1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
|
/* Vector API for GNU compiler.
Copyright (C) 2004 Free Software Foundation, Inc.
Contributed by Nathan Sidwell <nathan@codesourcery.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#ifndef GCC_VEC_H
#define GCC_VEC_H
/* The macros here implement a set of templated vector types and
associated interfaces. These templates are implemented with
macros, as we're not in C++ land. The interface functions are
typesafe and use static inline functions, sometimes backed by
out-of-line generic functions. The vectors are designed to
interoperate with the GTY machinery.
Because of the different behaviour of objects and of pointers to
objects, there are two flavours. One to deal with a vector of
pointers to objects, and one to deal with a vector of objects
themselves. Both of these pass pointers to objects around -- in
the former case the pointers are stored into the vector and in the
latter case the pointers are dereferenced and the objects copied
into the vector. Therefore, when using a vector of pointers, the
objects pointed to must be long lived, but when dealing with a
vector of objects, the source objects need not be.
The vectors are implemented using the trailing array idiom, thus
they are not resizeable without changing the address of the vector
object itself. This means you cannot have variables or fields of
vector type -- always use a pointer to a vector. The one exception
is the final field of a structure, which could be a vector type.
You will have to use the embedded_alloc call to create such
objects, and they will probably not be resizeable (so don't use the
'safe' allocation variants). The trailing array idiom is used
(rather than a pointer to an array of data), because, if we allow
NULL to also represent an empty vector, empty vectors occupy
minimal space in the structure containing them.
Each operation that increases the number of active elements is
available in 'quick' and 'safe' variants. The former presumes that
there is sufficient allocated space for the operation to succeed
(it aborts if there is not). The latter will reallocate the
vector, if needed. Reallocation causes an exponential increase in
vector size. If you know you will be adding N elements, it would
be more efficient to use the reserve operation before adding the
elements with the 'quick' operation.
You should prefer the push and pop operations, as they append and
remove from the end of the vector. The insert and remove
operations allow you to change elements in the middle of the
vector. There are two remove operations, one which preserves the
element ordering 'ordered_remove', and one which does not
'unordered_remove'. The latter function copies the end element
into the removed slot, rather than invoke a memmove operation.
Vector types are defined using a DEF_VEC_x(TYPEDEF) macro, and
variables of vector type are declared using a VEC(TYPEDEF)
macro. The 'x' letter indicates whether TYPEDEF is a pointer (P) or
object (O) type.
An example of their use would be,
DEF_VEC_P(tree); // define a vector of tree pointers. This must
// appear at file scope.
struct my_struct {
VEC(tree) *v; // A (pointer to) a vector of tree pointers.
};
struct my_struct *s;
if (VEC_length(tree,s)) { we have some contents }
VEC_safe_push(tree,s,decl); // append some decl onto the end
for (ix = 0; (t = VEC_iterate(tree,s,ix)); ix++)
{ do something with t }
*/
/* Macros to invoke API calls. A single macro works for both pointer
and object vectors, but the argument and return types might well be
different. In each macro, TDEF is the typedef of the vector
elements. Some of these macros pass the vector, V, by reference
(by taking its address), this is noted in the descriptions. */
/* Length of vector
size_t VEC_T_length(const VEC(T) *v);
Return the number of active elements in V. V can be NULL, in which
case zero is returned. */
#define VEC_length(TDEF,V) (VEC_OP(TDEF,length)(V))
/* Get the final element of the vector.
T VEC_T_last(VEC(T) *v); // Pointer
T *VEC_T_last(VEC(T) *v); // Object
Return the final element. If V is empty, abort. */
#define VEC_last(TDEF,V) (VEC_OP(TDEF,last)(V))
/* Index into vector
T VEC_T_index(VEC(T) *v, size_t ix); // Pointer
T *VEC_T_index(VEC(T) *v, size_t ix); // Object
Return the IX'th element. If IX is outside the domain of V,
abort. */
#define VEC_index(TDEF,V,I) (VEC_OP(TDEF,index)(V,I))
/* Iterate over vector
T VEC_T_index(VEC(T) *v, size_t ix); // Pointer
T *VEC_T_index(VEC(T) *v, size_t ix); // Object
Return the IX'th element or NULL. Use this to iterate over the
elements of a vector as follows,
for (ix = 0; (ptr = VEC_iterate(T,v,ix)); ix++)
continue; */
#define VEC_iterate(TDEF,V,I) (VEC_OP(TDEF,iterate)(V,I))
/* Allocate new vector.
VEC(T) *VEC_T_alloc(size_t reserve);
Allocate a new vector with space for RESERVE objects. */
#define VEC_alloc(TDEF,A) (VEC_OP(TDEF,alloc)(A))
/* Allocate new vector offset within a structure
void *VEC_T_embedded_alloc(size_t offset, size_t reserve);
Allocate a new vector which is at offset OFFSET within a structure,
and with space for RESERVE objects. Return a pointer to the start
of the structure containing the vector. Naturally, the vector must
be the last member of the structure. */
#define VEC_embedded_alloc(TDEF,O,A) (VEC_OP(TDEF,embedded_alloc)(O,A))
/* Reserve space.
void VEC_T_reserve(VEC(T) *&v, size_t reserve);
Ensure that V has at least RESERVE slots available. Note this can
cause V to be reallocated. */
#define VEC_reserve(TDEF,V,R) (VEC_OP(TDEF,reserve)(&(V),R))
/* Push object with no reallocation
T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
Push a new element onto the end, returns a pointer to the slot
filled in. For object vectors, the new value can be NULL, in which
case NO initialization is performed. Aborts if there is
insufficient space in the vector. */
#define VEC_quick_push(TDEF,V,O) (VEC_OP(TDEF,quick_push)(V,O))
/* Push object with reallocation
T *VEC_T_safe_push (VEC(T) *&v, T obj); // Pointer
T *VEC_T_safe_push (VEC(T) *&v, T *obj); // Object
Push a new element onto the end, returns a pointer to the slot
filled in. For object vectors, the new value can be NULL, in which
case NO initialization is performed. Reallocates V, if needed. */
#define VEC_safe_push(TDEF,V,O) (VEC_OP(TDEF,safe_push)(&(V),O))
/* Pop element off end
T VEC_T_pop (VEC(T) *v); // Pointer
void VEC_T_pop (VEC(T) *v); // Object
Pop the last element off the end. Returns the element popped, for
pointer vectors. */
#define VEC_pop(TDEF,V) (VEC_OP(TDEF,pop)(V))
/* Replace element
T VEC_T_replace (VEC(T) *v, size_t ix, T val); // Pointer
T *VEC_T_replace (VEC(T) *v, size_t ix, T *val); // Object
Replace the IXth element of V with a new value, VAL. For pointer
vectors returns the original value. For object vectors returns a
pointer to the new value. For object vectors the new value can be
NULL, in which case no overwriting of the slot is actually
performed. */
#define VEC_replace(TDEF,V,I,O) (VEC_OP(TDEF,replace)(V,I,O))
/* Insert object with no reallocation
T *VEC_T_quick_insert (VEC(T) *v, size_t ix, T val); // Pointer
T *VEC_T_quick_insert (VEC(T) *v, size_t ix, T *val); // Object
Insert an element, VAL, at the IXth position of V. Return a pointer
to the slot created. For vectors of object, the new value can be
NULL, in which case no initialization of the inserted slot takes
place. Aborts if there is insufficient space. */
#define VEC_quick_insert(TDEF,V,I,O) (VEC_OP(TDEF,quick_insert)(V,I,O))
/* Insert object with reallocation
T *VEC_T_safe_insert (VEC(T) *&v, size_t ix, T val); // Pointer
T *VEC_T_safe_insert (VEC(T) *&v, size_t ix, T *val); // Object
Insert an element, VAL, at the IXth position of V. Return a pointer
to the slot created. For vectors of object, the new value can be
NULL, in which case no initialization of the inserted slot takes
place. Reallocate V, if necessary. */
#define VEC_safe_insert(TDEF,V,I,O) (VEC_OP(TDEF,safe_insert)(&(V),I,O))
/* Remove element retaining order
T VEC_T_ordered_remove (VEC(T) *v, size_t ix); // Pointer
void VEC_T_ordered_remove (VEC(T) *v, size_t ix); // Object
Remove an element from the IXth position of V. Ordering of
remaining elements is preserverd. For pointer vectors returns the
removed object. This is an O(N) operation due to a memmove. */
#define VEC_ordered_remove(TDEF,V,I) (VEC_OP(TDEF,ordered_remove)(V,I))
/* Remove element destroying order
T VEC_T_unordered_remove (VEC(T) *v, size_t ix); // Pointer
void VEC_T_unordered_remove (VEC(T) *v, size_t ix); // Object
Remove an element from the IXth position of V. Ordering of
remaining elements is destroyed. For pointer vectors returns the
removed object. This is an O(1) operation. */
#define VEC_unordered_remove(TDEF,V,I) (VEC_OP(TDEF,unordered_remove)(V,I))
#if !IN_GENGTYPE
#include "auto-host.h"
/* Reallocate an array of elements with prefix. */
extern void *vec_p_reserve (void *, size_t);
extern void *vec_o_reserve (void *, size_t, size_t, size_t);
extern void *vec_embedded_alloc (size_t, size_t, size_t, size_t);
#if ENABLE_CHECKING
extern void vec_assert_fail (const char *, const char *,
const char *, size_t, const char *)
ATTRIBUTE_NORETURN;
#define VEC_ASSERT_FAIL(OP,VEC) \
vec_assert_fail (OP,#VEC,__FILE__,__LINE__,__FUNCTION__)
#define VEC_ASSERT(EXPR,OP,TDEF) \
(void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(TDEF)), 0))
#else
#define VEC_ASSERT(EXPR,OP,TYPE) (void)(EXPR)
#endif
#define VEC(TDEF) VEC_##TDEF
#define VEC_OP(TDEF,OP) VEC_OP_(VEC(TDEF),OP)
#define VEC_OP_(VEC,OP) VEC_OP__(VEC,OP)
#define VEC_OP__(VEC,OP) VEC ## _ ## OP
#else /* IN_GENGTYPE */
#define VEC(TDEF) VEC_ TDEF
#define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
#define VEC_STRINGIFY_(X) #X
#undef GTY
#endif /* IN_GENGTYPE */
#define VEC_TDEF(TDEF) \
typedef struct VEC (TDEF) GTY(()) \
{ \
size_t num; \
size_t alloc; \
TDEF GTY ((length ("%h.num"))) vec[1]; \
} VEC (TDEF)
/* Vector of pointer to object. */
#if IN_GENGTYPE
{"DEF_VEC_P", VEC_STRINGIFY (VEC_TDEF (#)) ";", NULL},
#else
#define DEF_VEC_P(TDEF) \
VEC_TDEF (TDEF); \
\
static inline size_t VEC_OP (TDEF,length) \
(const VEC (TDEF) *vec_) \
{ \
return vec_ ? vec_->num : 0; \
} \
\
static inline TDEF VEC_OP (TDEF,last) \
(const VEC (TDEF) *vec_) \
{ \
VEC_ASSERT (vec_ && vec_->num, "last", TDEF); \
\
return vec_->vec[vec_->num - 1]; \
} \
\
static inline TDEF VEC_OP (TDEF,index) \
(const VEC (TDEF) *vec_, size_t ix_) \
{ \
VEC_ASSERT (vec_ && ix_ < vec_->num, "index", TDEF); \
\
return vec_->vec[ix_]; \
} \
\
static inline TDEF VEC_OP (TDEF,iterate) \
(const VEC (TDEF) *vec_, size_t ix_) \
{ \
return vec_ && ix_ < vec_->num ? vec_->vec[ix_] : NULL; \
} \
\
static inline VEC (TDEF) *VEC_OP (TDEF,alloc) \
(size_t alloc_) \
{ \
return vec_p_reserve (NULL, alloc_ - !alloc_); \
} \
\
static inline void *VEC_OP (TDEF,embedded_alloc) \
(size_t offset_, size_t alloc_) \
{ \
return vec_embedded_alloc (offset_, offsetof (VEC(TDEF),vec), \
sizeof (TDEF), alloc_); \
} \
\
static inline void VEC_OP (TDEF,reserve) \
(VEC (TDEF) **vec_, size_t alloc_) \
{ \
*vec_ = vec_p_reserve (*vec_, alloc_); \
} \
\
static inline TDEF *VEC_OP (TDEF,quick_push) \
(VEC (TDEF) *vec_, TDEF obj_) \
{ \
TDEF *slot_; \
\
VEC_ASSERT (vec_->num < vec_->alloc, "push", TDEF); \
slot_ = &vec_->vec[vec_->num++]; \
*slot_ = obj_; \
\
return slot_; \
} \
\
static inline TDEF *VEC_OP (TDEF,safe_push) \
(VEC (TDEF) **vec_, TDEF obj_) \
{ \
if (!*vec_ || (*vec_)->num == (*vec_)->alloc) \
VEC_OP (TDEF,reserve) (vec_, ~0u); \
\
return VEC_OP (TDEF,quick_push) (*vec_, obj_); \
} \
\
static inline TDEF VEC_OP (TDEF,pop) \
(VEC (TDEF) *vec_) \
{ \
TDEF obj_; \
\
VEC_ASSERT (vec_->num, "pop", TDEF); \
obj_ = vec_->vec[--vec_->num]; \
\
return obj_; \
} \
\
static inline TDEF VEC_OP (TDEF,replace) \
(VEC (TDEF) *vec_, size_t ix_, TDEF obj_) \
{ \
TDEF old_obj_; \
\
VEC_ASSERT (ix_ < vec_->num, "replace", TDEF); \
old_obj_ = vec_->vec[ix_]; \
vec_->vec[ix_] = obj_; \
\
return old_obj_; \
} \
\
static inline TDEF *VEC_OP (TDEF,quick_insert) \
(VEC (TDEF) *vec_, size_t ix_, TDEF obj_) \
{ \
TDEF *slot_; \
\
VEC_ASSERT (vec_->num < vec_->alloc, "insert", TDEF); \
VEC_ASSERT (ix_ <= vec_->num, "insert", TDEF); \
slot_ = &vec_->vec[ix_]; \
memmove (slot_ + 1, slot_, vec_->num++ - ix_); \
*slot_ = obj_; \
\
return slot_; \
} \
\
static inline TDEF *VEC_OP (TDEF,safe_insert) \
(VEC (TDEF) **vec_, size_t ix_, TDEF obj_) \
{ \
if (!*vec_ || (*vec_)->num == (*vec_)->alloc) \
VEC_OP (TDEF,reserve) (vec_, ~0u); \
\
return VEC_OP (TDEF,quick_insert) (*vec_, ix_, obj_); \
} \
\
static inline TDEF VEC_OP (TDEF,ordered_remove) \
(VEC (TDEF) *vec_, size_t ix_) \
{ \
TDEF *slot_; \
TDEF obj_; \
\
VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
slot_ = &vec_->vec[ix_]; \
obj_ = *slot_; \
memmove (slot_, slot_ + 1, --vec_->num - ix_); \
\
return obj_; \
} \
\
static inline TDEF VEC_OP (TDEF,unordered_remove) \
(VEC (TDEF) *vec_, size_t ix_) \
{ \
TDEF *slot_; \
TDEF obj_; \
\
VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
slot_ = &vec_->vec[ix_]; \
obj_ = *slot_; \
*slot_ = vec_->vec[--vec_->num]; \
\
return obj_; \
} \
\
struct vec_swallow_trailing_semi
#endif
/* Vector of object. */
#if IN_GENGTYPE
{"DEF_VEC_O", VEC_STRINGIFY (VEC_TDEF (#)) ";", NULL},
#else
#define DEF_VEC_O(TDEF) \
VEC_TDEF (TDEF); \
\
static inline size_t VEC_OP (TDEF,length) \
(const VEC (TDEF) *vec_) \
{ \
return vec_ ? vec_->num : 0; \
} \
\
static inline TDEF *VEC_OP (TDEF,last) \
(VEC (TDEF) *vec_) \
{ \
VEC_ASSERT (vec_ && vec_->num, "last", TDEF); \
\
return &vec_->vec[vec_->num - 1]; \
} \
\
static inline TDEF *VEC_OP (TDEF,index) \
(VEC (TDEF) *vec_, size_t ix_) \
{ \
VEC_ASSERT (vec_ && ix_ < vec_->num, "index", TDEF); \
\
return &vec_->vec[ix_]; \
} \
\
static inline TDEF *VEC_OP (TDEF,iterate) \
(VEC (TDEF) *vec_, size_t ix_) \
{ \
return vec_ && ix_ < vec_->num ? &vec_->vec[ix_] : NULL; \
} \
\
static inline VEC (TDEF) *VEC_OP (TDEF,alloc) \
(size_t alloc_) \
{ \
return vec_o_reserve (NULL, alloc_ - !alloc_, \
offsetof (VEC(TDEF),vec), sizeof (TDEF)); \
} \
\
static inline void *VEC_OP (TDEF,embedded_alloc) \
(size_t offset_, size_t alloc_) \
{ \
return vec_embedded_alloc (offset_, offsetof (VEC(TDEF),vec), \
sizeof (TDEF), alloc_); \
} \
\
static inline void VEC_OP (TDEF,reserve) \
(VEC (TDEF) **vec_, size_t alloc_) \
{ \
*vec_ = vec_o_reserve (*vec_, alloc_, \
offsetof (VEC(TDEF),vec), sizeof (TDEF)); \
} \
\
static inline TDEF *VEC_OP (TDEF,quick_push) \
(VEC (TDEF) *vec_, const TDEF *obj_) \
{ \
TDEF *slot_; \
\
VEC_ASSERT (vec_->num < vec_->alloc, "push", TDEF); \
slot_ = &vec_->vec[vec_->num++]; \
if (obj_) \
*slot_ = *obj_; \
\
return slot_; \
} \
\
static inline TDEF *VEC_OP (TDEF,safe_push) \
(VEC (TDEF) **vec_, const TDEF *obj_) \
{ \
if (!*vec_ || (*vec_)->num == (*vec_)->alloc) \
VEC_OP (TDEF,reserve) (vec_, ~0u); \
\
return VEC_OP (TDEF,quick_push) (*vec_, obj_); \
} \
\
static inline void VEC_OP (TDEF,pop) \
(VEC (TDEF) *vec_) \
{ \
VEC_ASSERT (vec_->num, "pop", TDEF); \
vec_->vec[--vec_->num]; \
} \
\
static inline TDEF *VEC_OP (TDEF,replace) \
(VEC (TDEF) *vec_, size_t ix_, const TDEF *obj_) \
{ \
TDEF *slot_; \
\
VEC_ASSERT (ix_ < vec_->num, "replace", TDEF); \
slot_ = &vec_->vec[ix_]; \
if (obj_) \
*slot_ = *obj_; \
\
return slot_; \
} \
\
static inline TDEF *VEC_OP (TDEF,quick_insert) \
(VEC (TDEF) *vec_, size_t ix_, const TDEF *obj_) \
{ \
TDEF *slot_; \
\
VEC_ASSERT (vec_->num < vec_->alloc, "insert", TDEF); \
VEC_ASSERT (ix_ <= vec_->num, "insert", TDEF); \
slot_ = &vec_->vec[ix_]; \
memmove (slot_ + 1, slot_, vec_->num++ - ix_); \
if (obj_) \
*slot_ = *obj_; \
\
return slot_; \
} \
\
static inline TDEF *VEC_OP (TDEF,safe_insert) \
(VEC (TDEF) **vec_, size_t ix_, const TDEF *obj_) \
{ \
if (!*vec_ || (*vec_)->num == (*vec_)->alloc) \
VEC_OP (TDEF,reserve) (vec_, ~0u); \
\
return VEC_OP (TDEF,quick_insert) (*vec_, ix_, obj_); \
} \
\
static inline void VEC_OP (TDEF,ordered_remove) \
(VEC (TDEF) *vec_, size_t ix_) \
{ \
TDEF *slot_; \
\
VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
slot_ = &vec_->vec[ix_]; \
memmove (slot_, slot_ + 1, --vec_->num - ix_); \
} \
\
static inline void VEC_OP (TDEF,unordered_remove) \
(VEC (TDEF) *vec_, size_t ix_) \
{ \
VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
vec_->vec[ix_] = vec_->vec[--vec_->num]; \
} \
\
struct vec_swallow_trailing_semi
#endif
#endif /* GCC_VEC_H */
|