T1, T2) \
typename wi::binary_traits <T1, T2>::signed_shift_result_type
/* The type of result produced by a signed binary predicate on types T1 and T2.
This is bool if signed comparisons make sense for T1 and T2 and leads to
substitution failure otherwise. */
#define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \
typename wi::binary_traits <T1, T2>::signed_predicate_result
/* The type of result produced by a unary operation on type T. */
#define WI_UNARY_RESULT(T) \
typename wi::unary_traits <T>::result_type
/* Define a variable RESULT to hold the result of a binary operation on
X and Y, which have types T1 and T2 respectively. Define VAL to
point to the blocks of RESULT. Once the user of the macro has
filled in VAL, it should call RESULT.set_len to set the number
of initialized blocks. */
#define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \
WI_BINARY_RESULT (T1, T2) RESULT = \
wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \
HOST_WIDE_INT *VAL = RESULT.write_val ()
/* Similar for the result of a unary operation on X, which has type T. */
#define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \
WI_UNARY_RESULT (T) RESULT = \
wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \
HOST_WIDE_INT *VAL = RESULT.write_val ()
template <typename T> class generic_wide_int;
template <int N> struct fixed_wide_int_storage;
class wide_int_storage;
/* An N-bit integer. Until we can use typedef templates, use this instead. */
#define FIXED_WIDE_INT(N) \
generic_wide_int < fixed_wide_int_storage <N> >
typedef generic_wide_int <wide_int_storage> wide_int;
typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int;
typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int;
template <bool SE>
struct wide_int_ref_storage;
typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref;
/* This can be used instead of wide_int_ref if the referenced value is
known to have type T. It carries across properties of T's representation,
such as whether excess upper bits in a HWI are defined, and can therefore
help avoid redundant work.
The macro could be replaced with a template typedef, once we're able
to use those. */
#define WIDE_INT_REF_FOR(T) \
generic_wide_int \
<wide_int_ref_storage <wi::int_traits <T>::is_sign_extended> >
namespace wi
{
/* Classifies an integer based on its precision. */
enum precision_type {
/* The integer has both a precision and defined signedness. This allows
the integer to be converted to any width, since we know whether to fill
any extra bits with zeros or signs. */
FLEXIBLE_PRECISION,
/* The integer has a variable precision but no defined signedness. */
VAR_PRECISION,
/* The integer has a constant precision (known at GCC compile time)
and is signed. */
CONST_PRECISION
};
/* This class, which has no default implementation, is expected to
provide the following members:
static const enum precision_type precision_type;
Classifies the type of T.
static const unsigned int precision;
Only defined if precision_type == CONST_PRECISION. Specifies the
precision of all integers of type T.
static const bool host_dependent_precision;
True if the precision of T depends (or can depend) on the host.
static unsigned int get_precision (const T &x)
Return the number of bits in X.
static wi::storage_ref *decompose (HOST_WIDE_INT *scratch,
unsigned int precision, const T &x)
Decompose X as a PRECISION-bit integer, returning the associated
wi::storage_ref. SCRATCH is available as scratch space if needed.
The routine should assert that PRECISION is acceptable. */
template <typename T> struct int_traits;
/* This class provides a single type, result_type, which specifies the
type of integer produced by a binary operation whose inputs have
types T1 and T2. The definition should be symmetric. */
template <typename T1, typename T2,
enum precision_type P1 = int_traits <T1>::precision_type,
enum precision_type P2 = int_traits <T2>::precision_type>
struct binary_traits;
/* The result of a unary operation on T is the same as the result of
a binary operation on two values of type T. */
template <typename T>
struct unary_traits : public binary_traits <T, T> {};
/* Specify the result type for each supported combination of binary
inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be
mixed, in order to give stronger type checking. When both inputs
are CONST_PRECISION, they must have the same precision. */
template <typename T1, typename T2>
struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION>
{
typedef widest_int result_type;
};
template <typename T1, typename T2>
struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION>
{
typedef wide_int result_type;
};
template <typename T1, typename T2>
struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION>
{
/* Spelled out explicitly (rather than through FIXED_WIDE_INT)
so as not to confuse gengtype. */
typedef generic_wide_int < fixed_wide_int_storage
<int_traits <T2>::precision> > result_type;
typedef bool signed_predicate_result;
};
template <typename T1, typename T2>
struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION>
{
typedef wide_int result_type;
};
template <typename T1, typename T2>
struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION>
{
/* Spelled out explicitly (rather than through FIXED_WIDE_INT)
so as not to confuse gengtype. */
typedef generic_wide_int < fixed_wide_int_storage
<int_traits <T1>::precision> > result_type;
typedef result_type signed_shift_result_type;
typedef bool signed_predicate_result;
};
template <typename T1, typename T2>
struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION>
{
/* Spelled out explicitly (rather than through FIXED_WIDE_INT)
so as not to confuse gengtype. */
STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision);
typedef generic_wide_int < fixed_wide_int_storage
<int_traits <T1>::precision> > result_type;
typedef result_type signed_shift_result_type;
typedef bool signed_predicate_result;
};
template <typename T1, typename T2>
struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION>
{
typedef wide_int result_type;
};
}
/* Public functions for querying and operating on integers. */
namespace wi
{
template <typename T>
unsigned int get_precision (const T &);
template <typename T1, typename T2>
unsigned int get_binary_precision (const T1 &, const T2 &);
template <typename T1, typename T2>
void copy (T1 &, const T2 &);
#define UNARY_PREDICATE \
template <typename T> bool
#define UNARY_FUNCTION \
template <typename T> WI_UNARY_RESULT (T)
#define BINARY_PREDICATE \
template <typename T1, typename T2> bool
#define BINARY_FUNCTION \
template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2)
#define SHIFT_FUNCTION \
template <typename T1, typename T2> WI_UNARY_RESULT (T1)
UNARY_PREDICATE fits_shwi_p (const T &);
UNARY_PREDICATE fits_uhwi_p (const T &);
UNARY_PREDICATE neg_p (const T &, signop = SIGNED);
template <typename T>
HOST_WIDE_INT sign_mask (const T &);
BINARY_PREDICATE eq_p (const T1 &, const T2 &);
BINARY_PREDICATE ne_p (const T1 &, const T2 &);
BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop);
BINARY_PREDICATE lts_p (const T1 &, const T2 &);
BINARY_PREDICATE ltu_p (const T1 &, const T2 &);
BINARY_PREDICATE le_p (const T1 &, const T2 &, signop);
BINARY_PREDICATE les_p (const T1 &, const T2 &);
BINARY_PREDICATE leu_p (const T1 &, const T2 &);
BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop);
BINARY_PREDICATE gts_p (const T1 &, const T2 &);
BINARY_PREDICATE gtu_p (const T1 &, const T2 &);
BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop);
BINARY_PREDICATE ges_p (const T1 &, const T2 &);
BINARY_PREDICATE geu_p (const T1 &, const T2 &);
template <typename T1, typename T2>
int cmp (const T1 &, const T2 &, signop);
template <typename T1, typename T2>
int cmps (const T1 &, const T2 &);
template <typename T1, typename T2>
int cmpu (const T1 &, const T2 &);
UNARY_FUNCTION bit_not (const T &);
UNARY_FUNCTION neg (const T &);
UNARY_FUNCTION neg (const T &, bool *);
UNARY_FUNCTION abs (const T &);
UNARY_FUNCTION ext (const T &, unsigned int, signop);
UNARY_FUNCTION sext (const T &, unsigned int);
UNARY_FUNCTION zext (const T &, unsigned int);
UNARY_FUNCTION set_bit (const T &, unsigned int);
BINARY_FUNCTION min (const T1 &, const T2 &, signop);
BINARY_FUNCTION smin (const T1 &, const T2 &);
BINARY_FUNCTION umin (const T1 &, const T2 &);
BINARY_FUNCTION max (const T1 &, const T2 &, signop);
BINARY_FUNCTION smax (const T1 &, const T2 &);
BINARY_FUNCTION umax (const T1 &, const T2 &);
BINARY_FUNCTION bit_and (const T1 &, const T2 &);
BINARY_FUNCTION bit_and_not (const T1 &, const T2 &);
BINARY_FUNCTION bit_or (const T1 &, const T2 &);
BINARY_FUNCTION bit_or_not (const T1 &, const T2 &);
BINARY_FUNCTION bit_xor (const T1 &, const T2 &);
BINARY_FUNCTION add (const T1 &, const T2 &);
BINARY_FUNCTION add (const T1 &, const T2 &, signop, bool *);
BINARY_FUNCTION sub (const T1 &, const T2 &);
BINARY_FUNCTION sub (const T1 &, const T2 &, signop, bool *);
BINARY_FUNCTION mul (const T1 &, const T2 &);
BINARY_FUNCTION mul (const T1 &, const T2 &, signop, bool *);
BINARY_FUNCTION smul (const T1 &, const T2 &, bool *);
BINARY_FUNCTION umul (const T1 &, const T2 &, bool *);
BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop);
BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop, bool * = 0);
BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &);
BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &);
BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop, bool * = 0);
BINARY_FUNCTION udiv_floor (const T1 &, const T2 &);
BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &);
BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop, bool * = 0);
BINARY_FUNCTION div_round (const T1 &, const T2 &, signop, bool * = 0);
BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop,
WI_BINARY_RESULT (T1, T2) *);
BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED);
BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop, bool * = 0);
BINARY_FUNCTION smod_trunc (const T1 &, const T2 &);
BINARY_FUNCTION umod_trunc (const T1 &, const T2 &);
BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop, bool * = 0);
BINARY_FUNCTION umod_floor (const T1 &, const T2 &);
BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop, bool * = 0);
BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop, bool * = 0);
template <typename T1, typename T2>
bool multiple_of_p (const T1 &, const T2 &, signop);
template <typename T1, typename T2>
bool multiple_of_p (const T1 &, const T2 &, signop,
WI_BINARY_RESULT (T1, T2) *);
SHIFT_FUNCTION lshift (const T1 &, const T2 &);
SHIFT_FUNCTION lrshift (const T1 &, const T2 &);
SHIFT_FUNCTION arshift (const T1 &, const T2 &);
SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn);
SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0);
SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0);
#undef SHIFT_FUNCTION
#undef BINARY_PREDICATE
#undef BINARY_FUNCTION
#undef UNARY_PREDICATE
#undef UNARY_FUNCTION
bool only_sign_bit_p (const wide_int_ref &, unsigned int);
bool only_sign_bit_p (const wide_int_ref &);
int clz (const wide_int_ref &);
int clrsb (const wide_int_ref &);
int ctz (const wide_int_ref &);
int exact_log2 (const wide_int_ref &);
int floor_log2 (const wide_int_ref &);
int ffs (const wide_int_ref &);
int popcount (const wide_int_ref &);
int parity (const wide_int_ref &);
template <typename T>
unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int);
template <typename T>
unsigned int min_precision (const T &, signop);
}
namespace wi
{
/* Contains the components of a decomposed integer for easy, direct
access. */
struct storage_ref
{
storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int);
const HOST_WIDE_INT *val;
unsigned int len;
unsigned int precision;
/* Provide enough trappings for this class to act as storage for
generic_wide_int. */
unsigned int get_len () const;
unsigned int get_precision () const;
const HOST_WIDE_INT *get_val () const;
};
}
inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in,
unsigned int len_in,
unsigned int precision_in)
: val (val_in), len (len_in), precision (precision_in)
{
}
inline unsigned int
wi::storage_ref::get_len () const
{
return len;
}
inline unsigned int
wi::storage_ref::get_precision () const
{
return precision;
}
inline const HOST_WIDE_INT *
wi::storage_ref::get_val () const
{
return val;
}
/* This class defines an integer type using the storage provided by the
template argument. The storage class must provide the following
functions:
unsigned int get_precision () const
Return the number of bits in the integer.
HOST_WIDE_INT *get_val () const
Return a pointer to the array of blocks that encodes the integer.
unsigned int get_len () const
Return the number of blocks in get_val (). If this is smaller
than the number of blocks implied by get_precision (), the
remaining blocks are sign extensions of block get_len () - 1.
Although not required by generic_wide_int itself, writable storage
classes can also provide the following functions:
HOST_WIDE_INT *write_val ()
Get a modifiable version of get_val ()
unsigned int set_len (unsigned int len)
Set the value returned by get_len () to LEN. */
template <typename storage>
class GTY(()) generic_wide_int : public storage
{
public:
generic_wide_int ();
template <typename T>
generic_wide_int (const T &);
template <typename T>
generic_wide_int (const T &, unsigned int);
/* Conversions. */
HOST_WIDE_INT to_shwi (unsigned int) const;
HOST_WIDE_INT to_shwi () const;
unsigned HOST_WIDE_INT to_uhwi (unsigned int) const;
unsigned HOST_WIDE_INT to_uhwi () const;
HOST_WIDE_INT to_short_addr () const;
/* Public accessors for the interior of a wide int. */
HOST_WIDE_INT sign_mask () const;
HOST_WIDE_INT elt (unsigned int) const;
unsigned HOST_WIDE_INT ulow () const;
unsigned HOST_WIDE_INT uhigh () const;
HOST_WIDE_INT slow () const;
HOST_WIDE_INT shigh () const;
template <typename T>
generic_wide_int &operator = (const T &);
#define BINARY_PREDICATE(OP, F) \
template <typename T> \
bool OP (const T &c) const { return wi::F (*this, c); }
#define UNARY_OPERATOR(OP, F) \
WI_UNARY_RESULT (generic_wide_int) OP () const { return wi::F (*this); }
#define BINARY_OPERATOR(OP, F) \
template <typename T> \
WI_BINARY_RESULT (generic_wide_int, T) \
OP (const T &c) const { return wi::F (*this, c); }
#define ASSIGNMENT_OPERATOR(OP, F) \
template <typename T> \
generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); }
/* Restrict these to cases where the shift operator is defined. */
#define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \
template <typename T> \
generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); }
#define INCDEC_OPERATOR(OP, DELTA) \
generic_wide_int &OP () { *this += DELTA; return *this; }
UNARY_OPERATOR (operator ~, bit_not)
UNARY_OPERATOR (operator -, neg)
BINARY_PREDICATE (operator ==, eq_p)
BINARY_PREDICATE (operator !=, ne_p)
BINARY_OPERATOR (operator &, bit_and)
BINARY_OPERATOR (and_not, bit_and_not)
BINARY_OPERATOR (operator |, bit_or)
BINARY_OPERATOR (or_not, bit_or_not)
BINARY_OPERATOR (operator ^, bit_xor)
BINARY_OPERATOR (operator +, add)
BINARY_OPERATOR (operator -, sub)
BINARY_OPERATOR (operator *, mul)
ASSIGNMENT_OPERATOR (operator &=, bit_and)
ASSIGNMENT_OPERATOR (operator |=, bit_or)
ASSIGNMENT_OPERATOR (operator ^=, bit_xor)
ASSIGNMENT_OPERATOR (operator +=, add)
ASSIGNMENT_OPERATOR (operator -=, sub)
ASSIGNMENT_OPERATOR (operator *=, mul)
SHIFT_ASSIGNMENT_OPERATOR (operator <<=, <<)
SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>)
INCDEC_OPERATOR (operator ++, 1)
INCDEC_OPERATOR (operator --, -1)
#undef BINARY_PREDICATE
#undef UNARY_OPERATOR
#undef BINARY_OPERATOR
#undef SHIFT_ASSIGNMENT_OPERATOR
#undef ASSIGNMENT_OPERATOR
#undef INCDEC_OPERATOR
/* Debugging functions. */
void dump () const;
static const bool is_sign_extended
= wi::int_traits <generic_wide_int <storage> >::is_sign_extended;
};
template <typename storage>
inline generic_wide_int <storage>::generic_wide_int () {}
template <typename storage>
template <typename T>
inline generic_wide_int <storage>::generic_wide_int (const T &x)
: storage (x)
{
}
template <typename storage>
template <typename T>
inline generic_wide_int <storage>::generic_wide_int (const T &x,
unsigned int precision)
: storage (x, precision)
{
}
/* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION.
If THIS does not fit in PRECISION, the information is lost. */
template <typename storage>
inline HOST_WIDE_INT
generic_wide_int <storage>::to_shwi (unsigned int precision) const
{
if (precision < HOST_BITS_PER_WIDE_INT)
return sext_hwi (this->get_val ()[0], precision);
else
return this->get_val ()[0];
}
/* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */
template <typename storage>
inline HOST_WIDE_INT
generic_wide_int <storage>::to_shwi () const
{
if (is_sign_extended)
return this->get_val ()[0];
else
return to_shwi (this->get_precision ());
}
/* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from
PRECISION. If THIS does not fit in PRECISION, the information
is lost. */
template <typename storage>
inline unsigned HOST_WIDE_INT
generic_wide_int <storage>::to_uhwi (unsigned int precision) const
{
if (precision < HOST_BITS_PER_WIDE_INT)
return zext_hwi (this->get_val ()[0], precision);
else
return this->get_val ()[0];
}
/* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */
template <typename storage>
inline unsigned HOST_WIDE_INT
generic_wide_int <storage>::to_uhwi () const
{
return to_uhwi (this->get_precision ());
}
/* TODO: The compiler is half converted from using HOST_WIDE_INT to
represent addresses to using offset_int to represent addresses.
We use to_short_addr at the interface from new code to old,
unconverted code. */
template <typename storage>
inline HOST_WIDE_INT
generic_wide_int <storage>::to_short_addr () const
{
return this->get_val ()[0];
}
/* Return the implicit value of blocks above get_len (). */
template <typename storage>
inline HOST_WIDE_INT
generic_wide_int <storage>::sign_mask () const
{
unsigned int len = this->get_len ();
unsigned HOST_WIDE_INT high = this->get_val ()[len - 1];
if (!is_sign_extended)
{
unsigned int precision = this->get_precision ();
int excess = len * HOST_BITS_PER_WIDE_INT - precision;
if (excess > 0)
high <<= excess;
}
return (HOST_WIDE_INT) (high) < 0 ? -1 : 0;
}
/* Return the signed value of the least-significant explicitly-encoded
block. */
template <typename storage>
inline HOST_WIDE_INT
generic_wide_int <storage>::slow () const
{
return this->get_val ()[0];
}
/* Return the signed value of the most-significant explicitly-encoded
block. */
template <typename storage>
inline HOST_WIDE_INT
generic_wide_int <storage>::shigh () const
{
return this->get_val ()[this->get_len () - 1];
}
/* Return the unsigned value of the least-significant
explicitly-encoded block. */
template <typename storage>
inline unsigned HOST_WIDE_INT
generic_wide_int <storage>::ulow () const
{
return this->get_val ()[0];
}
/* Return the unsigned value of the most-significant
explicitly-encoded block. */
template <typename storage>
inline unsigned HOST_WIDE_INT
generic_wide_int <storage>::uhigh () const
{
return this->get_val ()[this->get_len () - 1];
}
/* Return block I, which might be implicitly or explicit encoded. */
template <typename storage>
inline HOST_WIDE_INT
generic_wide_int <storage>::elt (unsigned int i) const
{
if (i >= this->get_len ())
return sign_mask ();
else
return this->get_val ()[i];
}
template <typename storage>
template <typename T>
inline generic_wide_int <storage> &
generic_wide_int <storage>::operator = (const T &x)
{
storage::operator = (x);
return *this;
}
/* Dump the contents of the integer to stderr, for debugging. */
template <typename storage>
void
generic_wide_int <storage>::dump () const
{
unsigned int len = this->get_len ();
const HOST_WIDE_INT *val = this->get_val ();
unsigned int precision = this->get_precision ();
fprintf (stderr, "[");
if (len * HOST_BITS_PER_WIDE_INT < precision)
fprintf (stderr, "...,");
for (unsigned int i = 0; i < len - 1; ++i)
fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]);
fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n",
val[0], precision);
}
namespace wi
{
template <typename storage>
struct int_traits < generic_wide_int <storage> >
: public wi::int_traits <storage>
{
static unsigned int get_precision (const generic_wide_int <storage> &);
static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
const generic_wide_int <storage> &);
};
}
template <typename storage>
inline unsigned int
wi::int_traits < generic_wide_int <storage> >::
get_precision (const generic_wide_int <storage> &x)
{
return x.get_precision ();
}
template <typename storage>
inline wi::storage_ref
wi::int_traits < generic_wide_int <storage> >::
decompose (HOST_WIDE_INT *, unsigned int precision,
const generic_wide_int <storage> &x)
{
gcc_checking_assert (precision == x.get_precision ());
return wi::storage_ref (x.get_val (), x.get_len (), precision);
}
/* Provide the storage for a wide_int_ref. This acts like a read-only
wide_int, with the optimization that VAL is normally a pointer to
another integer's storage, so that no array copy is needed. */
template <bool SE>
struct wide_int_ref_storage : public wi::storage_ref
{
private:
/* Scratch space that can be used when decomposing the original integer.
It must live as long as this object. */
HOST_WIDE_INT scratch[2];
public:
wide_int_ref_storage (const wi::storage_ref &);
template <typename T>
wide_int_ref_storage (const T &);
template <typename T>
wide_int_ref_storage (const T &, unsigned int);
};
/* Create a reference from an existing reference. */
template <bool SE>
inline wide_int_ref_storage <SE>::
wide_int_ref_storage (const wi::storage_ref &x)
: storage_ref (x)
{}
/* Create a reference to integer X in its natural precision. Note
that the natural precision is host-dependent for primitive
types. */
template <bool SE>
template <typename T>
inline wide_int_ref_storage <SE>::wide_int_ref_storage (const T &x)
: storage_ref (wi::int_traits <T>::decompose (scratch,
wi::get_precision (x), x))
{
}
/* Create a reference to integer X in precision PRECISION. */
template <bool SE>
template <typename T>
inline wide_int_ref_storage <SE>::wide_int_ref_storage (const T &x,
unsigned int precision)
: storage_ref (wi::int_traits <T>::decompose (scratch, precision, x))
{
}
namespace wi
{
template <bool SE>
struct int_traits <wide_int_ref_storage <SE> >
{
static const enum precision_type precision_type = VAR_PRECISION;
/* wi::storage_ref can be a reference to a primitive type,
so this is the conservatively-correct setting. */
static const bool host_dependent_precision = true;
static const bool is_sign_extended = SE;
};
}
namespace wi
{
unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, unsigned int, unsigned int,
signop sgn);
unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, unsigned int, bool = true);
}
/* The storage used by wide_int. */
class GTY(()) wide_int_storage
{
private:
HOST_WIDE_INT val[WIDE_INT_MAX_ELTS];
unsigned int len;
unsigned int precision;
public:
wide_int_storage ();
template <typename T>
wide_int_storage (const T &);
/* The standard generic_wide_int storage methods. */
unsigned int get_precision () const;
const HOST_WIDE_INT *get_val () const;
unsigned int get_len () const;
HOST_WIDE_INT *write_val ();
void set_len (unsigned int, bool = false);
static wide_int from (const wide_int_ref &, unsigned int, signop);
static wide_int from_array (const HOST_WIDE_INT *, unsigned int,
unsigned int, bool = true);
static wide_int create (unsigned int);
/* FIXME: target-dependent, so should disappear. */
wide_int bswap () const;
};
namespace wi
{
template <>
struct int_traits <wide_int_storage>
{
static const enum precision_type precision_type = VAR_PRECISION;
/* Guaranteed by a static assert in the wide_int_storage constructor. */
static const bool host_dependent_precision = false;
static const bool is_sign_extended = true;
template <typename T1, typename T2>
static wide_int get_binary_result (const T1 &, const T2 &);
};
}
inline wide_int_storage::wide_int_storage () {}
/* Initialize the storage from integer X, in its natural precision.
Note that we do not allow integers with host-dependent precision
to become wide_ints; wide_ints must always be logically independent
of the host. */
template <typename T>
inline wide_int_storage::wide_int_storage (const T &x)
{
{ STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
{ STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
WIDE_INT_REF_FOR (T) xi (x);
precision = xi.precision;
wi::copy (*this, xi);
}
inline unsigned int
wide_int_storage::get_precision () const
{
return precision;
}
inline const HOST_WIDE_INT *
wide_int_storage::get_val () const
{
return val;
}
inline unsigned int
wide_int_storage::get_len () const
{
return len;
}
inline HOST_WIDE_INT *
wide_int_storage::write_val ()
{
return val;
}
inline void
wide_int_storage::set_len (unsigned int l, bool is_sign_extended)
{
len = l;
if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision)
val[len - 1] = sext_hwi (val[len - 1],
precision % HOST_BITS_PER_WIDE_INT);
}
/* Treat X as having signedness SGN and convert it to a PRECISION-bit
number. */
inline wide_int
wide_int_storage::from (const wide_int_ref &x, unsigned int precision,
signop sgn)
{
wide_int result = wide_int::create (precision);
result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
x.precision, precision, sgn));
return result;
}
/* Create a wide_int from the explicit block encoding given by VAL and
LEN. PRECISION is the precision of the integer. NEED_CANON_P is
true if the encoding may have redundant trailing blocks. */
inline wide_int
wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len,
unsigned int precision, bool need_canon_p)
{
wide_int result = wide_int::create (precision);
result.set_len (wi::from_array (result.write_val (), val, len, precision,
need_canon_p));
return result;
}
/* Return an uninitialized wide_int with precision PRECISION. */
inline wide_int
wide_int_storage::create (unsigned int precision)
{
wide_int x;
x.precision = precision;
return x;
}
template <typename T1, typename T2>
inline wide_int
wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y)
{
/* This shouldn't be used for two flexible-precision inputs. */
STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION
|| wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION);
if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION)
return wide_int::create (wi::get_precision (y));
else
return wide_int::create (wi::get_precision (x));
}
/* The storage used by FIXED_WIDE_INT (N). */
template <int N>
class GTY(()) fixed_wide_int_storage
{
private:
HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT];
unsigned int len;
public:
fixed_wide_int_storage ();
template <typename T>
fixed_wide_int_storage (const T &);
/* The standard generic_wide_int storage methods. */
unsigned int get_precision () const;
const HOST_WIDE_INT *get_val () const;
unsigned int get_len () const;
HOST_WIDE_INT *write_val ();
void set_len (unsigned int, bool = false);
static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop);
static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int,
bool = true);
};
namespace wi
{
template <int N>
struct int_traits < fixed_wide_int_storage <N> >
{
static const enum precision_type precision_type = CONST_PRECISION;
static const bool host_dependent_precision = false;
static const bool is_sign_extended = true;
static const unsigned int precision = N;
template <typename T1, typename T2>
static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &);
};
}
template <int N>
inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {}
/* Initialize the storage from integer X, in precision N. */
template <int N>
template <typename T>
inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x)
{
/* Check for type compatibility. We don't want to initialize a
fixed-width integer from something like a wide_int. */
WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED;
wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N));
}
template <int N>
inline unsigned int
fixed_wide_int_storage <N>::get_precision () const
{
return N;
}
template <int N>
inline const HOST_WIDE_INT *
fixed_wide_int_storage <N>::get_val () const
{
return val;
}
template <int N>
inline unsigned int
fixed_wide_int_storage <N>::get_len () const
{
return len;
}
template <int N>
inline HOST_WIDE_INT *
fixed_wide_int_storage <N>::write_val ()
{
return val;
}
template <int N>
inline void
fixed_wide_int_storage <N>::set_len (unsigned int l, bool)
{
len = l;
/* There are no excess bits in val[len - 1]. */
STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0);
}
/* Treat X as having signedness SGN and convert it to an N-bit number. */
template <int N>
inline FIXED_WIDE_INT (N)
fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn)
{
FIXED_WIDE_INT (N) result;
result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
x.precision, N, sgn));
return result;
}
/* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by
VAL and LEN. NEED_CANON_P is true if the encoding may have redundant
trailing blocks. */
template <int N>
inline FIXED_WIDE_INT (N)
fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val,
unsigned int len,
bool need_canon_p)
{
FIXED_WIDE_INT (N) result;
result.set_len (wi::from_array (result.write_val (), val, len,
N, need_canon_p));
return result;
}
template <int N>
template <typename T1, typename T2>
inline FIXED_WIDE_INT (N)
wi::int_traits < fixed_wide_int_storage <N> >::
get_binary_result (const T1 &, const T2 &)
{
return FIXED_WIDE_INT (N) ();
}
/* A reference to one element of a trailing_wide_ints structure. */
class trailing_wide_int_storage
{
private:
/* The precision of the integer, which is a fixed property of the
parent trailing_wide_ints. */
unsigned int m_precision;
/* A pointer to the length field. */
unsigned char *m_len;
/* A pointer to the HWI array. There are enough elements to hold all
values of precision M_PRECISION. */
HOST_WIDE_INT *m_val;
public:
trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *);
/* The standard generic_wide_int storage methods. */
unsigned int get_len () const;
unsigned int get_precision () const;
const HOST_WIDE_INT *get_val () const;
HOST_WIDE_INT *write_val ();
void set_len (unsigned int, bool = false);
template <typename T>
trailing_wide_int_storage &operator = (const T &);
};
typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int;
/* trailing_wide_int behaves like a wide_int. */
namespace wi
{
template <>
struct int_traits <trailing_wide_int_storage>
: public int_traits <wide_int_storage> {};
}
/* An array of N wide_int-like objects that can be put at the end of
a variable-sized structure. Use extra_size to calculate how many
bytes beyond the sizeof need to be allocated. Use set_precision
to initialize the structure. */
template <int N>
class GTY(()) trailing_wide_ints
{
private:
/* The shared precision of each number. */
unsigned short m_precision;
/* The shared maximum length of each number. */
unsigned char m_max_len;
/* The current length of each number. */
unsigned char m_len[N];
/* The variable-length part of the structure, which always contains
at least one HWI. Element I starts at index I * M_MAX_LEN. */
HOST_WIDE_INT m_val[1];
public:
void set_precision (unsigned int);
trailing_wide_int operator [] (unsigned int);
static size_t extra_size (unsigned int);
};
inline trailing_wide_int_storage::
trailing_wide_int_storage (unsigned int precision, unsigned char *len,
HOST_WIDE_INT *val)
: m_precision (precision), m_len (len), m_val (val)
{
}
inline unsigned int
trailing_wide_int_storage::get_len () const
{
return *m_len;
}
inline unsigned int
trailing_wide_int_storage::get_precision () const
{
return m_precision;
}
inline const HOST_WIDE_INT *
trailing_wide_int_storage::get_val () const
{
return m_val;
}
inline HOST_WIDE_INT *
trailing_wide_int_storage::write_val ()
{
return m_val;
}
inline void
trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended)
{
*m_len = len;
if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision)
m_val[len - 1] = sext_hwi (m_val[len - 1],
m_precision % HOST_BITS_PER_WIDE_INT);
}
template <typename T>
inline trailing_wide_int_storage &
trailing_wide_int_storage::operator = (const T &x)
{
WIDE_INT_REF_FOR (T) xi (x, m_precision);
wi::copy (*this, xi);
return *this;
}
/* Initialize the structure and record that all elements have precision
PRECISION. */
template <int N>
inline void
trailing_wide_ints <N>::set_precision (unsigned int precision)
{
m_precision = precision;
m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
/ HOST_BITS_PER_WIDE_INT);
}
/* Return a reference to element INDEX. */
template <int N>
inline trailing_wide_int
trailing_wide_ints <N>::operator [] (unsigned int index)
{
return trailing_wide_int_storage (m_precision, &m_len[index],
&m_val[index * m_max_len]);
}
/* Return how many extra bytes need to be added to the end of the structure
in order to handle N wide_ints of precision PRECISION. */
template <int N>
inline size_t
trailing_wide_ints <N>::extra_size (unsigned int precision)
{
unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
/ HOST_BITS_PER_WIDE_INT);
return (N * max_len - 1) * sizeof (HOST_WIDE_INT);
}
/* This macro is used in structures that end with a trailing_wide_ints field
called FIELD. It declares get_NAME() and set_NAME() methods to access
element I of FIELD. */
#define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \
trailing_wide_int get_##NAME () { return FIELD[I]; } \
template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; }
namespace wi
{
/* Implementation of int_traits for primitive integer types like "int". */
template <typename T, bool signed_p>
struct primitive_int_traits
{
static const enum precision_type precision_type = FLEXIBLE_PRECISION;
static const bool host_dependent_precision = true;
static const bool is_sign_extended = true;
static unsigned int get_precision (T);
static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T);
};
}
template <typename T, bool signed_p>
inline unsigned int
wi::primitive_int_traits <T, signed_p>::get_precision (T)
{
return sizeof (T) * CHAR_BIT;
}
template <typename T, bool signed_p>
inline wi::storage_ref
wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch,
unsigned int precision, T x)
{
scratch[0] = x;
if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
return wi::storage_ref (scratch, 1, precision);
scratch[1] = 0;
return wi::storage_ref (scratch, 2, precision);
}
/* Allow primitive C types to be used in wi:: routines. */
namespace wi
{
template <>
struct int_traits <int>
: public primitive_int_traits <int, true> {};
template <>
struct int_traits <unsigned int>
: public primitive_int_traits <unsigned int, false> {};
template <>
struct int_traits <long>
: public primitive_int_traits <long, true> {};
template <>
struct int_traits <unsigned long>
: public primitive_int_traits <unsigned long, false> {};
#if defined HAVE_LONG_LONG
template <>
struct int_traits <long long>
: public primitive_int_traits <long long, true> {};
template <>
struct int_traits <unsigned long long>
: public primitive_int_traits <unsigned long long, false> {};
#endif
}
namespace wi
{
/* Stores HWI-sized integer VAL, treating it as having signedness SGN
and precision PRECISION. */
struct hwi_with_prec
{
hwi_with_prec (HOST_WIDE_INT, unsigned int, signop);
HOST_WIDE_INT val;
unsigned int precision;
signop sgn;
};
hwi_with_prec shwi (HOST_WIDE_INT, unsigned int);
hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int);
hwi_with_prec minus_one (unsigned int);
hwi_with_prec zero (unsigned int);
hwi_with_prec one (unsigned int);
hwi_with_prec two (unsigned int);
}
inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p,
signop s)
: val (v), precision (p), sgn (s)
{
}
/* Return a signed integer that has value VAL and precision PRECISION. */
inline wi::hwi_with_prec
wi::shwi (HOST_WIDE_INT val, unsigned int precision)
{
return hwi_with_prec (val, precision, SIGNED);
}
/* Return an unsigned integer that has value VAL and precision PRECISION. */
inline wi::hwi_with_prec
wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision)
{
return hwi_with_prec (val, precision, UNSIGNED);
}
/* Return a wide int of -1 with precision PRECISION. */
inline wi::hwi_with_prec
wi::minus_one (unsigned int precision)
{
return wi::shwi (-1, precision);
}
/* Return a wide int of 0 with precision PRECISION. */
inline wi::hwi_with_prec
wi::zero (unsigned int precision)
{
return wi::shwi (0, precision);
}
/* Return a wide int of 1 with precision PRECISION. */
inline wi::hwi_with_prec
wi::one (unsigned int precision)
{
return wi::shwi (1, precision);
}
/* Return a wide int of 2 with precision PRECISION. */
inline wi::hwi_with_prec
wi::two (unsigned int precision)
{
return wi::shwi (2, precision);
}
namespace wi
{
template <>
struct int_traits <wi::hwi_with_prec>
{
static const enum precision_type precision_type = VAR_PRECISION;
/* hwi_with_prec has an explicitly-given precision, rather than the
precision of HOST_WIDE_INT. */
static const bool host_dependent_precision = false;
static const bool is_sign_extended = true;
static unsigned int get_precision (const wi::hwi_with_prec &);
static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
const wi::hwi_with_prec &);
};
}
inline unsigned int
wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x)
{
return x.precision;
}
inline wi::storage_ref
wi::int_traits <wi::hwi_with_prec>::
decompose (HOST_WIDE_INT *scratch, unsigned int precision,
const wi::hwi_with_prec &x)
{
gcc_checking_assert (precision == x.precision);
scratch[0] = x.val;
if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
return wi::storage_ref (scratch, 1, precision);
scratch[1] = 0;
return wi::storage_ref (scratch, 2, precision);
}
/* Private functions for handling large cases out of line. They take
individual length and array parameters because that is cheaper for
the inline caller than constructing an object on the stack and
passing a reference to it. (Although many callers use wide_int_refs,
we generally want those to be removed by SRA.) */
namespace wi
{
bool eq_p_large (const HOST_WIDE_INT *, unsigned int,
const HOST_WIDE_INT *, unsigned int, unsigned int);
bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
const HOST_WIDE_INT *, unsigned int);
bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
const HOST_WIDE_INT *, unsigned int);
int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
const HOST_WIDE_INT *, unsigned int);
int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
const HOST_WIDE_INT *, unsigned int);
unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int,
unsigned int, unsigned int);
unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int,
unsigned int, unsigned int);
unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, unsigned int, unsigned int);
unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, unsigned int, unsigned int);
unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, unsigned int, unsigned int,
unsigned int);
unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, unsigned int, unsigned int,
unsigned int);
unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
const HOST_WIDE_INT *, unsigned int, unsigned int);
unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, const HOST_WIDE_INT *,
unsigned int, unsigned int);
unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
const HOST_WIDE_INT *, unsigned int, unsigned int);
unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, const HOST_WIDE_INT *,
unsigned int, unsigned int);
unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
const HOST_WIDE_INT *, unsigned int, unsigned int);
unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
const HOST_WIDE_INT *, unsigned int, unsigned int,
signop, bool *);
unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
const HOST_WIDE_INT *, unsigned int, unsigned int,
signop, bool *);
unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, const HOST_WIDE_INT *,
unsigned int, unsigned int, signop, bool *,
bool);
unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *,
HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, unsigned int,
const HOST_WIDE_INT *,
unsigned int, unsigned int,
signop, bool *);
}
/* Return the number of bits that integer X can hold. */
template <typename T>
inline unsigned int
wi::get_precision (const T &x)
{
return wi::int_traits <T>::get_precision (x);
}
/* Return the number of bits that the result of a binary operation can
hold when the input operands are X and Y. */
template <typename T1, typename T2>
inline unsigned int
wi::get_binary_precision (const T1 &x, const T2 &y)
{
return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>::
get_binary_result (x, y));
}
/* Copy the contents of Y to X, but keeping X's current precision. */
template <typename T1, typename T2>
inline void
wi::copy (T1 &x, const T2 &y)
{
HOST_WIDE_INT *xval = x.write_val ();
const HOST_WIDE_INT *yval = y.get_val ();
unsigned int len = y.get_len ();
unsigned int i = 0;
do
xval[i] = yval[i];
while (++i < len);
x.set_len (len, y.is_sign_extended);
}
/* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */
template <typename T>
inline bool
wi::fits_shwi_p (const T &x)
{
WIDE_INT_REF_FOR (T) xi (x);
return xi.len == 1;
}
/* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of
precision. */
template <typename T>
inline bool
wi::fits_uhwi_p (const T &x)
{
WIDE_INT_REF_FOR (T) xi (x);
if (xi.precision <= HOST_BITS_PER_WIDE_INT)
return true;
if (xi.len == 1)
return xi.slow () >= 0;
return xi.len == 2 && xi.uhigh () == 0;
}
/* Return true if X is negative based on the interpretation of SGN.
For UNSIGNED, this is always false. */
template <typename T>
inline bool
wi::neg_p (const T &x, signop sgn)
{
WIDE_INT_REF_FOR (T) xi (x);
if (sgn == UNSIGNED)
return false;
return xi.sign_mask () < 0;
}
/* Return -1 if the top bit of X is set and 0 if the top bit is clear. */
template <typename T>
inline HOST_WIDE_INT
wi::sign_mask (const T &x)
{
WIDE_INT_REF_FOR (T) xi (x);
return xi.sign_mask ();
}
/* Return true if X == Y. X and Y must be binary-compatible. */
template <typename T1, typename T2>
inline bool
wi::eq_p (const T1 &x, const T2 &y)
{
unsigned int precision = get_binary_precision (x, y);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
if (xi.is_sign_extended && yi.is_sign_extended)
{
/* This case reduces to array equality. */
if (xi.len != yi.len)
return false;
unsigned int i = 0;
do
if (xi.val[i] != yi.val[i])
return false;
while (++i != xi.len);
return true;
}
if (__builtin_expect (yi.len == 1, true))
{
/* XI is only equal to YI if it too has a single HWI. */
if (xi.len != 1)
return false;
/* Excess bits in xi.val[0] will be signs or zeros, so comparisons
with 0 are simple. */
if (STATIC_CONSTANT_P (yi.val[0] == 0))
return xi.val[0] == 0;
/* Otherwise flush out any excess bits first. */
unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0];
int excess = HOST_BITS_PER_WIDE_INT - precision;
if (excess > 0)
diff <<= excess;
return diff == 0;
}
return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision);
}
/* Return true if X != Y. X and Y must be binary-compatible. */
template <typename T1, typename T2>
inline bool
wi::ne_p (const T1 &x, const T2 &y)
{
return !eq_p (x, y);
}
/* Return true if X < Y when both are treated as signed values. */
template <typename T1, typename T2>
inline bool
wi::lts_p (const T1 &x, const T2 &y)
{
unsigned int precision = get_binary_precision (x, y);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
/* We optimize x < y, where y is 64 or fewer bits. */
if (wi::fits_shwi_p (yi))
{
/* Make lts_p (x, 0) as efficient as wi::neg_p (x). */
if (STATIC_CONSTANT_P (yi.val[0] == 0))
return neg_p (xi);
/* If x fits directly into a shwi, we can compare directly. */
if (wi::fits_shwi_p (xi))
return xi.to_shwi () < yi.to_shwi ();
/* If x doesn't fit and is negative, then it must be more
negative than any value in y, and hence smaller than y. */
if (neg_p (xi))
return true;
/* If x is positive, then it must be larger than any value in y,
and hence greater than y. */
return false;
}
/* Optimize the opposite case, if it can be detected at compile time. */
if (STATIC_CONSTANT_P (xi.len == 1))
/* If YI is negative it is lower than the least HWI.
If YI is positive it is greater than the greatest HWI. */
return !neg_p (yi);
return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len);
}
/* Return true if X < Y when both are treated as unsigned values. */
template <typename T1, typename T2>
inline bool
wi::ltu_p (const T1 &x, const T2 &y)
{
unsigned int precision = get_binary_precision (x, y);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
/* Optimize comparisons with constants. */
if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0];
if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0];
/* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
values does not change the result. */
if (__builtin_expect (xi.len + yi.len == 2, true))
{
unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
return xl < yl;
}
return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len);
}
/* Return true if X < Y. Signedness of X and Y is indicated by SGN. */
template <typename T1, typename T2>
inline bool
wi::lt_p (const T1 &x, const T2 &y, signop sgn)
{
if (sgn == SIGNED)
return lts_p (x, y);
else
return ltu_p (x, y);
}
/* Return true if X <= Y when both are treated as signed values. */
template <typename T1, typename T2>
inline bool
wi::les_p (const T1 &x, const T2 &y)
{
return !lts_p (y, x);
}
/* Return true if X <= Y when both are treated as unsigned values. */
template <typename T1, typename T2>
inline bool
wi::leu_p (const T1 &x, const T2 &y)
{
return !ltu_p (y, x);
}
/* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */
template <typename T1, typename T2>
inline bool
wi::le_p (const T1 &x, const T2 &y, signop sgn)
{
if (sgn == SIGNED)
return les_p (x, y);
else
return leu_p (x, y);
}
/* Return true if X > Y when both are treated as signed values. */
template <typename T1, typename T2>
inline bool
wi::gts_p (const T1 &x, const T2 &y)
{
return lts_p (y, x);
}
/* Return true if X > Y when both are treated as unsigned values. */
template <typename T1, typename T2>
inline bool
wi::gtu_p (const T1 &x, const T2 &y)
{
return ltu_p (y, x);
}
/* Return true if X > Y. Signedness of X and Y is indicated by SGN. */
template <typename T1, typename T2>
inline bool
wi::gt_p (const T1 &x, const T2 &y, signop sgn)
{
if (sgn == SIGNED)
return gts_p (x, y);
else
return gtu_p (x, y);
}
/* Return true if X >= Y when both are treated as signed values. */
template <typename T1, typename T2>
inline bool
wi::ges_p (const T1 &x, const T2 &y)
{
return !lts_p (x, y);
}
/* Return true if X >= Y when both are treated as unsigned values. */
template <typename T1, typename T2>
inline bool
wi::geu_p (const T1 &x, const T2 &y)
{
return !ltu_p (x, y);
}
/* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */
template <typename T1, typename T2>
inline bool
wi::ge_p (const T1 &x, const T2 &y, signop sgn)
{
if (sgn == SIGNED)
return ges_p (x, y);
else
return geu_p (x, y);
}
/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
as signed values. */
template <typename T1, typename T2>
inline int
wi::cmps (const T1 &x, const T2 &y)
{
unsigned int precision = get_binary_precision (x, y);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
if (wi::fits_shwi_p (yi))
{
/* Special case for comparisons with 0. */
if (STATIC_CONSTANT_P (yi.val[0] == 0))
return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0);
/* If x fits into a signed HWI, we can compare directly. */
if (wi::fits_shwi_p (xi))
{
HOST_WIDE_INT xl = xi.to_shwi ();
HOST_WIDE_INT yl = yi.to_shwi ();
return xl < yl ? -1 : xl > yl;
}
/* If x doesn't fit and is negative, then it must be more
negative than any signed HWI, and hence smaller than y. */
if (neg_p (xi))
return -1;
/* If x is positive, then it must be larger than any signed HWI,
and hence greater than y. */
return 1;
}
/* Optimize the opposite case, if it can be detected at compile time. */
if (STATIC_CONSTANT_P (xi.len == 1))
/* If YI is negative it is lower than the least HWI.
If YI is positive it is greater than the greatest HWI. */
return neg_p (yi) ? 1 : -1;
return cmps_large (xi.val, xi.len, precision, yi.val, yi.len);
}
/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
as unsigned values. */
template <typename T1, typename T2>
inline int
wi::cmpu (const T1 &x, const T2 &y)
{
unsigned int precision = get_binary_precision (x, y);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
/* Optimize comparisons with constants. */
if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
{
/* If XI doesn't fit in a HWI then it must be larger than YI. */
if (xi.len != 1)
return 1;
/* Otherwise compare directly. */
unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
unsigned HOST_WIDE_INT yl = yi.val[0];
return xl < yl ? -1 : xl > yl;
}
if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
{
/* If YI doesn't fit in a HWI then it must be larger than XI. */
if (yi.len != 1)
return -1;
/* Otherwise compare directly. */
unsigned HOST_WIDE_INT xl = xi.val[0];
unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
return xl < yl ? -1 : xl > yl;
}
/* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
values does not change the result. */
if (__builtin_expect (xi.len + yi.len == 2, true))
{
unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
return xl < yl ? -1 : xl > yl;
}
return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len);
}
/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of
X and Y indicated by SGN. */
template <typename T1, typename T2>
inline int
wi::cmp (const T1 &x, const T2 &y, signop sgn)
{
if (sgn == SIGNED)
return cmps (x, y);
else
return cmpu (x, y);
}
/* Return ~x. */
template <typename T>
inline WI_UNARY_RESULT (T)
wi::bit_not (const T &x)
{
WI_UNARY_RESULT_VAR (result, val, T, x);
WIDE_INT_REF_FOR (T) xi (x, get_precision (result));
for (unsigned int i = 0; i < xi.len; ++i)
val[i] = ~xi.val[i];
result.set_len (xi.len);
return result;
}
/* Return -x. */
template <typename T>
inline WI_UNARY_RESULT (T)
wi::neg (const T &x)
{
return sub (0, x);
}
/* Return -x. Indicate in *OVERFLOW if X is the minimum signed value. */
template <typename T>
inline WI_UNARY_RESULT (T)
wi::neg (const T &x, bool *overflow)
{
*overflow = only_sign_bit_p (x);
return sub (0, x);
}
/* Return the absolute value of x. */
template <typename T>
inline WI_UNARY_RESULT (T)
wi::abs (const T &x)
{
return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x);
}
/* Return the result of sign-extending the low OFFSET bits of X. */
template <typename T>
inline WI_UNARY_RESULT (T)
wi::sext (const T &x, unsigned int offset)
{
WI_UNARY_RESULT_VAR (result, val, T, x);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T) xi (x, precision);
if (offset <= HOST_BITS_PER_WIDE_INT)
{
val[0] = sext_hwi (xi.ulow (), offset);
result.set_len (1, true);
}
else
result.set_len (sext_large (val, xi.val, xi.len, precision, offset));
return result;
}
/* Return the result of zero-extending the low OFFSET bits of X. */
template <typename T>
inline WI_UNARY_RESULT (T)
wi::zext (const T &x, unsigned int offset)
{
WI_UNARY_RESULT_VAR (result, val, T, x);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T) xi (x, precision);
/* This is not just an optimization, it is actually required to
maintain canonization. */
if (offset >= precision)
{
wi::copy (result, xi);
return result;
}
/* In these cases we know that at least the top bit will be clear,
so no sign extension is necessary. */
if (offset < HOST_BITS_PER_WIDE_INT)
{
val[0] = zext_hwi (xi.ulow (), offset);
result.set_len (1, true);
}
else
result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true);
return result;
}
/* Return the result of extending the low OFFSET bits of X according to
signedness SGN. */
template <typename T>
inline WI_UNARY_RESULT (T)
wi::ext (const T &x, unsigned int offset, signop sgn)
{
return sgn == SIGNED ? sext (x, offset) : zext (x, offset);
}
/* Return an integer that represents X | (1 << bit). */
template <typename T>
inline WI_UNARY_RESULT (T)
wi::set_bit (const T &x, unsigned int bit)
{
WI_UNARY_RESULT_VAR (result, val, T, x);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T) xi (x, precision);
if (precision <= HOST_BITS_PER_WIDE_INT)
{
val[0] = xi.ulow () | ((unsigned HOST_WIDE_INT) 1 << bit);
result.set_len (1);
}
else
result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit));
return result;
}
/* Return the mininum of X and Y, treating them both as having
signedness SGN. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::min (const T1 &x, const T2 &y, signop sgn)
{
WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
unsigned int precision = get_precision (result);
if (wi::le_p (x, y, sgn))
wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
else
wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
return result;
}
/* Return the minimum of X and Y, treating both as signed values. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::smin (const T1 &x, const T2 &y)
{
return wi::min (x, y, SIGNED);
}
/* Return the minimum of X and Y, treating both as unsigned values. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::umin (const T1 &x, const T2 &y)
{
return wi::min (x, y, UNSIGNED);
}
/* Return the maxinum of X and Y, treating them both as having
signedness SGN. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::max (const T1 &x, const T2 &y, signop sgn)
{
WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
unsigned int precision = get_precision (result);
if (wi::ge_p (x, y, sgn))
wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
else
wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
return result;
}
/* Return the maximum of X and Y, treating both as signed values. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::smax (const T1 &x, const T2 &y)
{
return wi::max (x, y, SIGNED);
}
/* Return the maximum of X and Y, treating both as unsigned values. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::umax (const T1 &x, const T2 &y)
{
return wi::max (x, y, UNSIGNED);
}
/* Return X & Y. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::bit_and (const T1 &x, const T2 &y)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
if (__builtin_expect (xi.len + yi.len == 2, true))
{
val[0] = xi.ulow () & yi.ulow ();
result.set_len (1, is_sign_extended);
}
else
result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len,
precision), is_sign_extended);
return result;
}
/* Return X & ~Y. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::bit_and_not (const T1 &x, const T2 &y)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
if (__builtin_expect (xi.len + yi.len == 2, true))
{
val[0] = xi.ulow () & ~yi.ulow ();
result.set_len (1, is_sign_extended);
}
else
result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len,
precision), is_sign_extended);
return result;
}
/* Return X | Y. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::bit_or (const T1 &x, const T2 &y)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
if (__builtin_expect (xi.len + yi.len == 2, true))
{
val[0] = xi.ulow () | yi.ulow ();
result.set_len (1, is_sign_extended);
}
else
result.set_len (or_large (val, xi.val, xi.len,
yi.val, yi.len, precision), is_sign_extended);
return result;
}
/* Return X | ~Y. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::bit_or_not (const T1 &x, const T2 &y)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
if (__builtin_expect (xi.len + yi.len == 2, true))
{
val[0] = xi.ulow () | ~yi.ulow ();
result.set_len (1, is_sign_extended);
}
else
result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len,
precision), is_sign_extended);
return result;
}
/* Return X ^ Y. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::bit_xor (const T1 &x, const T2 &y)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
if (__builtin_expect (xi.len + yi.len == 2, true))
{
val[0] = xi.ulow () ^ yi.ulow ();
result.set_len (1, is_sign_extended);
}
else
result.set_len (xor_large (val, xi.val, xi.len,
yi.val, yi.len, precision), is_sign_extended);
return result;
}
/* Return X + Y. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::add (const T1 &x, const T2 &y)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
if (precision <= HOST_BITS_PER_WIDE_INT)
{
val[0] = xi.ulow () + yi.ulow ();
result.set_len (1);
}
/* If the precision is known at compile time to be greater than
HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
knowing that (a) all bits in those HWIs are significant and
(b) the result has room for at least two HWIs. This provides
a fast path for things like offset_int and widest_int.
The STATIC_CONSTANT_P test prevents this path from being
used for wide_ints. wide_ints with precisions greater than
HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
point handling them inline. */
else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
&& __builtin_expect (xi.len + yi.len == 2, true))
{
unsigned HOST_WIDE_INT xl = xi.ulow ();
unsigned HOST_WIDE_INT yl = yi.ulow ();
unsigned HOST_WIDE_INT resultl = xl + yl;
val[0] = resultl;
val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl))
>> (HOST_BITS_PER_WIDE_INT - 1)));
}
else
result.set_len (add_large (val, xi.val, xi.len,
yi.val, yi.len, precision,
UNSIGNED, 0));
return result;
}
/* Return X + Y. Treat X and Y as having the signednes given by SGN
and indicate in *OVERFLOW whether the operation overflowed. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::add (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
if (precision <= HOST_BITS_PER_WIDE_INT)
{
unsigned HOST_WIDE_INT xl = xi.ulow ();
unsigned HOST_WIDE_INT yl = yi.ulow ();
unsigned HOST_WIDE_INT resultl = xl + yl;
if (sgn == SIGNED)
*overflow = (((resultl ^ xl) & (resultl ^ yl))
>> (precision - 1)) & 1;
else
*overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
< (xl << (HOST_BITS_PER_WIDE_INT - precision)));
val[0] = resultl;
result.set_len (1);
}
else
result.set_len (add_large (val, xi.val, xi.len,
yi.val, yi.len, precision,
sgn, overflow));
return result;
}
/* Return X - Y. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::sub (const T1 &x, const T2 &y)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
if (precision <= HOST_BITS_PER_WIDE_INT)
{
val[0] = xi.ulow () - yi.ulow ();
result.set_len (1);
}
/* If the precision is known at compile time to be greater than
HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
knowing that (a) all bits in those HWIs are significant and
(b) the result has room for at least two HWIs. This provides
a fast path for things like offset_int and widest_int.
The STATIC_CONSTANT_P test prevents this path from being
used for wide_ints. wide_ints with precisions greater than
HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
point handling them inline. */
else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
&& __builtin_expect (xi.len + yi.len == 2, true))
{
unsigned HOST_WIDE_INT xl = xi.ulow ();
unsigned HOST_WIDE_INT yl = yi.ulow ();
unsigned HOST_WIDE_INT resultl = xl - yl;
val[0] = resultl;
val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
result.set_len (1 + (((resultl ^ xl) & (xl ^ yl))
>> (HOST_BITS_PER_WIDE_INT - 1)));
}
else
result.set_len (sub_large (val, xi.val, xi.len,
yi.val, yi.len, precision,
UNSIGNED, 0));
return result;
}
/* Return X - Y. Treat X and Y as having the signednes given by SGN
and indicate in *OVERFLOW whether the operation overflowed. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::sub (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
if (precision <= HOST_BITS_PER_WIDE_INT)
{
unsigned HOST_WIDE_INT xl = xi.ulow ();
unsigned HOST_WIDE_INT yl = yi.ulow ();
unsigned HOST_WIDE_INT resultl = xl - yl;
if (sgn == SIGNED)
*overflow = (((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1;
else
*overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
> (xl << (HOST_BITS_PER_WIDE_INT - precision)));
val[0] = resultl;
result.set_len (1);
}
else
result.set_len (sub_large (val, xi.val, xi.len,
yi.val, yi.len, precision,
sgn, overflow));
return result;
}
/* Return X * Y. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::mul (const T1 &x, const T2 &y)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
if (precision <= HOST_BITS_PER_WIDE_INT)
{
val[0] = xi.ulow () * yi.ulow ();
result.set_len (1);
}
else
result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len,
precision, UNSIGNED, 0, false));
return result;
}
/* Return X * Y. Treat X and Y as having the signednes given by SGN
and indicate in *OVERFLOW whether the operation overflowed. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::mul (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
result.set_len (mul_internal (val, xi.val, xi.len,
yi.val, yi.len, precision,
sgn, overflow, false));
return result;
}
/* Return X * Y, treating both X and Y as signed values. Indicate in
*OVERFLOW whether the operation overflowed. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::smul (const T1 &x, const T2 &y, bool *overflow)
{
return mul (x, y, SIGNED, overflow);
}
/* Return X * Y, treating both X and Y as unsigned values. Indicate in
*OVERFLOW whether the operation overflowed. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::umul (const T1 &x, const T2 &y, bool *overflow)
{
return mul (x, y, UNSIGNED, overflow);
}
/* Perform a widening multiplication of X and Y, extending the values
according to SGN, and return the high part of the result. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::mul_high (const T1 &x, const T2 &y, signop sgn)
{
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y, precision);
result.set_len (mul_internal (val, xi.val, xi.len,
yi.val, yi.len, precision,
sgn, 0, true));
return result;
}
/* Return X / Y, rouding towards 0. Treat X and Y as having the
signedness given by SGN. Indicate in *OVERFLOW if the result
overflows. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::div_trunc (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
unsigned int precision = get_precision (quotient);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y);
quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len,
precision,
yi.val, yi.len, yi.precision,
sgn, overflow));
return quotient;
}
/* Return X / Y, rouding towards 0. Treat X and Y as signed values. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::sdiv_trunc (const T1 &x, const T2 &y)
{
return div_trunc (x, y, SIGNED);
}
/* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::udiv_trunc (const T1 &x, const T2 &y)
{
return div_trunc (x, y, UNSIGNED);
}
/* Return X / Y, rouding towards -inf. Treat X and Y as having the
signedness given by SGN. Indicate in *OVERFLOW if the result
overflows. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::div_floor (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
unsigned int precision = get_precision (quotient);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y);
unsigned int remainder_len;
quotient.set_len (divmod_internal (quotient_val,
&remainder_len, remainder_val,
xi.val, xi.len, precision,
yi.val, yi.len, yi.precision, sgn,
overflow));
remainder.set_len (remainder_len);
if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
return quotient - 1;
return quotient;
}
/* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::sdiv_floor (const T1 &x, const T2 &y)
{
return div_floor (x, y, SIGNED);
}
/* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */
/* ??? Why do we have both this and udiv_trunc. Aren't they the same? */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::udiv_floor (const T1 &x, const T2 &y)
{
return div_floor (x, y, UNSIGNED);
}
/* Return X / Y, rouding towards +inf. Treat X and Y as having the
signedness given by SGN. Indicate in *OVERFLOW if the result
overflows. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::div_ceil (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
unsigned int precision = get_precision (quotient);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y);
unsigned int remainder_len;
quotient.set_len (divmod_internal (quotient_val,
&remainder_len, remainder_val,
xi.val, xi.len, precision,
yi.val, yi.len, yi.precision, sgn,
overflow));
remainder.set_len (remainder_len);
if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
return quotient + 1;
return quotient;
}
/* Return X / Y, rouding towards nearest with ties away from zero.
Treat X and Y as having the signedness given by SGN. Indicate
in *OVERFLOW if the result overflows. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::div_round (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
unsigned int precision = get_precision (quotient);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y);
unsigned int remainder_len;
quotient.set_len (divmod_internal (quotient_val,
&remainder_len, remainder_val,
xi.val, xi.len, precision,
yi.val, yi.len, yi.precision, sgn,
overflow));
remainder.set_len (remainder_len);
if (remainder != 0)
{
if (sgn == SIGNED)
{
WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
{
if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
return quotient - 1;
else
return quotient + 1;
}
}
else
{
if (wi::geu_p (remainder, wi::sub (y, remainder)))
return quotient + 1;
}
}
return quotient;
}
/* Return X / Y, rouding towards 0. Treat X and Y as having the
signedness given by SGN. Store the remainder in *REMAINDER_PTR. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn,
WI_BINARY_RESULT (T1, T2) *remainder_ptr)
{
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
unsigned int precision = get_precision (quotient);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y);
unsigned int remainder_len;
quotient.set_len (divmod_internal (quotient_val,
&remainder_len, remainder_val,
xi.val, xi.len, precision,
yi.val, yi.len, yi.precision, sgn, 0));
remainder.set_len (remainder_len);
*remainder_ptr = remainder;
return quotient;
}
/* Compute the greatest common divisor of two numbers A and B using
Euclid's algorithm. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::gcd (const T1 &a, const T2 &b, signop sgn)
{
T1 x, y, z;
x = wi::abs (a);
y = wi::abs (b);
while (gt_p (x, 0, sgn))
{
z = mod_trunc (y, x, sgn);
y = x;
x = z;
}
return y;
}
/* Compute X / Y, rouding towards 0, and return the remainder.
Treat X and Y as having the signedness given by SGN. Indicate
in *OVERFLOW if the division overflows. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
unsigned int precision = get_precision (remainder);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y);
unsigned int remainder_len;
divmod_internal (0, &remainder_len, remainder_val,
xi.val, xi.len, precision,
yi.val, yi.len, yi.precision, sgn, overflow);
remainder.set_len (remainder_len);
return remainder;
}
/* Compute X / Y, rouding towards 0, and return the remainder.
Treat X and Y as signed values. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::smod_trunc (const T1 &x, const T2 &y)
{
return mod_trunc (x, y, SIGNED);
}
/* Compute X / Y, rouding towards 0, and return the remainder.
Treat X and Y as unsigned values. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::umod_trunc (const T1 &x, const T2 &y)
{
return mod_trunc (x, y, UNSIGNED);
}
/* Compute X / Y, rouding towards -inf, and return the remainder.
Treat X and Y as having the signedness given by SGN. Indicate
in *OVERFLOW if the division overflows. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::mod_floor (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
unsigned int precision = get_precision (quotient);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y);
unsigned int remainder_len;
quotient.set_len (divmod_internal (quotient_val,
&remainder_len, remainder_val,
xi.val, xi.len, precision,
yi.val, yi.len, yi.precision, sgn,
overflow));
remainder.set_len (remainder_len);
if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
return remainder + y;
return remainder;
}
/* Compute X / Y, rouding towards -inf, and return the remainder.
Treat X and Y as unsigned values. */
/* ??? Why do we have both this and umod_trunc. Aren't they the same? */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::umod_floor (const T1 &x, const T2 &y)
{
return mod_floor (x, y, UNSIGNED);
}
/* Compute X / Y, rouding towards +inf, and return the remainder.
Treat X and Y as having the signedness given by SGN. Indicate
in *OVERFLOW if the division overflows. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
unsigned int precision = get_precision (quotient);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y);
unsigned int remainder_len;
quotient.set_len (divmod_internal (quotient_val,
&remainder_len, remainder_val,
xi.val, xi.len, precision,
yi.val, yi.len, yi.precision, sgn,
overflow));
remainder.set_len (remainder_len);
if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
return remainder - y;
return remainder;
}
/* Compute X / Y, rouding towards nearest with ties away from zero,
and return the remainder. Treat X and Y as having the signedness
given by SGN. Indicate in *OVERFLOW if the division overflows. */
template <typename T1, typename T2>
inline WI_BINARY_RESULT (T1, T2)
wi::mod_round (const T1 &x, const T2 &y, signop sgn, bool *overflow)
{
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
unsigned int precision = get_precision (quotient);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y);
unsigned int remainder_len;
quotient.set_len (divmod_internal (quotient_val,
&remainder_len, remainder_val,
xi.val, xi.len, precision,
yi.val, yi.len, yi.precision, sgn,
overflow));
remainder.set_len (remainder_len);
if (remainder != 0)
{
if (sgn == SIGNED)
{
WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
{
if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
return remainder + y;
else
return remainder - y;
}
}
else
{
if (wi::geu_p (remainder, wi::sub (y, remainder)))
return remainder - y;
}
}
return remainder;
}
/* Return true if X is a multiple of Y. Treat X and Y as having the
signedness given by SGN. */
template <typename T1, typename T2>
inline bool
wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn)
{
return wi::mod_trunc (x, y, sgn) == 0;
}
/* Return true if X is a multiple of Y, storing X / Y in *RES if so.
Treat X and Y as having the signedness given by SGN. */
template <typename T1, typename T2>
inline bool
wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn,
WI_BINARY_RESULT (T1, T2) *res)
{
WI_BINARY_RESULT (T1, T2) remainder;
WI_BINARY_RESULT (T1, T2) quotient
= divmod_trunc (x, y, sgn, &remainder);
if (remainder == 0)
{
*res = quotient;
return true;
}
return false;
}
/* Return X << Y. Return 0 if Y is greater than or equal to
the precision of X. */
template <typename T1, typename T2>
inline WI_UNARY_RESULT (T1)
wi::lshift (const T1 &x, const T2 &y)
{
WI_UNARY_RESULT_VAR (result, val, T1, x);
unsigned int precision = get_precision (result);
WIDE_INT_REF_FOR (T1) xi (x, precision);
WIDE_INT_REF_FOR (T2) yi (y);
/* Handle the simple cases quickly. */
if (geu_p (yi, precision))
{
val[0] = 0;
result.set_len (1);
}
else
{
unsigned int shift = yi.to_uhwi ();
/* For fixed-precision integers like offset_int and widest_int,
handle the case where the shift value is constant and the
result is a single nonnegative HWI (meaning that we don't
need to worry about val[1]). This is particularly common
for converting a byte count to a bit count.
For variable-precision integers like wide_int, handle HWI
and sub-HWI integers inline. */
if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1)
&& xi.len == 1
&& xi.val[0] <= (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT)
HOST_WIDE_INT_MAX >> shift))
: precision <= HOST_BITS_PER_WIDE_INT)
{
val[0] = xi.ulow () << shift;
result.set_len (1);
}
else
result.set_len (lshift_large (val, xi.val, xi.len,
precision, shift));
}
return result;
}
/* Return X >> Y, using a logical shift. Return 0 if Y is greater than
or equal to the precision of X. */
template <typename T1, typename T2>
inline WI_UNARY_RESULT (T1)
wi::lrshift (const T1 &x, const T2 &y)
{
WI_UNARY_RESULT_VAR (result, val, T1, x);
/* Do things in the precision of the input rather than the output,
since the result can be no larger than that. */
WIDE_INT_REF_FOR (T1) xi (x);
WIDE_INT_REF_FOR (T2) yi (y);
/* Handle the simple cases quickly. */
if (geu_p (yi, xi.precision))
{
val[0] = 0;
result.set_len (1);
}
else
{
unsigned int shift = yi.to_uhwi ();
/* For fixed-precision integers like offset_int and widest_int,
handle the case where the shift value is constant and the
shifted value is a single nonnegative HWI (meaning that all
bits above the HWI are zero). This is particularly common
for converting a bit count to a byte count.
For variable-precision integers like wide_int, handle HWI
and sub-HWI integers inline. */
if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
? (shift < HOST_BITS_PER_WIDE_INT
&& xi.len == 1
&& xi.val[0] >= 0)
: xi.precision <= HOST_BITS_PER_WIDE_INT)
{
val[0] = xi.to_uhwi () >> shift;
result.set_len (1);
}
else
result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision,
get_precision (result), shift));
}
return result;
}
/* Return X >> Y, using an arithmetic shift. Return a sign mask if
Y is greater than or equal to the precision of X. */
template <typename T1, typename T2>
inline WI_UNARY_RESULT (T1)
wi::arshift (const T1 &x, const T2 &y)
{
WI_UNARY_RESULT_VAR (result, val, T1, x);
/* Do things in the precision of the input rather than the output,
since the result can be no larger than that. */
WIDE_INT_REF_FOR (T1) xi (x);
WIDE_INT_REF_FOR (T2) yi (y);
/* Handle the simple cases quickly. */
if (geu_p (yi, xi.precision))
{
val[0] = sign_mask (x);
result.set_len (1);
}
else
{
unsigned int shift = yi.to_uhwi ();
if (xi.precision <= HOST_BITS_PER_WIDE_INT)
{
val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift);
result.set_len (1, true);
}
else
result.set_len (arshift_large (val, xi.val, xi.len, xi.precision,
get_precision (result), shift));
}
return result;
}
/* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a
logical shift otherwise. */
template <typename T1, typename T2>
inline WI_UNARY_RESULT (T1)
wi::rshift (const T1 &x, const T2 &y, signop sgn)
{
if (sgn == UNSIGNED)
return lrshift (x, y);
else
return arshift (x, y);
}
/* Return the result of rotating the low WIDTH bits of X left by Y
bits and zero-extending the result. Use a full-width rotate if
WIDTH is zero. */
template <typename T1, typename T2>
WI_UNARY_RESULT (T1)
wi::lrotate (const T1 &x, const T2 &y, unsigned int width)
{
unsigned int precision = get_binary_precision (x, x);
if (width == 0)
width = precision;
WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod);
WI_UNARY_RESULT (T1) right = wi::lrshift (x, wi::sub (width, ymod));
if (width != precision)
return wi::zext (left, width) | wi::zext (right, width);
return left | right;
}
/* Return the result of rotating the low WIDTH bits of X right by Y
bits and zero-extending the result. Use a full-width rotate if
WIDTH is zero. */
template <typename T1, typename T2>
WI_UNARY_RESULT (T1)
wi::rrotate (const T1 &x, const T2 &y, unsigned int width)
{
unsigned int precision = get_binary_precision (x, x);
if (width == 0)
width = precision;
WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
WI_UNARY_RESULT (T1) right = wi::lrshift (x, ymod);
WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod));
if (width != precision)
return wi::zext (left, width) | wi::zext (right, width);
return left | right;
}
/* Return 0 if the number of 1s in X is even and 1 if the number of 1s
is odd. */
inline int
wi::parity (const wide_int_ref &x)
{
return popcount (x) & 1;
}
/* Extract WIDTH bits from X, starting at BITPOS. */
template <typename T>
inline unsigned HOST_WIDE_INT
wi::extract_uhwi (const T &x, unsigned int bitpos, unsigned int width)
{
unsigned precision = get_precision (x);
if (precision < bitpos + width)
precision = bitpos + width;
WIDE_INT_REF_FOR (T) xi (x, precision);
/* Handle this rare case after the above, so that we assert about
bogus BITPOS values. */
if (width == 0)
return 0;
unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT;
unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT;
unsigned HOST_WIDE_INT res = xi.elt (start);
res >>= shift;
if (shift + width > HOST_BITS_PER_WIDE_INT)
{
unsigned HOST_WIDE_INT upper = xi.elt (start + 1);
res |= upper << (-shift % HOST_BITS_PER_WIDE_INT);
}
return zext_hwi (res, width);
}
/* Return the minimum precision needed to store X with sign SGN. */
template <typename T>
inline unsigned int
wi::min_precision (const T &x, signop sgn)
{
if (sgn == SIGNED)
return get_precision (x) - clrsb (x);
else
return get_precision (x) - clz (x);
}
#define SIGNED_BINARY_PREDICATE(OP, F) \
template <typename T1, typename T2> \
inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2) \
OP (const T1 &x, const T2 &y) \
{ \
return wi::F (x, y); \
}
SIGNED_BINARY_PREDICATE (operator <, lts_p)
SIGNED_BINARY_PREDICATE (operator <=, les_p)
SIGNED_BINARY_PREDICATE (operator >, gts_p)
SIGNED_BINARY_PREDICATE (operator >=, ges_p)
#undef SIGNED_BINARY_PREDICATE
template <typename T1, typename T2>
inline WI_SIGNED_SHIFT_RESULT (T1, T2)
operator << (const T1 &x, const T2 &y)
{
return wi::lshift (x, y);
}
template <typename T1, typename T2>
inline WI_SIGNED_SHIFT_RESULT (T1, T2)
operator >> (const T1 &x, const T2 &y)
{
return wi::arshift (x, y);
}
template<typename T>
void
gt_ggc_mx (generic_wide_int <T> *)
{
}
template<typename T>
void
gt_pch_nx (generic_wide_int <T> *)
{
}
template<typename T>
void
gt_pch_nx (generic_wide_int <T> *, void (*) (void *, void *), void *)
{
}
template<int N>
void
gt_ggc_mx (trailing_wide_ints <N> *)
{
}
template<int N>
void
gt_pch_nx (trailing_wide_ints <N> *)
{
}
template<int N>
void
gt_pch_nx (trailing_wide_ints <N> *, void (*) (void *, void *), void *)
{
}
namespace wi
{
/* Used for overloaded functions in which the only other acceptable
scalar type is a pointer. It stops a plain 0 from being treated
as a null pointer. */
struct never_used1 {};
struct never_used2 {};
wide_int min_value (unsigned int, signop);
wide_int min_value (never_used1 *);
wide_int min_value (never_used2 *);
wide_int max_value (unsigned int, signop);
wide_int max_value (never_used1 *);
wide_int max_value (never_used2 *);
/* FIXME: this is target dependent, so should be elsewhere.
It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */
wide_int from_buffer (const unsigned char *, unsigned int);
#ifndef GENERATOR_FILE
void to_mpz (const wide_int_ref &, mpz_t, signop);
#endif
wide_int mask (unsigned int, bool, unsigned int);
wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int);
wide_int set_bit_in_zero (unsigned int, unsigned int);
wide_int insert (const wide_int &x, const wide_int &y, unsigned int,
unsigned int);
template <typename T>
T mask (unsigned int, bool);
template <typename T>
T shifted_mask (unsigned int, unsigned int, bool);
template <typename T>
T set_bit_in_zero (unsigned int);
unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int);
unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int,
bool, unsigned int);
unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
unsigned int, unsigned int, bool);
}
/* Return a PRECISION-bit integer in which the low WIDTH bits are set
and the other bits are clear, or the inverse if NEGATE_P. */
inline wide_int
wi::mask (unsigned int width, bool negate_p, unsigned int precision)
{
wide_int result = wide_int::create (precision);
result.set_len (mask (result.write_val (), width, negate_p, precision));
return result;
}
/* Return a PRECISION-bit integer in which the low START bits are clear,
the next WIDTH bits are set, and the other bits are clear,
or the inverse if NEGATE_P. */
inline wide_int
wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p,
unsigned int precision)
{
wide_int result = wide_int::create (precision);
result.set_len (shifted_mask (result.write_val (), start, width, negate_p,
precision));
return result;
}
/* Return a PRECISION-bit integer in which bit BIT is set and all the
others are clear. */
inline wide_int
wi::set_bit_in_zero (unsigned int bit, unsigned int precision)
{
return shifted_mask (bit, 1, false, precision);
}
/* Return an integer of type T in which the low WIDTH bits are set
and the other bits are clear, or the inverse if NEGATE_P. */
template <typename T>
inline T
wi::mask (unsigned int width, bool negate_p)
{
STATIC_ASSERT (wi::int_traits<T>::precision);
T result;
result.set_len (mask (result.write_val (), width, negate_p,
wi::int_traits <T>::precision));
return result;
}
/* Return an integer of type T in which the low START bits are clear,
the next WIDTH bits are set, and the other bits are clear, or the
inverse if NEGATE_P. */
template <typename T>
inline T
wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p)
{
STATIC_ASSERT (wi::int_traits<T>::precision);
T result;
result.set_len (shifted_mask (result.write_val (), start, width,
negate_p,
wi::int_traits <T>::precision));
return result;
}
/* Return an integer of type T in which bit BIT is set and all the
others are clear. */
template <typename T>
inline T
wi::set_bit_in_zero (unsigned int bit)
{
return shifted_mask <T> (bit, 1, false);
}
#endif /* WIDE_INT_H */
|