1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
|
/* Variable tracking routines for the GNU compiler.
Copyright (C) 2002-2013 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file contains the variable tracking pass. It computes where
variables are located (which registers or where in memory) at each position
in instruction stream and emits notes describing the locations.
Debug information (DWARF2 location lists) is finally generated from
these notes.
With this debug information, it is possible to show variables
even when debugging optimized code.
How does the variable tracking pass work?
First, it scans RTL code for uses, stores and clobbers (register/memory
references in instructions), for call insns and for stack adjustments
separately for each basic block and saves them to an array of micro
operations.
The micro operations of one instruction are ordered so that
pre-modifying stack adjustment < use < use with no var < call insn <
< clobber < set < post-modifying stack adjustment
Then, a forward dataflow analysis is performed to find out how locations
of variables change through code and to propagate the variable locations
along control flow graph.
The IN set for basic block BB is computed as a union of OUT sets of BB's
predecessors, the OUT set for BB is copied from the IN set for BB and
is changed according to micro operations in BB.
The IN and OUT sets for basic blocks consist of a current stack adjustment
(used for adjusting offset of variables addressed using stack pointer),
the table of structures describing the locations of parts of a variable
and for each physical register a linked list for each physical register.
The linked list is a list of variable parts stored in the register,
i.e. it is a list of triplets (reg, decl, offset) where decl is
REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
effective deleting appropriate variable parts when we set or clobber the
register.
There may be more than one variable part in a register. The linked lists
should be pretty short so it is a good data structure here.
For example in the following code, register allocator may assign same
register to variables A and B, and both of them are stored in the same
register in CODE:
if (cond)
set A;
else
set B;
CODE;
if (cond)
use A;
else
use B;
Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
are emitted to appropriate positions in RTL code. Each such a note describes
the location of one variable at the point in instruction stream where the
note is. There is no need to emit a note for each variable before each
instruction, we only emit these notes where the location of variable changes
(this means that we also emit notes for changes between the OUT set of the
previous block and the IN set of the current block).
The notes consist of two parts:
1. the declaration (from REG_EXPR or MEM_EXPR)
2. the location of a variable - it is either a simple register/memory
reference (for simple variables, for example int),
or a parallel of register/memory references (for a large variables
which consist of several parts, for example long long).
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "varasm.h"
#include "stor-layout.h"
#include "pointer-set.h"
#include "hash-table.h"
#include "basic-block.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "insn-config.h"
#include "reload.h"
#include "sbitmap.h"
#include "alloc-pool.h"
#include "fibheap.h"
#include "regs.h"
#include "expr.h"
#include "tree-pass.h"
#include "bitmap.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "cselib.h"
#include "target.h"
#include "params.h"
#include "diagnostic.h"
#include "tree-pretty-print.h"
#include "recog.h"
#include "tm_p.h"
#include "alias.h"
/* var-tracking.c assumes that tree code with the same value as VALUE rtx code
has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
Currently the value is the same as IDENTIFIER_NODE, which has such
a property. If this compile time assertion ever fails, make sure that
the new tree code that equals (int) VALUE has the same property. */
extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
/* Type of micro operation. */
enum micro_operation_type
{
MO_USE, /* Use location (REG or MEM). */
MO_USE_NO_VAR,/* Use location which is not associated with a variable
or the variable is not trackable. */
MO_VAL_USE, /* Use location which is associated with a value. */
MO_VAL_LOC, /* Use location which appears in a debug insn. */
MO_VAL_SET, /* Set location associated with a value. */
MO_SET, /* Set location. */
MO_COPY, /* Copy the same portion of a variable from one
location to another. */
MO_CLOBBER, /* Clobber location. */
MO_CALL, /* Call insn. */
MO_ADJUST /* Adjust stack pointer. */
};
static const char * const ATTRIBUTE_UNUSED
micro_operation_type_name[] = {
"MO_USE",
"MO_USE_NO_VAR",
"MO_VAL_USE",
"MO_VAL_LOC",
"MO_VAL_SET",
"MO_SET",
"MO_COPY",
"MO_CLOBBER",
"MO_CALL",
"MO_ADJUST"
};
/* Where shall the note be emitted? BEFORE or AFTER the instruction.
Notes emitted as AFTER_CALL are to take effect during the call,
rather than after the call. */
enum emit_note_where
{
EMIT_NOTE_BEFORE_INSN,
EMIT_NOTE_AFTER_INSN,
EMIT_NOTE_AFTER_CALL_INSN
};
/* Structure holding information about micro operation. */
typedef struct micro_operation_def
{
/* Type of micro operation. */
enum micro_operation_type type;
/* The instruction which the micro operation is in, for MO_USE,
MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
instruction or note in the original flow (before any var-tracking
notes are inserted, to simplify emission of notes), for MO_SET
and MO_CLOBBER. */
rtx insn;
union {
/* Location. For MO_SET and MO_COPY, this is the SET that
performs the assignment, if known, otherwise it is the target
of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
CONCAT of the VALUE and the LOC associated with it. For
MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
associated with it. */
rtx loc;
/* Stack adjustment. */
HOST_WIDE_INT adjust;
} u;
} micro_operation;
/* A declaration of a variable, or an RTL value being handled like a
declaration. */
typedef void *decl_or_value;
/* Return true if a decl_or_value DV is a DECL or NULL. */
static inline bool
dv_is_decl_p (decl_or_value dv)
{
return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
}
/* Return true if a decl_or_value is a VALUE rtl. */
static inline bool
dv_is_value_p (decl_or_value dv)
{
return dv && !dv_is_decl_p (dv);
}
/* Return the decl in the decl_or_value. */
static inline tree
dv_as_decl (decl_or_value dv)
{
gcc_checking_assert (dv_is_decl_p (dv));
return (tree) dv;
}
/* Return the value in the decl_or_value. */
static inline rtx
dv_as_value (decl_or_value dv)
{
gcc_checking_assert (dv_is_value_p (dv));
return (rtx)dv;
}
/* Return the opaque pointer in the decl_or_value. */
static inline void *
dv_as_opaque (decl_or_value dv)
{
return dv;
}
/* Description of location of a part of a variable. The content of a physical
register is described by a chain of these structures.
The chains are pretty short (usually 1 or 2 elements) and thus
chain is the best data structure. */
typedef struct attrs_def
{
/* Pointer to next member of the list. */
struct attrs_def *next;
/* The rtx of register. */
rtx loc;
/* The declaration corresponding to LOC. */
decl_or_value dv;
/* Offset from start of DECL. */
HOST_WIDE_INT offset;
} *attrs;
/* Structure for chaining the locations. */
typedef struct location_chain_def
{
/* Next element in the chain. */
struct location_chain_def *next;
/* The location (REG, MEM or VALUE). */
rtx loc;
/* The "value" stored in this location. */
rtx set_src;
/* Initialized? */
enum var_init_status init;
} *location_chain;
/* A vector of loc_exp_dep holds the active dependencies of a one-part
DV on VALUEs, i.e., the VALUEs expanded so as to form the current
location of DV. Each entry is also part of VALUE' s linked-list of
backlinks back to DV. */
typedef struct loc_exp_dep_s
{
/* The dependent DV. */
decl_or_value dv;
/* The dependency VALUE or DECL_DEBUG. */
rtx value;
/* The next entry in VALUE's backlinks list. */
struct loc_exp_dep_s *next;
/* A pointer to the pointer to this entry (head or prev's next) in
the doubly-linked list. */
struct loc_exp_dep_s **pprev;
} loc_exp_dep;
/* This data structure holds information about the depth of a variable
expansion. */
typedef struct expand_depth_struct
{
/* This measures the complexity of the expanded expression. It
grows by one for each level of expansion that adds more than one
operand. */
int complexity;
/* This counts the number of ENTRY_VALUE expressions in an
expansion. We want to minimize their use. */
int entryvals;
} expand_depth;
/* This data structure is allocated for one-part variables at the time
of emitting notes. */
struct onepart_aux
{
/* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
computation used the expansion of this variable, and that ought
to be notified should this variable change. If the DV's cur_loc
expanded to NULL, all components of the loc list are regarded as
active, so that any changes in them give us a chance to get a
location. Otherwise, only components of the loc that expanded to
non-NULL are regarded as active dependencies. */
loc_exp_dep *backlinks;
/* This holds the LOC that was expanded into cur_loc. We need only
mark a one-part variable as changed if the FROM loc is removed,
or if it has no known location and a loc is added, or if it gets
a change notification from any of its active dependencies. */
rtx from;
/* The depth of the cur_loc expression. */
expand_depth depth;
/* Dependencies actively used when expand FROM into cur_loc. */
vec<loc_exp_dep, va_heap, vl_embed> deps;
};
/* Structure describing one part of variable. */
typedef struct variable_part_def
{
/* Chain of locations of the part. */
location_chain loc_chain;
/* Location which was last emitted to location list. */
rtx cur_loc;
union variable_aux
{
/* The offset in the variable, if !var->onepart. */
HOST_WIDE_INT offset;
/* Pointer to auxiliary data, if var->onepart and emit_notes. */
struct onepart_aux *onepaux;
} aux;
} variable_part;
/* Maximum number of location parts. */
#define MAX_VAR_PARTS 16
/* Enumeration type used to discriminate various types of one-part
variables. */
typedef enum onepart_enum
{
/* Not a one-part variable. */
NOT_ONEPART = 0,
/* A one-part DECL that is not a DEBUG_EXPR_DECL. */
ONEPART_VDECL = 1,
/* A DEBUG_EXPR_DECL. */
ONEPART_DEXPR = 2,
/* A VALUE. */
ONEPART_VALUE = 3
} onepart_enum_t;
/* Structure describing where the variable is located. */
typedef struct variable_def
{
/* The declaration of the variable, or an RTL value being handled
like a declaration. */
decl_or_value dv;
/* Reference count. */
int refcount;
/* Number of variable parts. */
char n_var_parts;
/* What type of DV this is, according to enum onepart_enum. */
ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
/* True if this variable_def struct is currently in the
changed_variables hash table. */
bool in_changed_variables;
/* The variable parts. */
variable_part var_part[1];
} *variable;
typedef const struct variable_def *const_variable;
/* Pointer to the BB's information specific to variable tracking pass. */
#define VTI(BB) ((variable_tracking_info) (BB)->aux)
/* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
#define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
#if ENABLE_CHECKING && (GCC_VERSION >= 2007)
/* Access VAR's Ith part's offset, checking that it's not a one-part
variable. */
#define VAR_PART_OFFSET(var, i) __extension__ \
(*({ variable const __v = (var); \
gcc_checking_assert (!__v->onepart); \
&__v->var_part[(i)].aux.offset; }))
/* Access VAR's one-part auxiliary data, checking that it is a
one-part variable. */
#define VAR_LOC_1PAUX(var) __extension__ \
(*({ variable const __v = (var); \
gcc_checking_assert (__v->onepart); \
&__v->var_part[0].aux.onepaux; }))
#else
#define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
#define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
#endif
/* These are accessor macros for the one-part auxiliary data. When
convenient for users, they're guarded by tests that the data was
allocated. */
#define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
? VAR_LOC_1PAUX (var)->backlinks \
: NULL)
#define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
? &VAR_LOC_1PAUX (var)->backlinks \
: NULL)
#define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
#define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
#define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
? &VAR_LOC_1PAUX (var)->deps \
: NULL)
typedef unsigned int dvuid;
/* Return the uid of DV. */
static inline dvuid
dv_uid (decl_or_value dv)
{
if (dv_is_value_p (dv))
return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
else
return DECL_UID (dv_as_decl (dv));
}
/* Compute the hash from the uid. */
static inline hashval_t
dv_uid2hash (dvuid uid)
{
return uid;
}
/* The hash function for a mask table in a shared_htab chain. */
static inline hashval_t
dv_htab_hash (decl_or_value dv)
{
return dv_uid2hash (dv_uid (dv));
}
static void variable_htab_free (void *);
/* Variable hashtable helpers. */
struct variable_hasher
{
typedef variable_def value_type;
typedef void compare_type;
static inline hashval_t hash (const value_type *);
static inline bool equal (const value_type *, const compare_type *);
static inline void remove (value_type *);
};
/* The hash function for variable_htab, computes the hash value
from the declaration of variable X. */
inline hashval_t
variable_hasher::hash (const value_type *v)
{
return dv_htab_hash (v->dv);
}
/* Compare the declaration of variable X with declaration Y. */
inline bool
variable_hasher::equal (const value_type *v, const compare_type *y)
{
decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
}
/* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
inline void
variable_hasher::remove (value_type *var)
{
variable_htab_free (var);
}
typedef hash_table <variable_hasher> variable_table_type;
typedef variable_table_type::iterator variable_iterator_type;
/* Structure for passing some other parameters to function
emit_note_insn_var_location. */
typedef struct emit_note_data_def
{
/* The instruction which the note will be emitted before/after. */
rtx insn;
/* Where the note will be emitted (before/after insn)? */
enum emit_note_where where;
/* The variables and values active at this point. */
variable_table_type vars;
} emit_note_data;
/* Structure holding a refcounted hash table. If refcount > 1,
it must be first unshared before modified. */
typedef struct shared_hash_def
{
/* Reference count. */
int refcount;
/* Actual hash table. */
variable_table_type htab;
} *shared_hash;
/* Structure holding the IN or OUT set for a basic block. */
typedef struct dataflow_set_def
{
/* Adjustment of stack offset. */
HOST_WIDE_INT stack_adjust;
/* Attributes for registers (lists of attrs). */
attrs regs[FIRST_PSEUDO_REGISTER];
/* Variable locations. */
shared_hash vars;
/* Vars that is being traversed. */
shared_hash traversed_vars;
} dataflow_set;
/* The structure (one for each basic block) containing the information
needed for variable tracking. */
typedef struct variable_tracking_info_def
{
/* The vector of micro operations. */
vec<micro_operation> mos;
/* The IN and OUT set for dataflow analysis. */
dataflow_set in;
dataflow_set out;
/* The permanent-in dataflow set for this block. This is used to
hold values for which we had to compute entry values. ??? This
should probably be dynamically allocated, to avoid using more
memory in non-debug builds. */
dataflow_set *permp;
/* Has the block been visited in DFS? */
bool visited;
/* Has the block been flooded in VTA? */
bool flooded;
} *variable_tracking_info;
/* Alloc pool for struct attrs_def. */
static alloc_pool attrs_pool;
/* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
static alloc_pool var_pool;
/* Alloc pool for struct variable_def with a single var_part entry. */
static alloc_pool valvar_pool;
/* Alloc pool for struct location_chain_def. */
static alloc_pool loc_chain_pool;
/* Alloc pool for struct shared_hash_def. */
static alloc_pool shared_hash_pool;
/* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
static alloc_pool loc_exp_dep_pool;
/* Changed variables, notes will be emitted for them. */
static variable_table_type changed_variables;
/* Shall notes be emitted? */
static bool emit_notes;
/* Values whose dynamic location lists have gone empty, but whose
cselib location lists are still usable. Use this to hold the
current location, the backlinks, etc, during emit_notes. */
static variable_table_type dropped_values;
/* Empty shared hashtable. */
static shared_hash empty_shared_hash;
/* Scratch register bitmap used by cselib_expand_value_rtx. */
static bitmap scratch_regs = NULL;
#ifdef HAVE_window_save
typedef struct GTY(()) parm_reg {
rtx outgoing;
rtx incoming;
} parm_reg_t;
/* Vector of windowed parameter registers, if any. */
static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
#endif
/* Variable used to tell whether cselib_process_insn called our hook. */
static bool cselib_hook_called;
/* Local function prototypes. */
static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
HOST_WIDE_INT *);
static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
HOST_WIDE_INT *);
static bool vt_stack_adjustments (void);
static void init_attrs_list_set (attrs *);
static void attrs_list_clear (attrs *);
static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
static void attrs_list_copy (attrs *, attrs);
static void attrs_list_union (attrs *, attrs);
static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
variable var, enum var_init_status);
static void vars_copy (variable_table_type, variable_table_type);
static tree var_debug_decl (tree);
static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
enum var_init_status, rtx);
static void var_reg_delete (dataflow_set *, rtx, bool);
static void var_regno_delete (dataflow_set *, int);
static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
enum var_init_status, rtx);
static void var_mem_delete (dataflow_set *, rtx, bool);
static void dataflow_set_init (dataflow_set *);
static void dataflow_set_clear (dataflow_set *);
static void dataflow_set_copy (dataflow_set *, dataflow_set *);
static int variable_union_info_cmp_pos (const void *, const void *);
static void dataflow_set_union (dataflow_set *, dataflow_set *);
static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type);
static bool canon_value_cmp (rtx, rtx);
static int loc_cmp (rtx, rtx);
static bool variable_part_different_p (variable_part *, variable_part *);
static bool onepart_variable_different_p (variable, variable);
static bool variable_different_p (variable, variable);
static bool dataflow_set_different (dataflow_set *, dataflow_set *);
static void dataflow_set_destroy (dataflow_set *);
static bool contains_symbol_ref (rtx);
static bool track_expr_p (tree, bool);
static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
static int add_uses (rtx *, void *);
static void add_uses_1 (rtx *, void *);
static void add_stores (rtx, const_rtx, void *);
static bool compute_bb_dataflow (basic_block);
static bool vt_find_locations (void);
static void dump_attrs_list (attrs);
static void dump_var (variable);
static void dump_vars (variable_table_type);
static void dump_dataflow_set (dataflow_set *);
static void dump_dataflow_sets (void);
static void set_dv_changed (decl_or_value, bool);
static void variable_was_changed (variable, dataflow_set *);
static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
decl_or_value, HOST_WIDE_INT,
enum var_init_status, rtx);
static void set_variable_part (dataflow_set *, rtx,
decl_or_value, HOST_WIDE_INT,
enum var_init_status, rtx, enum insert_option);
static variable_def **clobber_slot_part (dataflow_set *, rtx,
variable_def **, HOST_WIDE_INT, rtx);
static void clobber_variable_part (dataflow_set *, rtx,
decl_or_value, HOST_WIDE_INT, rtx);
static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
HOST_WIDE_INT);
static void delete_variable_part (dataflow_set *, rtx,
decl_or_value, HOST_WIDE_INT);
static void emit_notes_in_bb (basic_block, dataflow_set *);
static void vt_emit_notes (void);
static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
static void vt_add_function_parameters (void);
static bool vt_initialize (void);
static void vt_finalize (void);
/* Given a SET, calculate the amount of stack adjustment it contains
PRE- and POST-modifying stack pointer.
This function is similar to stack_adjust_offset. */
static void
stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
HOST_WIDE_INT *post)
{
rtx src = SET_SRC (pattern);
rtx dest = SET_DEST (pattern);
enum rtx_code code;
if (dest == stack_pointer_rtx)
{
/* (set (reg sp) (plus (reg sp) (const_int))) */
code = GET_CODE (src);
if (! (code == PLUS || code == MINUS)
|| XEXP (src, 0) != stack_pointer_rtx
|| !CONST_INT_P (XEXP (src, 1)))
return;
if (code == MINUS)
*post += INTVAL (XEXP (src, 1));
else
*post -= INTVAL (XEXP (src, 1));
}
else if (MEM_P (dest))
{
/* (set (mem (pre_dec (reg sp))) (foo)) */
src = XEXP (dest, 0);
code = GET_CODE (src);
switch (code)
{
case PRE_MODIFY:
case POST_MODIFY:
if (XEXP (src, 0) == stack_pointer_rtx)
{
rtx val = XEXP (XEXP (src, 1), 1);
/* We handle only adjustments by constant amount. */
gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
CONST_INT_P (val));
if (code == PRE_MODIFY)
*pre -= INTVAL (val);
else
*post -= INTVAL (val);
break;
}
return;
case PRE_DEC:
if (XEXP (src, 0) == stack_pointer_rtx)
{
*pre += GET_MODE_SIZE (GET_MODE (dest));
break;
}
return;
case POST_DEC:
if (XEXP (src, 0) == stack_pointer_rtx)
{
*post += GET_MODE_SIZE (GET_MODE (dest));
break;
}
return;
case PRE_INC:
if (XEXP (src, 0) == stack_pointer_rtx)
{
*pre -= GET_MODE_SIZE (GET_MODE (dest));
break;
}
return;
case POST_INC:
if (XEXP (src, 0) == stack_pointer_rtx)
{
*post -= GET_MODE_SIZE (GET_MODE (dest));
break;
}
return;
default:
return;
}
}
}
/* Given an INSN, calculate the amount of stack adjustment it contains
PRE- and POST-modifying stack pointer. */
static void
insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
HOST_WIDE_INT *post)
{
rtx pattern;
*pre = 0;
*post = 0;
pattern = PATTERN (insn);
if (RTX_FRAME_RELATED_P (insn))
{
rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
if (expr)
pattern = XEXP (expr, 0);
}
if (GET_CODE (pattern) == SET)
stack_adjust_offset_pre_post (pattern, pre, post);
else if (GET_CODE (pattern) == PARALLEL
|| GET_CODE (pattern) == SEQUENCE)
{
int i;
/* There may be stack adjustments inside compound insns. Search
for them. */
for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
}
}
/* Compute stack adjustments for all blocks by traversing DFS tree.
Return true when the adjustments on all incoming edges are consistent.
Heavily borrowed from pre_and_rev_post_order_compute. */
static bool
vt_stack_adjustments (void)
{
edge_iterator *stack;
int sp;
/* Initialize entry block. */
VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
INCOMING_FRAME_SP_OFFSET;
VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
INCOMING_FRAME_SP_OFFSET;
/* Allocate stack for back-tracking up CFG. */
stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
sp = 0;
/* Push the first edge on to the stack. */
stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
while (sp)
{
edge_iterator ei;
basic_block src;
basic_block dest;
/* Look at the edge on the top of the stack. */
ei = stack[sp - 1];
src = ei_edge (ei)->src;
dest = ei_edge (ei)->dest;
/* Check if the edge destination has been visited yet. */
if (!VTI (dest)->visited)
{
rtx insn;
HOST_WIDE_INT pre, post, offset;
VTI (dest)->visited = true;
VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
for (insn = BB_HEAD (dest);
insn != NEXT_INSN (BB_END (dest));
insn = NEXT_INSN (insn))
if (INSN_P (insn))
{
insn_stack_adjust_offset_pre_post (insn, &pre, &post);
offset += pre + post;
}
VTI (dest)->out.stack_adjust = offset;
if (EDGE_COUNT (dest->succs) > 0)
/* Since the DEST node has been visited for the first
time, check its successors. */
stack[sp++] = ei_start (dest->succs);
}
else
{
/* Check whether the adjustments on the edges are the same. */
if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
{
free (stack);
return false;
}
if (! ei_one_before_end_p (ei))
/* Go to the next edge. */
ei_next (&stack[sp - 1]);
else
/* Return to previous level if there are no more edges. */
sp--;
}
}
free (stack);
return true;
}
/* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
hard_frame_pointer_rtx is being mapped to it and offset for it. */
static rtx cfa_base_rtx;
static HOST_WIDE_INT cfa_base_offset;
/* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
or hard_frame_pointer_rtx. */
static inline rtx
compute_cfa_pointer (HOST_WIDE_INT adjustment)
{
return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
}
/* Adjustment for hard_frame_pointer_rtx to cfa base reg,
or -1 if the replacement shouldn't be done. */
static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
/* Data for adjust_mems callback. */
struct adjust_mem_data
{
bool store;
enum machine_mode mem_mode;
HOST_WIDE_INT stack_adjust;
rtx side_effects;
};
/* Helper for adjust_mems. Return 1 if *loc is unsuitable for
transformation of wider mode arithmetics to narrower mode,
-1 if it is suitable and subexpressions shouldn't be
traversed and 0 if it is suitable and subexpressions should
be traversed. Called through for_each_rtx. */
static int
use_narrower_mode_test (rtx *loc, void *data)
{
rtx subreg = (rtx) data;
if (CONSTANT_P (*loc))
return -1;
switch (GET_CODE (*loc))
{
case REG:
if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
return 1;
if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
*loc, subreg_lowpart_offset (GET_MODE (subreg),
GET_MODE (*loc))))
return 1;
return -1;
case PLUS:
case MINUS:
case MULT:
return 0;
case ASHIFT:
if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
return 1;
else
return -1;
default:
return 1;
}
}
/* Transform X into narrower mode MODE from wider mode WMODE. */
static rtx
use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
{
rtx op0, op1;
if (CONSTANT_P (x))
return lowpart_subreg (mode, x, wmode);
switch (GET_CODE (x))
{
case REG:
return lowpart_subreg (mode, x, wmode);
case PLUS:
case MINUS:
case MULT:
op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
case ASHIFT:
op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
default:
gcc_unreachable ();
}
}
/* Helper function for adjusting used MEMs. */
static rtx
adjust_mems (rtx loc, const_rtx old_rtx, void *data)
{
struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
rtx mem, addr = loc, tem;
enum machine_mode mem_mode_save;
bool store_save;
switch (GET_CODE (loc))
{
case REG:
/* Don't do any sp or fp replacements outside of MEM addresses
on the LHS. */
if (amd->mem_mode == VOIDmode && amd->store)
return loc;
if (loc == stack_pointer_rtx
&& !frame_pointer_needed
&& cfa_base_rtx)
return compute_cfa_pointer (amd->stack_adjust);
else if (loc == hard_frame_pointer_rtx
&& frame_pointer_needed
&& hard_frame_pointer_adjustment != -1
&& cfa_base_rtx)
return compute_cfa_pointer (hard_frame_pointer_adjustment);
gcc_checking_assert (loc != virtual_incoming_args_rtx);
return loc;
case MEM:
mem = loc;
if (!amd->store)
{
mem = targetm.delegitimize_address (mem);
if (mem != loc && !MEM_P (mem))
return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
}
addr = XEXP (mem, 0);
mem_mode_save = amd->mem_mode;
amd->mem_mode = GET_MODE (mem);
store_save = amd->store;
amd->store = false;
addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
amd->store = store_save;
amd->mem_mode = mem_mode_save;
if (mem == loc)
addr = targetm.delegitimize_address (addr);
if (addr != XEXP (mem, 0))
mem = replace_equiv_address_nv (mem, addr);
if (!amd->store)
mem = avoid_constant_pool_reference (mem);
return mem;
case PRE_INC:
case PRE_DEC:
addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
gen_int_mode (GET_CODE (loc) == PRE_INC
? GET_MODE_SIZE (amd->mem_mode)
: -GET_MODE_SIZE (amd->mem_mode),
GET_MODE (loc)));
case POST_INC:
case POST_DEC:
if (addr == loc)
addr = XEXP (loc, 0);
gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
gen_int_mode ((GET_CODE (loc) == PRE_INC
|| GET_CODE (loc) == POST_INC)
? GET_MODE_SIZE (amd->mem_mode)
: -GET_MODE_SIZE (amd->mem_mode),
GET_MODE (loc)));
amd->side_effects = alloc_EXPR_LIST (0,
gen_rtx_SET (VOIDmode,
XEXP (loc, 0),
tem),
amd->side_effects);
return addr;
case PRE_MODIFY:
addr = XEXP (loc, 1);
case POST_MODIFY:
if (addr == loc)
addr = XEXP (loc, 0);
gcc_assert (amd->mem_mode != VOIDmode);
addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
amd->side_effects = alloc_EXPR_LIST (0,
gen_rtx_SET (VOIDmode,
XEXP (loc, 0),
XEXP (loc, 1)),
amd->side_effects);
return addr;
case SUBREG:
/* First try without delegitimization of whole MEMs and
avoid_constant_pool_reference, which is more likely to succeed. */
store_save = amd->store;
amd->store = true;
addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
data);
amd->store = store_save;
mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
if (mem == SUBREG_REG (loc))
{
tem = loc;
goto finish_subreg;
}
tem = simplify_gen_subreg (GET_MODE (loc), mem,
GET_MODE (SUBREG_REG (loc)),
SUBREG_BYTE (loc));
if (tem)
goto finish_subreg;
tem = simplify_gen_subreg (GET_MODE (loc), addr,
GET_MODE (SUBREG_REG (loc)),
SUBREG_BYTE (loc));
if (tem == NULL_RTX)
tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
finish_subreg:
if (MAY_HAVE_DEBUG_INSNS
&& GET_CODE (tem) == SUBREG
&& (GET_CODE (SUBREG_REG (tem)) == PLUS
|| GET_CODE (SUBREG_REG (tem)) == MINUS
|| GET_CODE (SUBREG_REG (tem)) == MULT
|| GET_CODE (SUBREG_REG (tem)) == ASHIFT)
&& GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
&& GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
&& GET_MODE_SIZE (GET_MODE (tem))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
&& subreg_lowpart_p (tem)
&& !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
GET_MODE (SUBREG_REG (tem)));
return tem;
case ASM_OPERANDS:
/* Don't do any replacements in second and following
ASM_OPERANDS of inline-asm with multiple sets.
ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
and ASM_OPERANDS_LABEL_VEC need to be equal between
all the ASM_OPERANDs in the insn and adjust_insn will
fix this up. */
if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
return loc;
break;
default:
break;
}
return NULL_RTX;
}
/* Helper function for replacement of uses. */
static void
adjust_mem_uses (rtx *x, void *data)
{
rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
if (new_x != *x)
validate_change (NULL_RTX, x, new_x, true);
}
/* Helper function for replacement of stores. */
static void
adjust_mem_stores (rtx loc, const_rtx expr, void *data)
{
if (MEM_P (loc))
{
rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
adjust_mems, data);
if (new_dest != SET_DEST (expr))
{
rtx xexpr = CONST_CAST_RTX (expr);
validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
}
}
}
/* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
replace them with their value in the insn and add the side-effects
as other sets to the insn. */
static void
adjust_insn (basic_block bb, rtx insn)
{
struct adjust_mem_data amd;
rtx set;
#ifdef HAVE_window_save
/* If the target machine has an explicit window save instruction, the
transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
if (RTX_FRAME_RELATED_P (insn)
&& find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
{
unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
parm_reg_t *p;
FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
{
XVECEXP (rtl, 0, i * 2)
= gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
/* Do not clobber the attached DECL, but only the REG. */
XVECEXP (rtl, 0, i * 2 + 1)
= gen_rtx_CLOBBER (GET_MODE (p->outgoing),
gen_raw_REG (GET_MODE (p->outgoing),
REGNO (p->outgoing)));
}
validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
return;
}
#endif
amd.mem_mode = VOIDmode;
amd.stack_adjust = -VTI (bb)->out.stack_adjust;
amd.side_effects = NULL_RTX;
amd.store = true;
note_stores (PATTERN (insn), adjust_mem_stores, &amd);
amd.store = false;
if (GET_CODE (PATTERN (insn)) == PARALLEL
&& asm_noperands (PATTERN (insn)) > 0
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
{
rtx body, set0;
int i;
/* inline-asm with multiple sets is tiny bit more complicated,
because the 3 vectors in ASM_OPERANDS need to be shared between
all ASM_OPERANDS in the instruction. adjust_mems will
not touch ASM_OPERANDS other than the first one, asm_noperands
test above needs to be called before that (otherwise it would fail)
and afterwards this code fixes it up. */
note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
body = PATTERN (insn);
set0 = XVECEXP (body, 0, 0);
gcc_checking_assert (GET_CODE (set0) == SET
&& GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
&& ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
for (i = 1; i < XVECLEN (body, 0); i++)
if (GET_CODE (XVECEXP (body, 0, i)) != SET)
break;
else
{
set = XVECEXP (body, 0, i);
gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
&& ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
== i);
if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
!= ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
|| ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
!= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
|| ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
!= ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
{
rtx newsrc = shallow_copy_rtx (SET_SRC (set));
ASM_OPERANDS_INPUT_VEC (newsrc)
= ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
ASM_OPERANDS_LABEL_VEC (newsrc)
= ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
}
}
}
else
note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
/* For read-only MEMs containing some constant, prefer those
constants. */
set = single_set (insn);
if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
{
rtx note = find_reg_equal_equiv_note (insn);
if (note && CONSTANT_P (XEXP (note, 0)))
validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
}
if (amd.side_effects)
{
rtx *pat, new_pat, s;
int i, oldn, newn;
pat = &PATTERN (insn);
if (GET_CODE (*pat) == COND_EXEC)
pat = &COND_EXEC_CODE (*pat);
if (GET_CODE (*pat) == PARALLEL)
oldn = XVECLEN (*pat, 0);
else
oldn = 1;
for (s = amd.side_effects, newn = 0; s; newn++)
s = XEXP (s, 1);
new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
if (GET_CODE (*pat) == PARALLEL)
for (i = 0; i < oldn; i++)
XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
else
XVECEXP (new_pat, 0, 0) = *pat;
for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
XVECEXP (new_pat, 0, i) = XEXP (s, 0);
free_EXPR_LIST_list (&amd.side_effects);
validate_change (NULL_RTX, pat, new_pat, true);
}
}
/* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
static inline rtx
dv_as_rtx (decl_or_value dv)
{
tree decl;
if (dv_is_value_p (dv))
return dv_as_value (dv);
decl = dv_as_decl (dv);
gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
return DECL_RTL_KNOWN_SET (decl);
}
/* Return nonzero if a decl_or_value must not have more than one
variable part. The returned value discriminates among various
kinds of one-part DVs ccording to enum onepart_enum. */
static inline onepart_enum_t
dv_onepart_p (decl_or_value dv)
{
tree decl;
if (!MAY_HAVE_DEBUG_INSNS)
return NOT_ONEPART;
if (dv_is_value_p (dv))
return ONEPART_VALUE;
decl = dv_as_decl (dv);
if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
return ONEPART_DEXPR;
if (target_for_debug_bind (decl) != NULL_TREE)
return ONEPART_VDECL;
return NOT_ONEPART;
}
/* Return the variable pool to be used for a dv of type ONEPART. */
static inline alloc_pool
onepart_pool (onepart_enum_t onepart)
{
return onepart ? valvar_pool : var_pool;
}
/* Build a decl_or_value out of a decl. */
static inline decl_or_value
dv_from_decl (tree decl)
{
decl_or_value dv;
dv = decl;
gcc_checking_assert (dv_is_decl_p (dv));
return dv;
}
/* Build a decl_or_value out of a value. */
static inline decl_or_value
dv_from_value (rtx value)
{
decl_or_value dv;
dv = value;
gcc_checking_assert (dv_is_value_p (dv));
return dv;
}
/* Return a value or the decl of a debug_expr as a decl_or_value. */
static inline decl_or_value
dv_from_rtx (rtx x)
{
decl_or_value dv;
switch (GET_CODE (x))
{
case DEBUG_EXPR:
dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
break;
case VALUE:
dv = dv_from_value (x);
break;
default:
gcc_unreachable ();
}
return dv;
}
extern void debug_dv (decl_or_value dv);
DEBUG_FUNCTION void
debug_dv (decl_or_value dv)
{
if (dv_is_value_p (dv))
debug_rtx (dv_as_value (dv));
else
debug_generic_stmt (dv_as_decl (dv));
}
static void loc_exp_dep_clear (variable var);
/* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
static void
variable_htab_free (void *elem)
{
int i;
variable var = (variable) elem;
location_chain node, next;
gcc_checking_assert (var->refcount > 0);
var->refcount--;
if (var->refcount > 0)
return;
for (i = 0; i < var->n_var_parts; i++)
{
for (node = var->var_part[i].loc_chain; node; node = next)
{
next = node->next;
pool_free (loc_chain_pool, node);
}
var->var_part[i].loc_chain = NULL;
}
if (var->onepart && VAR_LOC_1PAUX (var))
{
loc_exp_dep_clear (var);
if (VAR_LOC_DEP_LST (var))
VAR_LOC_DEP_LST (var)->pprev = NULL;
XDELETE (VAR_LOC_1PAUX (var));
/* These may be reused across functions, so reset
e.g. NO_LOC_P. */
if (var->onepart == ONEPART_DEXPR)
set_dv_changed (var->dv, true);
}
pool_free (onepart_pool (var->onepart), var);
}
/* Initialize the set (array) SET of attrs to empty lists. */
static void
init_attrs_list_set (attrs *set)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
set[i] = NULL;
}
/* Make the list *LISTP empty. */
static void
attrs_list_clear (attrs *listp)
{
attrs list, next;
for (list = *listp; list; list = next)
{
next = list->next;
pool_free (attrs_pool, list);
}
*listp = NULL;
}
/* Return true if the pair of DECL and OFFSET is the member of the LIST. */
static attrs
attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
{
for (; list; list = list->next)
if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
return list;
return NULL;
}
/* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
static void
attrs_list_insert (attrs *listp, decl_or_value dv,
HOST_WIDE_INT offset, rtx loc)
{
attrs list;
list = (attrs) pool_alloc (attrs_pool);
list->loc = loc;
list->dv = dv;
list->offset = offset;
list->next = *listp;
*listp = list;
}
/* Copy all nodes from SRC and create a list *DSTP of the copies. */
static void
attrs_list_copy (attrs *dstp, attrs src)
{
attrs n;
attrs_list_clear (dstp);
for (; src; src = src->next)
{
n = (attrs) pool_alloc (attrs_pool);
n->loc = src->loc;
n->dv = src->dv;
n->offset = src->offset;
n->next = *dstp;
*dstp = n;
}
}
/* Add all nodes from SRC which are not in *DSTP to *DSTP. */
static void
attrs_list_union (attrs *dstp, attrs src)
{
for (; src; src = src->next)
{
if (!attrs_list_member (*dstp, src->dv, src->offset))
attrs_list_insert (dstp, src->dv, src->offset, src->loc);
}
}
/* Combine nodes that are not onepart nodes from SRC and SRC2 into
*DSTP. */
static void
attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
{
gcc_assert (!*dstp);
for (; src; src = src->next)
{
if (!dv_onepart_p (src->dv))
attrs_list_insert (dstp, src->dv, src->offset, src->loc);
}
for (src = src2; src; src = src->next)
{
if (!dv_onepart_p (src->dv)
&& !attrs_list_member (*dstp, src->dv, src->offset))
attrs_list_insert (dstp, src->dv, src->offset, src->loc);
}
}
/* Shared hashtable support. */
/* Return true if VARS is shared. */
static inline bool
shared_hash_shared (shared_hash vars)
{
return vars->refcount > 1;
}
/* Return the hash table for VARS. */
static inline variable_table_type
shared_hash_htab (shared_hash vars)
{
return vars->htab;
}
/* Return true if VAR is shared, or maybe because VARS is shared. */
static inline bool
shared_var_p (variable var, shared_hash vars)
{
/* Don't count an entry in the changed_variables table as a duplicate. */
return ((var->refcount > 1 + (int) var->in_changed_variables)
|| shared_hash_shared (vars));
}
/* Copy variables into a new hash table. */
static shared_hash
shared_hash_unshare (shared_hash vars)
{
shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
gcc_assert (vars->refcount > 1);
new_vars->refcount = 1;
new_vars->htab.create (vars->htab.elements () + 3);
vars_copy (new_vars->htab, vars->htab);
vars->refcount--;
return new_vars;
}
/* Increment reference counter on VARS and return it. */
static inline shared_hash
shared_hash_copy (shared_hash vars)
{
vars->refcount++;
return vars;
}
/* Decrement reference counter and destroy hash table if not shared
anymore. */
static void
shared_hash_destroy (shared_hash vars)
{
gcc_checking_assert (vars->refcount > 0);
if (--vars->refcount == 0)
{
vars->htab.dispose ();
pool_free (shared_hash_pool, vars);
}
}
/* Unshare *PVARS if shared and return slot for DV. If INS is
INSERT, insert it if not already present. */
static inline variable_def **
shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
hashval_t dvhash, enum insert_option ins)
{
if (shared_hash_shared (*pvars))
*pvars = shared_hash_unshare (*pvars);
return shared_hash_htab (*pvars).find_slot_with_hash (dv, dvhash, ins);
}
static inline variable_def **
shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
enum insert_option ins)
{
return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
}
/* Return slot for DV, if it is already present in the hash table.
If it is not present, insert it only VARS is not shared, otherwise
return NULL. */
static inline variable_def **
shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
{
return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash,
shared_hash_shared (vars)
? NO_INSERT : INSERT);
}
static inline variable_def **
shared_hash_find_slot (shared_hash vars, decl_or_value dv)
{
return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
}
/* Return slot for DV only if it is already present in the hash table. */
static inline variable_def **
shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
hashval_t dvhash)
{
return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash, NO_INSERT);
}
static inline variable_def **
shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
{
return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
}
/* Return variable for DV or NULL if not already present in the hash
table. */
static inline variable
shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
{
return shared_hash_htab (vars).find_with_hash (dv, dvhash);
}
static inline variable
shared_hash_find (shared_hash vars, decl_or_value dv)
{
return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
}
/* Return true if TVAL is better than CVAL as a canonival value. We
choose lowest-numbered VALUEs, using the RTX address as a
tie-breaker. The idea is to arrange them into a star topology,
such that all of them are at most one step away from the canonical
value, and the canonical value has backlinks to all of them, in
addition to all the actual locations. We don't enforce this
topology throughout the entire dataflow analysis, though.
*/
static inline bool
canon_value_cmp (rtx tval, rtx cval)
{
return !cval
|| CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
}
static bool dst_can_be_shared;
/* Return a copy of a variable VAR and insert it to dataflow set SET. */
static variable_def **
unshare_variable (dataflow_set *set, variable_def **slot, variable var,
enum var_init_status initialized)
{
variable new_var;
int i;
new_var = (variable) pool_alloc (onepart_pool (var->onepart));
new_var->dv = var->dv;
new_var->refcount = 1;
var->refcount--;
new_var->n_var_parts = var->n_var_parts;
new_var->onepart = var->onepart;
new_var->in_changed_variables = false;
if (! flag_var_tracking_uninit)
initialized = VAR_INIT_STATUS_INITIALIZED;
for (i = 0; i < var->n_var_parts; i++)
{
location_chain node;
location_chain *nextp;
if (i == 0 && var->onepart)
{
/* One-part auxiliary data is only used while emitting
notes, so propagate it to the new variable in the active
dataflow set. If we're not emitting notes, this will be
a no-op. */
gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
VAR_LOC_1PAUX (var) = NULL;
}
else
VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
nextp = &new_var->var_part[i].loc_chain;
for (node = var->var_part[i].loc_chain; node; node = node->next)
{
location_chain new_lc;
new_lc = (location_chain) pool_alloc (loc_chain_pool);
new_lc->next = NULL;
if (node->init > initialized)
new_lc->init = node->init;
else
new_lc->init = initialized;
if (node->set_src && !(MEM_P (node->set_src)))
new_lc->set_src = node->set_src;
else
new_lc->set_src = NULL;
new_lc->loc = node->loc;
*nextp = new_lc;
nextp = &new_lc->next;
}
new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
}
dst_can_be_shared = false;
if (shared_hash_shared (set->vars))
slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
else if (set->traversed_vars && set->vars != set->traversed_vars)
slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
*slot = new_var;
if (var->in_changed_variables)
{
variable_def **cslot
= changed_variables.find_slot_with_hash (var->dv,
dv_htab_hash (var->dv), NO_INSERT);
gcc_assert (*cslot == (void *) var);
var->in_changed_variables = false;
variable_htab_free (var);
*cslot = new_var;
new_var->in_changed_variables = true;
}
return slot;
}
/* Copy all variables from hash table SRC to hash table DST. */
static void
vars_copy (variable_table_type dst, variable_table_type src)
{
variable_iterator_type hi;
variable var;
FOR_EACH_HASH_TABLE_ELEMENT (src, var, variable, hi)
{
variable_def **dstp;
var->refcount++;
dstp = dst.find_slot_with_hash (var->dv, dv_htab_hash (var->dv), INSERT);
*dstp = var;
}
}
/* Map a decl to its main debug decl. */
static inline tree
var_debug_decl (tree decl)
{
if (decl && TREE_CODE (decl) == VAR_DECL
&& DECL_HAS_DEBUG_EXPR_P (decl))
{
tree debugdecl = DECL_DEBUG_EXPR (decl);
if (DECL_P (debugdecl))
decl = debugdecl;
}
return decl;
}
/* Set the register LOC to contain DV, OFFSET. */
static void
var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
enum insert_option iopt)
{
attrs node;
bool decl_p = dv_is_decl_p (dv);
if (decl_p)
dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
for (node = set->regs[REGNO (loc)]; node; node = node->next)
if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
&& node->offset == offset)
break;
if (!node)
attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
}
/* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
static void
var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
rtx set_src)
{
tree decl = REG_EXPR (loc);
HOST_WIDE_INT offset = REG_OFFSET (loc);
var_reg_decl_set (set, loc, initialized,
dv_from_decl (decl), offset, set_src, INSERT);
}
static enum var_init_status
get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
{
variable var;
int i;
enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
if (! flag_var_tracking_uninit)
return VAR_INIT_STATUS_INITIALIZED;
var = shared_hash_find (set->vars, dv);
if (var)
{
for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
{
location_chain nextp;
for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
if (rtx_equal_p (nextp->loc, loc))
{
ret_val = nextp->init;
break;
}
}
}
return ret_val;
}
/* Delete current content of register LOC in dataflow set SET and set
the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
MODIFY is true, any other live copies of the same variable part are
also deleted from the dataflow set, otherwise the variable part is
assumed to be copied from another location holding the same
part. */
static void
var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
enum var_init_status initialized, rtx set_src)
{
tree decl = REG_EXPR (loc);
HOST_WIDE_INT offset = REG_OFFSET (loc);
attrs node, next;
attrs *nextp;
decl = var_debug_decl (decl);
if (initialized == VAR_INIT_STATUS_UNKNOWN)
initialized = get_init_value (set, loc, dv_from_decl (decl));
nextp = &set->regs[REGNO (loc)];
for (node = *nextp; node; node = next)
{
next = node->next;
if (dv_as_opaque (node->dv) != decl || node->offset != offset)
{
delete_variable_part (set, node->loc, node->dv, node->offset);
pool_free (attrs_pool, node);
*nextp = next;
}
else
{
node->loc = loc;
nextp = &node->next;
}
}
if (modify)
clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
var_reg_set (set, loc, initialized, set_src);
}
/* Delete the association of register LOC in dataflow set SET with any
variables that aren't onepart. If CLOBBER is true, also delete any
other live copies of the same variable part, and delete the
association with onepart dvs too. */
static void
var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
{
attrs *nextp = &set->regs[REGNO (loc)];
attrs node, next;
if (clobber)
{
tree decl = REG_EXPR (loc);
HOST_WIDE_INT offset = REG_OFFSET (loc);
decl = var_debug_decl (decl);
clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
}
for (node = *nextp; node; node = next)
{
next = node->next;
if (clobber || !dv_onepart_p (node->dv))
{
delete_variable_part (set, node->loc, node->dv, node->offset);
pool_free (attrs_pool, node);
*nextp = next;
}
else
nextp = &node->next;
}
}
/* Delete content of register with number REGNO in dataflow set SET. */
static void
var_regno_delete (dataflow_set *set, int regno)
{
attrs *reg = &set->regs[regno];
attrs node, next;
for (node = *reg; node; node = next)
{
next = node->next;
delete_variable_part (set, node->loc, node->dv, node->offset);
pool_free (attrs_pool, node);
}
*reg = NULL;
}
/* Return true if I is the negated value of a power of two. */
static bool
negative_power_of_two_p (HOST_WIDE_INT i)
{
unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
return x == (x & -x);
}
/* Strip constant offsets and alignments off of LOC. Return the base
expression. */
static rtx
vt_get_canonicalize_base (rtx loc)
{
while ((GET_CODE (loc) == PLUS
|| GET_CODE (loc) == AND)
&& GET_CODE (XEXP (loc, 1)) == CONST_INT
&& (GET_CODE (loc) != AND
|| negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
loc = XEXP (loc, 0);
return loc;
}
/* This caches canonicalized addresses for VALUEs, computed using
information in the global cselib table. */
static struct pointer_map_t *global_get_addr_cache;
/* This caches canonicalized addresses for VALUEs, computed using
information from the global cache and information pertaining to a
basic block being analyzed. */
static struct pointer_map_t *local_get_addr_cache;
static rtx vt_canonicalize_addr (dataflow_set *, rtx);
/* Return the canonical address for LOC, that must be a VALUE, using a
cached global equivalence or computing it and storing it in the
global cache. */
static rtx
get_addr_from_global_cache (rtx const loc)
{
rtx x;
void **slot;
gcc_checking_assert (GET_CODE (loc) == VALUE);
slot = pointer_map_insert (global_get_addr_cache, loc);
if (*slot)
return (rtx)*slot;
x = canon_rtx (get_addr (loc));
/* Tentative, avoiding infinite recursion. */
*slot = x;
if (x != loc)
{
rtx nx = vt_canonicalize_addr (NULL, x);
if (nx != x)
{
/* The table may have moved during recursion, recompute
SLOT. */
slot = pointer_map_contains (global_get_addr_cache, loc);
*slot = x = nx;
}
}
return x;
}
/* Return the canonical address for LOC, that must be a VALUE, using a
cached local equivalence or computing it and storing it in the
local cache. */
static rtx
get_addr_from_local_cache (dataflow_set *set, rtx const loc)
{
rtx x;
void **slot;
decl_or_value dv;
variable var;
location_chain l;
gcc_checking_assert (GET_CODE (loc) == VALUE);
slot = pointer_map_insert (local_get_addr_cache, loc);
if (*slot)
return (rtx)*slot;
x = get_addr_from_global_cache (loc);
/* Tentative, avoiding infinite recursion. */
*slot = x;
/* Recurse to cache local expansion of X, or if we need to search
for a VALUE in the expansion. */
if (x != loc)
{
rtx nx = vt_canonicalize_addr (set, x);
if (nx != x)
{
slot = pointer_map_contains (local_get_addr_cache, loc);
*slot = x = nx;
}
return x;
}
dv = dv_from_rtx (x);
var = shared_hash_find (set->vars, dv);
if (!var)
return x;
/* Look for an improved equivalent expression. */
for (l = var->var_part[0].loc_chain; l; l = l->next)
{
rtx base = vt_get_canonicalize_base (l->loc);
if (GET_CODE (base) == VALUE
&& canon_value_cmp (base, loc))
{
rtx nx = vt_canonicalize_addr (set, l->loc);
if (x != nx)
{
slot = pointer_map_contains (local_get_addr_cache, loc);
*slot = x = nx;
}
break;
}
}
return x;
}
/* Canonicalize LOC using equivalences from SET in addition to those
in the cselib static table. It expects a VALUE-based expression,
and it will only substitute VALUEs with other VALUEs or
function-global equivalences, so that, if two addresses have base
VALUEs that are locally or globally related in ways that
memrefs_conflict_p cares about, they will both canonicalize to
expressions that have the same base VALUE.
The use of VALUEs as canonical base addresses enables the canonical
RTXs to remain unchanged globally, if they resolve to a constant,
or throughout a basic block otherwise, so that they can be cached
and the cache needs not be invalidated when REGs, MEMs or such
change. */
static rtx
vt_canonicalize_addr (dataflow_set *set, rtx oloc)
{
HOST_WIDE_INT ofst = 0;
enum machine_mode mode = GET_MODE (oloc);
rtx loc = oloc;
rtx x;
bool retry = true;
while (retry)
{
while (GET_CODE (loc) == PLUS
&& GET_CODE (XEXP (loc, 1)) == CONST_INT)
{
ofst += INTVAL (XEXP (loc, 1));
loc = XEXP (loc, 0);
}
/* Alignment operations can't normally be combined, so just
canonicalize the base and we're done. We'll normally have
only one stack alignment anyway. */
if (GET_CODE (loc) == AND
&& GET_CODE (XEXP (loc, 1)) == CONST_INT
&& negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
{
x = vt_canonicalize_addr (set, XEXP (loc, 0));
if (x != XEXP (loc, 0))
loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
retry = false;
}
if (GET_CODE (loc) == VALUE)
{
if (set)
loc = get_addr_from_local_cache (set, loc);
else
loc = get_addr_from_global_cache (loc);
/* Consolidate plus_constants. */
while (ofst && GET_CODE (loc) == PLUS
&& GET_CODE (XEXP (loc, 1)) == CONST_INT)
{
ofst += INTVAL (XEXP (loc, 1));
loc = XEXP (loc, 0);
}
retry = false;
}
else
{
x = canon_rtx (loc);
if (retry)
retry = (x != loc);
loc = x;
}
}
/* Add OFST back in. */
if (ofst)
{
/* Don't build new RTL if we can help it. */
if (GET_CODE (oloc) == PLUS
&& XEXP (oloc, 0) == loc
&& INTVAL (XEXP (oloc, 1)) == ofst)
return oloc;
loc = plus_constant (mode, loc, ofst);
}
return loc;
}
/* Return true iff there's a true dependence between MLOC and LOC.
MADDR must be a canonicalized version of MLOC's address. */
static inline bool
vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
{
if (GET_CODE (loc) != MEM)
return false;
rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
return false;
return true;
}
/* Hold parameters for the hashtab traversal function
drop_overlapping_mem_locs, see below. */
struct overlapping_mems
{
dataflow_set *set;
rtx loc, addr;
};
/* Remove all MEMs that overlap with COMS->LOC from the location list
of a hash table entry for a value. COMS->ADDR must be a
canonicalized form of COMS->LOC's address, and COMS->LOC must be
canonicalized itself. */
int
drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
{
dataflow_set *set = coms->set;
rtx mloc = coms->loc, addr = coms->addr;
variable var = *slot;
if (var->onepart == ONEPART_VALUE)
{
location_chain loc, *locp;
bool changed = false;
rtx cur_loc;
gcc_assert (var->n_var_parts == 1);
if (shared_var_p (var, set->vars))
{
for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
if (vt_canon_true_dep (set, mloc, addr, loc->loc))
break;
if (!loc)
return 1;
slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
var = *slot;
gcc_assert (var->n_var_parts == 1);
}
if (VAR_LOC_1PAUX (var))
cur_loc = VAR_LOC_FROM (var);
else
cur_loc = var->var_part[0].cur_loc;
for (locp = &var->var_part[0].loc_chain, loc = *locp;
loc; loc = *locp)
{
if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
{
locp = &loc->next;
continue;
}
*locp = loc->next;
/* If we have deleted the location which was last emitted
we have to emit new location so add the variable to set
of changed variables. */
if (cur_loc == loc->loc)
{
changed = true;
var->var_part[0].cur_loc = NULL;
if (VAR_LOC_1PAUX (var))
VAR_LOC_FROM (var) = NULL;
}
pool_free (loc_chain_pool, loc);
}
if (!var->var_part[0].loc_chain)
{
var->n_var_parts--;
changed = true;
}
if (changed)
variable_was_changed (var, set);
}
return 1;
}
/* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
static void
clobber_overlapping_mems (dataflow_set *set, rtx loc)
{
struct overlapping_mems coms;
gcc_checking_assert (GET_CODE (loc) == MEM);
coms.set = set;
coms.loc = canon_rtx (loc);
coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
set->traversed_vars = set->vars;
shared_hash_htab (set->vars)
.traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
set->traversed_vars = NULL;
}
/* Set the location of DV, OFFSET as the MEM LOC. */
static void
var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
enum insert_option iopt)
{
if (dv_is_decl_p (dv))
dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
}
/* Set the location part of variable MEM_EXPR (LOC) in dataflow set
SET to LOC.
Adjust the address first if it is stack pointer based. */
static void
var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
rtx set_src)
{
tree decl = MEM_EXPR (loc);
HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
var_mem_decl_set (set, loc, initialized,
dv_from_decl (decl), offset, set_src, INSERT);
}
/* Delete and set the location part of variable MEM_EXPR (LOC) in
dataflow set SET to LOC. If MODIFY is true, any other live copies
of the same variable part are also deleted from the dataflow set,
otherwise the variable part is assumed to be copied from another
location holding the same part.
Adjust the address first if it is stack pointer based. */
static void
var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
enum var_init_status initialized, rtx set_src)
{
tree decl = MEM_EXPR (loc);
HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
clobber_overlapping_mems (set, loc);
decl = var_debug_decl (decl);
if (initialized == VAR_INIT_STATUS_UNKNOWN)
initialized = get_init_value (set, loc, dv_from_decl (decl));
if (modify)
clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
var_mem_set (set, loc, initialized, set_src);
}
/* Delete the location part LOC from dataflow set SET. If CLOBBER is
true, also delete any other live copies of the same variable part.
Adjust the address first if it is stack pointer based. */
static void
var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
{
tree decl = MEM_EXPR (loc);
HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
clobber_overlapping_mems (set, loc);
decl = var_debug_decl (decl);
if (clobber)
clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
delete_variable_part (set, loc, dv_from_decl (decl), offset);
}
/* Return true if LOC should not be expanded for location expressions,
or used in them. */
static inline bool
unsuitable_loc (rtx loc)
{
switch (GET_CODE (loc))
{
case PC:
case SCRATCH:
case CC0:
case ASM_INPUT:
case ASM_OPERANDS:
return true;
default:
return false;
}
}
/* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
bound to it. */
static inline void
val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
{
if (REG_P (loc))
{
if (modified)
var_regno_delete (set, REGNO (loc));
var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
dv_from_value (val), 0, NULL_RTX, INSERT);
}
else if (MEM_P (loc))
{
struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
if (modified)
clobber_overlapping_mems (set, loc);
if (l && GET_CODE (l->loc) == VALUE)
l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
/* If this MEM is a global constant, we don't need it in the
dynamic tables. ??? We should test this before emitting the
micro-op in the first place. */
while (l)
if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
break;
else
l = l->next;
if (!l)
var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
dv_from_value (val), 0, NULL_RTX, INSERT);
}
else
{
/* Other kinds of equivalences are necessarily static, at least
so long as we do not perform substitutions while merging
expressions. */
gcc_unreachable ();
set_variable_part (set, loc, dv_from_value (val), 0,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
}
}
/* Bind a value to a location it was just stored in. If MODIFIED
holds, assume the location was modified, detaching it from any
values bound to it. */
static void
val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
{
cselib_val *v = CSELIB_VAL_PTR (val);
gcc_assert (cselib_preserved_value_p (v));
if (dump_file)
{
fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
print_inline_rtx (dump_file, loc, 0);
fprintf (dump_file, " evaluates to ");
print_inline_rtx (dump_file, val, 0);
if (v->locs)
{
struct elt_loc_list *l;
for (l = v->locs; l; l = l->next)
{
fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
print_inline_rtx (dump_file, l->loc, 0);
}
}
fprintf (dump_file, "\n");
}
gcc_checking_assert (!unsuitable_loc (loc));
val_bind (set, val, loc, modified);
}
/* Clear (canonical address) slots that reference X. */
static bool
local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
void **slot, void *x)
{
if (vt_get_canonicalize_base ((rtx)*slot) == x)
*slot = NULL;
return true;
}
/* Reset this node, detaching all its equivalences. Return the slot
in the variable hash table that holds dv, if there is one. */
static void
val_reset (dataflow_set *set, decl_or_value dv)
{
variable var = shared_hash_find (set->vars, dv) ;
location_chain node;
rtx cval;
if (!var || !var->n_var_parts)
return;
gcc_assert (var->n_var_parts == 1);
if (var->onepart == ONEPART_VALUE)
{
rtx x = dv_as_value (dv);
void **slot;
/* Relationships in the global cache don't change, so reset the
local cache entry only. */
slot = pointer_map_contains (local_get_addr_cache, x);
if (slot)
{
/* If the value resolved back to itself, odds are that other
values may have cached it too. These entries now refer
to the old X, so detach them too. Entries that used the
old X but resolved to something else remain ok as long as
that something else isn't also reset. */
if (*slot == x)
pointer_map_traverse (local_get_addr_cache,
local_get_addr_clear_given_value, x);
*slot = NULL;
}
}
cval = NULL;
for (node = var->var_part[0].loc_chain; node; node = node->next)
if (GET_CODE (node->loc) == VALUE
&& canon_value_cmp (node->loc, cval))
cval = node->loc;
for (node = var->var_part[0].loc_chain; node; node = node->next)
if (GET_CODE (node->loc) == VALUE && cval != node->loc)
{
/* Redirect the equivalence link to the new canonical
value, or simply remove it if it would point at
itself. */
if (cval)
set_variable_part (set, cval, dv_from_value (node->loc),
0, node->init, node->set_src, NO_INSERT);
delete_variable_part (set, dv_as_value (dv),
dv_from_value (node->loc), 0);
}
if (cval)
{
decl_or_value cdv = dv_from_value (cval);
/* Keep the remaining values connected, accummulating links
in the canonical value. */
for (node = var->var_part[0].loc_chain; node; node = node->next)
{
if (node->loc == cval)
continue;
else if (GET_CODE (node->loc) == REG)
var_reg_decl_set (set, node->loc, node->init, cdv, 0,
node->set_src, NO_INSERT);
else if (GET_CODE (node->loc) == MEM)
var_mem_decl_set (set, node->loc, node->init, cdv, 0,
node->set_src, NO_INSERT);
else
set_variable_part (set, node->loc, cdv, 0,
node->init, node->set_src, NO_INSERT);
}
}
/* We remove this last, to make sure that the canonical value is not
removed to the point of requiring reinsertion. */
if (cval)
delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
clobber_variable_part (set, NULL, dv, 0, NULL);
}
/* Find the values in a given location and map the val to another
value, if it is unique, or add the location as one holding the
value. */
static void
val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
{
decl_or_value dv = dv_from_value (val);
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (insn)
fprintf (dump_file, "%i: ", INSN_UID (insn));
else
fprintf (dump_file, "head: ");
print_inline_rtx (dump_file, val, 0);
fputs (" is at ", dump_file);
print_inline_rtx (dump_file, loc, 0);
fputc ('\n', dump_file);
}
val_reset (set, dv);
gcc_checking_assert (!unsuitable_loc (loc));
if (REG_P (loc))
{
attrs node, found = NULL;
for (node = set->regs[REGNO (loc)]; node; node = node->next)
if (dv_is_value_p (node->dv)
&& GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
{
found = node;
/* Map incoming equivalences. ??? Wouldn't it be nice if
we just started sharing the location lists? Maybe a
circular list ending at the value itself or some
such. */
set_variable_part (set, dv_as_value (node->dv),
dv_from_value (val), node->offset,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
set_variable_part (set, val, node->dv, node->offset,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
}
/* If we didn't find any equivalence, we need to remember that
this value is held in the named register. */
if (found)
return;
}
/* ??? Attempt to find and merge equivalent MEMs or other
expressions too. */
val_bind (set, val, loc, false);
}
/* Initialize dataflow set SET to be empty.
VARS_SIZE is the initial size of hash table VARS. */
static void
dataflow_set_init (dataflow_set *set)
{
init_attrs_list_set (set->regs);
set->vars = shared_hash_copy (empty_shared_hash);
set->stack_adjust = 0;
set->traversed_vars = NULL;
}
/* Delete the contents of dataflow set SET. */
static void
dataflow_set_clear (dataflow_set *set)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
attrs_list_clear (&set->regs[i]);
shared_hash_destroy (set->vars);
set->vars = shared_hash_copy (empty_shared_hash);
}
/* Copy the contents of dataflow set SRC to DST. */
static void
dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
attrs_list_copy (&dst->regs[i], src->regs[i]);
shared_hash_destroy (dst->vars);
dst->vars = shared_hash_copy (src->vars);
dst->stack_adjust = src->stack_adjust;
}
/* Information for merging lists of locations for a given offset of variable.
*/
struct variable_union_info
{
/* Node of the location chain. */
location_chain lc;
/* The sum of positions in the input chains. */
int pos;
/* The position in the chain of DST dataflow set. */
int pos_dst;
};
/* Buffer for location list sorting and its allocated size. */
static struct variable_union_info *vui_vec;
static int vui_allocated;
/* Compare function for qsort, order the structures by POS element. */
static int
variable_union_info_cmp_pos (const void *n1, const void *n2)
{
const struct variable_union_info *const i1 =
(const struct variable_union_info *) n1;
const struct variable_union_info *const i2 =
( const struct variable_union_info *) n2;
if (i1->pos != i2->pos)
return i1->pos - i2->pos;
return (i1->pos_dst - i2->pos_dst);
}
/* Compute union of location parts of variable *SLOT and the same variable
from hash table DATA. Compute "sorted" union of the location chains
for common offsets, i.e. the locations of a variable part are sorted by
a priority where the priority is the sum of the positions in the 2 chains
(if a location is only in one list the position in the second list is
defined to be larger than the length of the chains).
When we are updating the location parts the newest location is in the
beginning of the chain, so when we do the described "sorted" union
we keep the newest locations in the beginning. */
static int
variable_union (variable src, dataflow_set *set)
{
variable dst;
variable_def **dstp;
int i, j, k;
dstp = shared_hash_find_slot (set->vars, src->dv);
if (!dstp || !*dstp)
{
src->refcount++;
dst_can_be_shared = false;
if (!dstp)
dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
*dstp = src;
/* Continue traversing the hash table. */
return 1;
}
else
dst = *dstp;
gcc_assert (src->n_var_parts);
gcc_checking_assert (src->onepart == dst->onepart);
/* We can combine one-part variables very efficiently, because their
entries are in canonical order. */
if (src->onepart)
{
location_chain *nodep, dnode, snode;
gcc_assert (src->n_var_parts == 1
&& dst->n_var_parts == 1);
snode = src->var_part[0].loc_chain;
gcc_assert (snode);
restart_onepart_unshared:
nodep = &dst->var_part[0].loc_chain;
dnode = *nodep;
gcc_assert (dnode);
while (snode)
{
int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
if (r > 0)
{
location_chain nnode;
if (shared_var_p (dst, set->vars))
{
dstp = unshare_variable (set, dstp, dst,
VAR_INIT_STATUS_INITIALIZED);
dst = *dstp;
goto restart_onepart_unshared;
}
*nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
nnode->loc = snode->loc;
nnode->init = snode->init;
if (!snode->set_src || MEM_P (snode->set_src))
nnode->set_src = NULL;
else
nnode->set_src = snode->set_src;
nnode->next = dnode;
dnode = nnode;
}
else if (r == 0)
gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
if (r >= 0)
snode = snode->next;
nodep = &dnode->next;
dnode = *nodep;
}
return 1;
}
gcc_checking_assert (!src->onepart);
/* Count the number of location parts, result is K. */
for (i = 0, j = 0, k = 0;
i < src->n_var_parts && j < dst->n_var_parts; k++)
{
if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
{
i++;
j++;
}
else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
i++;
else
j++;
}
k += src->n_var_parts - i;
k += dst->n_var_parts - j;
/* We track only variables whose size is <= MAX_VAR_PARTS bytes
thus there are at most MAX_VAR_PARTS different offsets. */
gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
{
dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
dst = *dstp;
}
i = src->n_var_parts - 1;
j = dst->n_var_parts - 1;
dst->n_var_parts = k;
for (k--; k >= 0; k--)
{
location_chain node, node2;
if (i >= 0 && j >= 0
&& VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
{
/* Compute the "sorted" union of the chains, i.e. the locations which
are in both chains go first, they are sorted by the sum of
positions in the chains. */
int dst_l, src_l;
int ii, jj, n;
struct variable_union_info *vui;
/* If DST is shared compare the location chains.
If they are different we will modify the chain in DST with
high probability so make a copy of DST. */
if (shared_var_p (dst, set->vars))
{
for (node = src->var_part[i].loc_chain,
node2 = dst->var_part[j].loc_chain; node && node2;
node = node->next, node2 = node2->next)
{
if (!((REG_P (node2->loc)
&& REG_P (node->loc)
&& REGNO (node2->loc) == REGNO (node->loc))
|| rtx_equal_p (node2->loc, node->loc)))
{
if (node2->init < node->init)
node2->init = node->init;
break;
}
}
if (node || node2)
{
dstp = unshare_variable (set, dstp, dst,
VAR_INIT_STATUS_UNKNOWN);
dst = (variable)*dstp;
}
}
src_l = 0;
for (node = src->var_part[i].loc_chain; node; node = node->next)
src_l++;
dst_l = 0;
for (node = dst->var_part[j].loc_chain; node; node = node->next)
dst_l++;
if (dst_l == 1)
{
/* The most common case, much simpler, no qsort is needed. */
location_chain dstnode = dst->var_part[j].loc_chain;
dst->var_part[k].loc_chain = dstnode;
VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
node2 = dstnode;
for (node = src->var_part[i].loc_chain; node; node = node->next)
if (!((REG_P (dstnode->loc)
&& REG_P (node->loc)
&& REGNO (dstnode->loc) == REGNO (node->loc))
|| rtx_equal_p (dstnode->loc, node->loc)))
{
location_chain new_node;
/* Copy the location from SRC. */
new_node = (location_chain) pool_alloc (loc_chain_pool);
new_node->loc = node->loc;
new_node->init = node->init;
if (!node->set_src || MEM_P (node->set_src))
new_node->set_src = NULL;
else
new_node->set_src = node->set_src;
node2->next = new_node;
node2 = new_node;
}
node2->next = NULL;
}
else
{
if (src_l + dst_l > vui_allocated)
{
vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
vui_allocated);
}
vui = vui_vec;
/* Fill in the locations from DST. */
for (node = dst->var_part[j].loc_chain, jj = 0; node;
node = node->next, jj++)
{
vui[jj].lc = node;
vui[jj].pos_dst = jj;
/* Pos plus value larger than a sum of 2 valid positions. */
vui[jj].pos = jj + src_l + dst_l;
}
/* Fill in the locations from SRC. */
n = dst_l;
for (node = src->var_part[i].loc_chain, ii = 0; node;
node = node->next, ii++)
{
/* Find location from NODE. */
for (jj = 0; jj < dst_l; jj++)
{
if ((REG_P (vui[jj].lc->loc)
&& REG_P (node->loc)
&& REGNO (vui[jj].lc->loc) == REGNO (node->loc))
|| rtx_equal_p (vui[jj].lc->loc, node->loc))
{
vui[jj].pos = jj + ii;
break;
}
}
if (jj >= dst_l) /* The location has not been found. */
{
location_chain new_node;
/* Copy the location from SRC. */
new_node = (location_chain) pool_alloc (loc_chain_pool);
new_node->loc = node->loc;
new_node->init = node->init;
if (!node->set_src || MEM_P (node->set_src))
new_node->set_src = NULL;
else
new_node->set_src = node->set_src;
vui[n].lc = new_node;
vui[n].pos_dst = src_l + dst_l;
vui[n].pos = ii + src_l + dst_l;
n++;
}
}
if (dst_l == 2)
{
/* Special case still very common case. For dst_l == 2
all entries dst_l ... n-1 are sorted, with for i >= dst_l
vui[i].pos == i + src_l + dst_l. */
if (vui[0].pos > vui[1].pos)
{
/* Order should be 1, 0, 2... */
dst->var_part[k].loc_chain = vui[1].lc;
vui[1].lc->next = vui[0].lc;
if (n >= 3)
{
vui[0].lc->next = vui[2].lc;
vui[n - 1].lc->next = NULL;
}
else
vui[0].lc->next = NULL;
ii = 3;
}
else
{
dst->var_part[k].loc_chain = vui[0].lc;
if (n >= 3 && vui[2].pos < vui[1].pos)
{
/* Order should be 0, 2, 1, 3... */
vui[0].lc->next = vui[2].lc;
vui[2].lc->next = vui[1].lc;
if (n >= 4)
{
vui[1].lc->next = vui[3].lc;
vui[n - 1].lc->next = NULL;
}
else
vui[1].lc->next = NULL;
ii = 4;
}
else
{
/* Order should be 0, 1, 2... */
ii = 1;
vui[n - 1].lc->next = NULL;
}
}
for (; ii < n; ii++)
vui[ii - 1].lc->next = vui[ii].lc;
}
else
{
qsort (vui, n, sizeof (struct variable_union_info),
variable_union_info_cmp_pos);
/* Reconnect the nodes in sorted order. */
for (ii = 1; ii < n; ii++)
vui[ii - 1].lc->next = vui[ii].lc;
vui[n - 1].lc->next = NULL;
dst->var_part[k].loc_chain = vui[0].lc;
}
VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
}
i--;
j--;
}
else if ((i >= 0 && j >= 0
&& VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
|| i < 0)
{
dst->var_part[k] = dst->var_part[j];
j--;
}
else if ((i >= 0 && j >= 0
&& VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
|| j < 0)
{
location_chain *nextp;
/* Copy the chain from SRC. */
nextp = &dst->var_part[k].loc_chain;
for (node = src->var_part[i].loc_chain; node; node = node->next)
{
location_chain new_lc;
new_lc = (location_chain) pool_alloc (loc_chain_pool);
new_lc->next = NULL;
new_lc->init = node->init;
if (!node->set_src || MEM_P (node->set_src))
new_lc->set_src = NULL;
else
new_lc->set_src = node->set_src;
new_lc->loc = node->loc;
*nextp = new_lc;
nextp = &new_lc->next;
}
VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
i--;
}
dst->var_part[k].cur_loc = NULL;
}
if (flag_var_tracking_uninit)
for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
{
location_chain node, node2;
for (node = src->var_part[i].loc_chain; node; node = node->next)
for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
if (rtx_equal_p (node->loc, node2->loc))
{
if (node->init > node2->init)
node2->init = node->init;
}
}
/* Continue traversing the hash table. */
return 1;
}
/* Compute union of dataflow sets SRC and DST and store it to DST. */
static void
dataflow_set_union (dataflow_set *dst, dataflow_set *src)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
attrs_list_union (&dst->regs[i], src->regs[i]);
if (dst->vars == empty_shared_hash)
{
shared_hash_destroy (dst->vars);
dst->vars = shared_hash_copy (src->vars);
}
else
{
variable_iterator_type hi;
variable var;
FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src->vars),
var, variable, hi)
variable_union (var, dst);
}
}
/* Whether the value is currently being expanded. */
#define VALUE_RECURSED_INTO(x) \
(RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
/* Whether no expansion was found, saving useless lookups.
It must only be set when VALUE_CHANGED is clear. */
#define NO_LOC_P(x) \
(RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
/* Whether cur_loc in the value needs to be (re)computed. */
#define VALUE_CHANGED(x) \
(RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
/* Whether cur_loc in the decl needs to be (re)computed. */
#define DECL_CHANGED(x) TREE_VISITED (x)
/* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
user DECLs, this means they're in changed_variables. Values and
debug exprs may be left with this flag set if no user variable
requires them to be evaluated. */
static inline void
set_dv_changed (decl_or_value dv, bool newv)
{
switch (dv_onepart_p (dv))
{
case ONEPART_VALUE:
if (newv)
NO_LOC_P (dv_as_value (dv)) = false;
VALUE_CHANGED (dv_as_value (dv)) = newv;
break;
case ONEPART_DEXPR:
if (newv)
NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
/* Fall through... */
default:
DECL_CHANGED (dv_as_decl (dv)) = newv;
break;
}
}
/* Return true if DV needs to have its cur_loc recomputed. */
static inline bool
dv_changed_p (decl_or_value dv)
{
return (dv_is_value_p (dv)
? VALUE_CHANGED (dv_as_value (dv))
: DECL_CHANGED (dv_as_decl (dv)));
}
/* Return a location list node whose loc is rtx_equal to LOC, in the
location list of a one-part variable or value VAR, or in that of
any values recursively mentioned in the location lists. VARS must
be in star-canonical form. */
static location_chain
find_loc_in_1pdv (rtx loc, variable var, variable_table_type vars)
{
location_chain node;
enum rtx_code loc_code;
if (!var)
return NULL;
gcc_checking_assert (var->onepart);
if (!var->n_var_parts)
return NULL;
gcc_checking_assert (loc != dv_as_opaque (var->dv));
loc_code = GET_CODE (loc);
for (node = var->var_part[0].loc_chain; node; node = node->next)
{
decl_or_value dv;
variable rvar;
if (GET_CODE (node->loc) != loc_code)
{
if (GET_CODE (node->loc) != VALUE)
continue;
}
else if (loc == node->loc)
return node;
else if (loc_code != VALUE)
{
if (rtx_equal_p (loc, node->loc))
return node;
continue;
}
/* Since we're in star-canonical form, we don't need to visit
non-canonical nodes: one-part variables and non-canonical
values would only point back to the canonical node. */
if (dv_is_value_p (var->dv)
&& !canon_value_cmp (node->loc, dv_as_value (var->dv)))
{
/* Skip all subsequent VALUEs. */
while (node->next && GET_CODE (node->next->loc) == VALUE)
{
node = node->next;
gcc_checking_assert (!canon_value_cmp (node->loc,
dv_as_value (var->dv)));
if (loc == node->loc)
return node;
}
continue;
}
gcc_checking_assert (node == var->var_part[0].loc_chain);
gcc_checking_assert (!node->next);
dv = dv_from_value (node->loc);
rvar = vars.find_with_hash (dv, dv_htab_hash (dv));
return find_loc_in_1pdv (loc, rvar, vars);
}
/* ??? Gotta look in cselib_val locations too. */
return NULL;
}
/* Hash table iteration argument passed to variable_merge. */
struct dfset_merge
{
/* The set in which the merge is to be inserted. */
dataflow_set *dst;
/* The set that we're iterating in. */
dataflow_set *cur;
/* The set that may contain the other dv we are to merge with. */
dataflow_set *src;
/* Number of onepart dvs in src. */
int src_onepart_cnt;
};
/* Insert LOC in *DNODE, if it's not there yet. The list must be in
loc_cmp order, and it is maintained as such. */
static void
insert_into_intersection (location_chain *nodep, rtx loc,
enum var_init_status status)
{
location_chain node;
int r;
for (node = *nodep; node; nodep = &node->next, node = *nodep)
if ((r = loc_cmp (node->loc, loc)) == 0)
{
node->init = MIN (node->init, status);
return;
}
else if (r > 0)
break;
node = (location_chain) pool_alloc (loc_chain_pool);
node->loc = loc;
node->set_src = NULL;
node->init = status;
node->next = *nodep;
*nodep = node;
}
/* Insert in DEST the intersection of the locations present in both
S1NODE and S2VAR, directly or indirectly. S1NODE is from a
variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
DSM->dst. */
static void
intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
location_chain s1node, variable s2var)
{
dataflow_set *s1set = dsm->cur;
dataflow_set *s2set = dsm->src;
location_chain found;
if (s2var)
{
location_chain s2node;
gcc_checking_assert (s2var->onepart);
if (s2var->n_var_parts)
{
s2node = s2var->var_part[0].loc_chain;
for (; s1node && s2node;
s1node = s1node->next, s2node = s2node->next)
if (s1node->loc != s2node->loc)
break;
else if (s1node->loc == val)
continue;
else
insert_into_intersection (dest, s1node->loc,
MIN (s1node->init, s2node->init));
}
}
for (; s1node; s1node = s1node->next)
{
if (s1node->loc == val)
continue;
if ((found = find_loc_in_1pdv (s1node->loc, s2var,
shared_hash_htab (s2set->vars))))
{
insert_into_intersection (dest, s1node->loc,
MIN (s1node->init, found->init));
continue;
}
if (GET_CODE (s1node->loc) == VALUE
&& !VALUE_RECURSED_INTO (s1node->loc))
{
decl_or_value dv = dv_from_value (s1node->loc);
variable svar = shared_hash_find (s1set->vars, dv);
if (svar)
{
if (svar->n_var_parts == 1)
{
VALUE_RECURSED_INTO (s1node->loc) = true;
intersect_loc_chains (val, dest, dsm,
svar->var_part[0].loc_chain,
s2var);
VALUE_RECURSED_INTO (s1node->loc) = false;
}
}
}
/* ??? gotta look in cselib_val locations too. */
/* ??? if the location is equivalent to any location in src,
searched recursively
add to dst the values needed to represent the equivalence
telling whether locations S is equivalent to another dv's
location list:
for each location D in the list
if S and D satisfy rtx_equal_p, then it is present
else if D is a value, recurse without cycles
else if S and D have the same CODE and MODE
for each operand oS and the corresponding oD
if oS and oD are not equivalent, then S an D are not equivalent
else if they are RTX vectors
if any vector oS element is not equivalent to its respective oD,
then S and D are not equivalent
*/
}
}
/* Return -1 if X should be before Y in a location list for a 1-part
variable, 1 if Y should be before X, and 0 if they're equivalent
and should not appear in the list. */
static int
loc_cmp (rtx x, rtx y)
{
int i, j, r;
RTX_CODE code = GET_CODE (x);
const char *fmt;
if (x == y)
return 0;
if (REG_P (x))
{
if (!REG_P (y))
return -1;
gcc_assert (GET_MODE (x) == GET_MODE (y));
if (REGNO (x) == REGNO (y))
return 0;
else if (REGNO (x) < REGNO (y))
return -1;
else
return 1;
}
if (REG_P (y))
return 1;
if (MEM_P (x))
{
if (!MEM_P (y))
return -1;
gcc_assert (GET_MODE (x) == GET_MODE (y));
return loc_cmp (XEXP (x, 0), XEXP (y, 0));
}
if (MEM_P (y))
return 1;
if (GET_CODE (x) == VALUE)
{
if (GET_CODE (y) != VALUE)
return -1;
/* Don't assert the modes are the same, that is true only
when not recursing. (subreg:QI (value:SI 1:1) 0)
and (subreg:QI (value:DI 2:2) 0) can be compared,
even when the modes are different. */
if (canon_value_cmp (x, y))
return -1;
else
return 1;
}
if (GET_CODE (y) == VALUE)
return 1;
/* Entry value is the least preferable kind of expression. */
if (GET_CODE (x) == ENTRY_VALUE)
{
if (GET_CODE (y) != ENTRY_VALUE)
return 1;
gcc_assert (GET_MODE (x) == GET_MODE (y));
return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
}
if (GET_CODE (y) == ENTRY_VALUE)
return -1;
if (GET_CODE (x) == GET_CODE (y))
/* Compare operands below. */;
else if (GET_CODE (x) < GET_CODE (y))
return -1;
else
return 1;
gcc_assert (GET_MODE (x) == GET_MODE (y));
if (GET_CODE (x) == DEBUG_EXPR)
{
if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
< DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
return -1;
gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
> DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
return 1;
}
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++)
switch (fmt[i])
{
case 'w':
if (XWINT (x, i) == XWINT (y, i))
break;
else if (XWINT (x, i) < XWINT (y, i))
return -1;
else
return 1;
case 'n':
case 'i':
if (XINT (x, i) == XINT (y, i))
break;
else if (XINT (x, i) < XINT (y, i))
return -1;
else
return 1;
case 'V':
case 'E':
/* Compare the vector length first. */
if (XVECLEN (x, i) == XVECLEN (y, i))
/* Compare the vectors elements. */;
else if (XVECLEN (x, i) < XVECLEN (y, i))
return -1;
else
return 1;
for (j = 0; j < XVECLEN (x, i); j++)
if ((r = loc_cmp (XVECEXP (x, i, j),
XVECEXP (y, i, j))))
return r;
break;
case 'e':
if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
return r;
break;
case 'S':
case 's':
if (XSTR (x, i) == XSTR (y, i))
break;
if (!XSTR (x, i))
return -1;
if (!XSTR (y, i))
return 1;
if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
break;
else if (r < 0)
return -1;
else
return 1;
case 'u':
/* These are just backpointers, so they don't matter. */
break;
case '0':
case 't':
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's,
except for within LABEL_REFs and SYMBOL_REFs. */
default:
gcc_unreachable ();
}
return 0;
}
#if ENABLE_CHECKING
/* Check the order of entries in one-part variables. */
int
canonicalize_loc_order_check (variable_def **slot,
dataflow_set *data ATTRIBUTE_UNUSED)
{
variable var = *slot;
location_chain node, next;
#ifdef ENABLE_RTL_CHECKING
int i;
for (i = 0; i < var->n_var_parts; i++)
gcc_assert (var->var_part[0].cur_loc == NULL);
gcc_assert (!var->in_changed_variables);
#endif
if (!var->onepart)
return 1;
gcc_assert (var->n_var_parts == 1);
node = var->var_part[0].loc_chain;
gcc_assert (node);
while ((next = node->next))
{
gcc_assert (loc_cmp (node->loc, next->loc) < 0);
node = next;
}
return 1;
}
#endif
/* Mark with VALUE_RECURSED_INTO values that have neighbors that are
more likely to be chosen as canonical for an equivalence set.
Ensure less likely values can reach more likely neighbors, making
the connections bidirectional. */
int
canonicalize_values_mark (variable_def **slot, dataflow_set *set)
{
variable var = *slot;
decl_or_value dv = var->dv;
rtx val;
location_chain node;
if (!dv_is_value_p (dv))
return 1;
gcc_checking_assert (var->n_var_parts == 1);
val = dv_as_value (dv);
for (node = var->var_part[0].loc_chain; node; node = node->next)
if (GET_CODE (node->loc) == VALUE)
{
if (canon_value_cmp (node->loc, val))
VALUE_RECURSED_INTO (val) = true;
else
{
decl_or_value odv = dv_from_value (node->loc);
variable_def **oslot;
oslot = shared_hash_find_slot_noinsert (set->vars, odv);
set_slot_part (set, val, oslot, odv, 0,
node->init, NULL_RTX);
VALUE_RECURSED_INTO (node->loc) = true;
}
}
return 1;
}
/* Remove redundant entries from equivalence lists in onepart
variables, canonicalizing equivalence sets into star shapes. */
int
canonicalize_values_star (variable_def **slot, dataflow_set *set)
{
variable var = *slot;
decl_or_value dv = var->dv;
location_chain node;
decl_or_value cdv;
rtx val, cval;
variable_def **cslot;
bool has_value;
bool has_marks;
if (!var->onepart)
return 1;
gcc_checking_assert (var->n_var_parts == 1);
if (dv_is_value_p (dv))
{
cval = dv_as_value (dv);
if (!VALUE_RECURSED_INTO (cval))
return 1;
VALUE_RECURSED_INTO (cval) = false;
}
else
cval = NULL_RTX;
restart:
val = cval;
has_value = false;
has_marks = false;
gcc_assert (var->n_var_parts == 1);
for (node = var->var_part[0].loc_chain; node; node = node->next)
if (GET_CODE (node->loc) == VALUE)
{
has_value = true;
if (VALUE_RECURSED_INTO (node->loc))
has_marks = true;
if (canon_value_cmp (node->loc, cval))
cval = node->loc;
}
if (!has_value)
return 1;
if (cval == val)
{
if (!has_marks || dv_is_decl_p (dv))
return 1;
/* Keep it marked so that we revisit it, either after visiting a
child node, or after visiting a new parent that might be
found out. */
VALUE_RECURSED_INTO (val) = true;
for (node = var->var_part[0].loc_chain; node; node = node->next)
if (GET_CODE (node->loc) == VALUE
&& VALUE_RECURSED_INTO (node->loc))
{
cval = node->loc;
restart_with_cval:
VALUE_RECURSED_INTO (cval) = false;
dv = dv_from_value (cval);
slot = shared_hash_find_slot_noinsert (set->vars, dv);
if (!slot)
{
gcc_assert (dv_is_decl_p (var->dv));
/* The canonical value was reset and dropped.
Remove it. */
clobber_variable_part (set, NULL, var->dv, 0, NULL);
return 1;
}
var = *slot;
gcc_assert (dv_is_value_p (var->dv));
if (var->n_var_parts == 0)
return 1;
gcc_assert (var->n_var_parts == 1);
goto restart;
}
VALUE_RECURSED_INTO (val) = false;
return 1;
}
/* Push values to the canonical one. */
cdv = dv_from_value (cval);
cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
for (node = var->var_part[0].loc_chain; node; node = node->next)
if (node->loc != cval)
{
cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
node->init, NULL_RTX);
if (GET_CODE (node->loc) == VALUE)
{
decl_or_value ndv = dv_from_value (node->loc);
set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
NO_INSERT);
if (canon_value_cmp (node->loc, val))
{
/* If it could have been a local minimum, it's not any more,
since it's now neighbor to cval, so it may have to push
to it. Conversely, if it wouldn't have prevailed over
val, then whatever mark it has is fine: if it was to
push, it will now push to a more canonical node, but if
it wasn't, then it has already pushed any values it might
have to. */
VALUE_RECURSED_INTO (node->loc) = true;
/* Make sure we visit node->loc by ensuring we cval is
visited too. */
VALUE_RECURSED_INTO (cval) = true;
}
else if (!VALUE_RECURSED_INTO (node->loc))
/* If we have no need to "recurse" into this node, it's
already "canonicalized", so drop the link to the old
parent. */
clobber_variable_part (set, cval, ndv, 0, NULL);
}
else if (GET_CODE (node->loc) == REG)
{
attrs list = set->regs[REGNO (node->loc)], *listp;
/* Change an existing attribute referring to dv so that it
refers to cdv, removing any duplicate this might
introduce, and checking that no previous duplicates
existed, all in a single pass. */
while (list)
{
if (list->offset == 0
&& (dv_as_opaque (list->dv) == dv_as_opaque (dv)
|| dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
break;
list = list->next;
}
gcc_assert (list);
if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
{
list->dv = cdv;
for (listp = &list->next; (list = *listp); listp = &list->next)
{
if (list->offset)
continue;
if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
{
*listp = list->next;
pool_free (attrs_pool, list);
list = *listp;
break;
}
gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
}
}
else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
{
for (listp = &list->next; (list = *listp); listp = &list->next)
{
if (list->offset)
continue;
if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
{
*listp = list->next;
pool_free (attrs_pool, list);
list = *listp;
break;
}
gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
}
}
else
gcc_unreachable ();
#if ENABLE_CHECKING
while (list)
{
if (list->offset == 0
&& (dv_as_opaque (list->dv) == dv_as_opaque (dv)
|| dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
gcc_unreachable ();
list = list->next;
}
#endif
}
}
if (val)
set_slot_part (set, val, cslot, cdv, 0,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
slot = clobber_slot_part (set, cval, slot, 0, NULL);
/* Variable may have been unshared. */
var = *slot;
gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
&& var->var_part[0].loc_chain->next == NULL);
if (VALUE_RECURSED_INTO (cval))
goto restart_with_cval;
return 1;
}
/* Bind one-part variables to the canonical value in an equivalence
set. Not doing this causes dataflow convergence failure in rare
circumstances, see PR42873. Unfortunately we can't do this
efficiently as part of canonicalize_values_star, since we may not
have determined or even seen the canonical value of a set when we
get to a variable that references another member of the set. */
int
canonicalize_vars_star (variable_def **slot, dataflow_set *set)
{
variable var = *slot;
decl_or_value dv = var->dv;
location_chain node;
rtx cval;
decl_or_value cdv;
variable_def **cslot;
variable cvar;
location_chain cnode;
if (!var->onepart || var->onepart == ONEPART_VALUE)
return 1;
gcc_assert (var->n_var_parts == 1);
node = var->var_part[0].loc_chain;
if (GET_CODE (node->loc) != VALUE)
return 1;
gcc_assert (!node->next);
cval = node->loc;
/* Push values to the canonical one. */
cdv = dv_from_value (cval);
cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
if (!cslot)
return 1;
cvar = *cslot;
gcc_assert (cvar->n_var_parts == 1);
cnode = cvar->var_part[0].loc_chain;
/* CVAL is canonical if its value list contains non-VALUEs or VALUEs
that are not “more canonical” than it. */
if (GET_CODE (cnode->loc) != VALUE
|| !canon_value_cmp (cnode->loc, cval))
return 1;
/* CVAL was found to be non-canonical. Change the variable to point
to the canonical VALUE. */
gcc_assert (!cnode->next);
cval = cnode->loc;
slot = set_slot_part (set, cval, slot, dv, 0,
node->init, node->set_src);
clobber_slot_part (set, cval, slot, 0, node->set_src);
return 1;
}
/* Combine variable or value in *S1SLOT (in DSM->cur) with the
corresponding entry in DSM->src. Multi-part variables are combined
with variable_union, whereas onepart dvs are combined with
intersection. */
static int
variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
{
dataflow_set *dst = dsm->dst;
variable_def **dstslot;
variable s2var, dvar = NULL;
decl_or_value dv = s1var->dv;
onepart_enum_t onepart = s1var->onepart;
rtx val;
hashval_t dvhash;
location_chain node, *nodep;
/* If the incoming onepart variable has an empty location list, then
the intersection will be just as empty. For other variables,
it's always union. */
gcc_checking_assert (s1var->n_var_parts
&& s1var->var_part[0].loc_chain);
if (!onepart)
return variable_union (s1var, dst);
gcc_checking_assert (s1var->n_var_parts == 1);
dvhash = dv_htab_hash (dv);
if (dv_is_value_p (dv))
val = dv_as_value (dv);
else
val = NULL;
s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
if (!s2var)
{
dst_can_be_shared = false;
return 1;
}
dsm->src_onepart_cnt--;
gcc_assert (s2var->var_part[0].loc_chain
&& s2var->onepart == onepart
&& s2var->n_var_parts == 1);
dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
if (dstslot)
{
dvar = *dstslot;
gcc_assert (dvar->refcount == 1
&& dvar->onepart == onepart
&& dvar->n_var_parts == 1);
nodep = &dvar->var_part[0].loc_chain;
}
else
{
nodep = &node;
node = NULL;
}
if (!dstslot && !onepart_variable_different_p (s1var, s2var))
{
dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
dvhash, INSERT);
*dstslot = dvar = s2var;
dvar->refcount++;
}
else
{
dst_can_be_shared = false;
intersect_loc_chains (val, nodep, dsm,
s1var->var_part[0].loc_chain, s2var);
if (!dstslot)
{
if (node)
{
dvar = (variable) pool_alloc (onepart_pool (onepart));
dvar->dv = dv;
dvar->refcount = 1;
dvar->n_var_parts = 1;
dvar->onepart = onepart;
dvar->in_changed_variables = false;
dvar->var_part[0].loc_chain = node;
dvar->var_part[0].cur_loc = NULL;
if (onepart)
VAR_LOC_1PAUX (dvar) = NULL;
else
VAR_PART_OFFSET (dvar, 0) = 0;
dstslot
= shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
INSERT);
gcc_assert (!*dstslot);
*dstslot = dvar;
}
else
return 1;
}
}
nodep = &dvar->var_part[0].loc_chain;
while ((node = *nodep))
{
location_chain *nextp = &node->next;
if (GET_CODE (node->loc) == REG)
{
attrs list;
for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
if (GET_MODE (node->loc) == GET_MODE (list->loc)
&& dv_is_value_p (list->dv))
break;
if (!list)
attrs_list_insert (&dst->regs[REGNO (node->loc)],
dv, 0, node->loc);
/* If this value became canonical for another value that had
this register, we want to leave it alone. */
else if (dv_as_value (list->dv) != val)
{
dstslot = set_slot_part (dst, dv_as_value (list->dv),
dstslot, dv, 0,
node->init, NULL_RTX);
dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
/* Since nextp points into the removed node, we can't
use it. The pointer to the next node moved to nodep.
However, if the variable we're walking is unshared
during our walk, we'll keep walking the location list
of the previously-shared variable, in which case the
node won't have been removed, and we'll want to skip
it. That's why we test *nodep here. */
if (*nodep != node)
nextp = nodep;
}
}
else
/* Canonicalization puts registers first, so we don't have to
walk it all. */
break;
nodep = nextp;
}
if (dvar != *dstslot)
dvar = *dstslot;
nodep = &dvar->var_part[0].loc_chain;
if (val)
{
/* Mark all referenced nodes for canonicalization, and make sure
we have mutual equivalence links. */
VALUE_RECURSED_INTO (val) = true;
for (node = *nodep; node; node = node->next)
if (GET_CODE (node->loc) == VALUE)
{
VALUE_RECURSED_INTO (node->loc) = true;
set_variable_part (dst, val, dv_from_value (node->loc), 0,
node->init, NULL, INSERT);
}
dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
gcc_assert (*dstslot == dvar);
canonicalize_values_star (dstslot, dst);
gcc_checking_assert (dstslot
== shared_hash_find_slot_noinsert_1 (dst->vars,
dv, dvhash));
dvar = *dstslot;
}
else
{
bool has_value = false, has_other = false;
/* If we have one value and anything else, we're going to
canonicalize this, so make sure all values have an entry in
the table and are marked for canonicalization. */
for (node = *nodep; node; node = node->next)
{
if (GET_CODE (node->loc) == VALUE)
{
/* If this was marked during register canonicalization,
we know we have to canonicalize values. */
if (has_value)
has_other = true;
has_value = true;
if (has_other)
break;
}
else
{
has_other = true;
if (has_value)
break;
}
}
if (has_value && has_other)
{
for (node = *nodep; node; node = node->next)
{
if (GET_CODE (node->loc) == VALUE)
{
decl_or_value dv = dv_from_value (node->loc);
variable_def **slot = NULL;
if (shared_hash_shared (dst->vars))
slot = shared_hash_find_slot_noinsert (dst->vars, dv);
if (!slot)
slot = shared_hash_find_slot_unshare (&dst->vars, dv,
INSERT);
if (!*slot)
{
variable var = (variable) pool_alloc (onepart_pool
(ONEPART_VALUE));
var->dv = dv;
var->refcount = 1;
var->n_var_parts = 1;
var->onepart = ONEPART_VALUE;
var->in_changed_variables = false;
var->var_part[0].loc_chain = NULL;
var->var_part[0].cur_loc = NULL;
VAR_LOC_1PAUX (var) = NULL;
*slot = var;
}
VALUE_RECURSED_INTO (node->loc) = true;
}
}
dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
gcc_assert (*dstslot == dvar);
canonicalize_values_star (dstslot, dst);
gcc_checking_assert (dstslot
== shared_hash_find_slot_noinsert_1 (dst->vars,
dv, dvhash));
dvar = *dstslot;
}
}
if (!onepart_variable_different_p (dvar, s2var))
{
variable_htab_free (dvar);
*dstslot = dvar = s2var;
dvar->refcount++;
}
else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
{
variable_htab_free (dvar);
*dstslot = dvar = s1var;
dvar->refcount++;
dst_can_be_shared = false;
}
else
dst_can_be_shared = false;
return 1;
}
/* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
multi-part variable. Unions of multi-part variables and
intersections of one-part ones will be handled in
variable_merge_over_cur(). */
static int
variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
{
dataflow_set *dst = dsm->dst;
decl_or_value dv = s2var->dv;
if (!s2var->onepart)
{
variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
*dstp = s2var;
s2var->refcount++;
return 1;
}
dsm->src_onepart_cnt++;
return 1;
}
/* Combine dataflow set information from SRC2 into DST, using PDST
to carry over information across passes. */
static void
dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
{
dataflow_set cur = *dst;
dataflow_set *src1 = &cur;
struct dfset_merge dsm;
int i;
size_t src1_elems, src2_elems;
variable_iterator_type hi;
variable var;
src1_elems = shared_hash_htab (src1->vars).elements ();
src2_elems = shared_hash_htab (src2->vars).elements ();
dataflow_set_init (dst);
dst->stack_adjust = cur.stack_adjust;
shared_hash_destroy (dst->vars);
dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
dst->vars->refcount = 1;
dst->vars->htab.create (MAX (src1_elems, src2_elems));
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
dsm.dst = dst;
dsm.src = src2;
dsm.cur = src1;
dsm.src_onepart_cnt = 0;
FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.src->vars),
var, variable, hi)
variable_merge_over_src (var, &dsm);
FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.cur->vars),
var, variable, hi)
variable_merge_over_cur (var, &dsm);
if (dsm.src_onepart_cnt)
dst_can_be_shared = false;
dataflow_set_destroy (src1);
}
/* Mark register equivalences. */
static void
dataflow_set_equiv_regs (dataflow_set *set)
{
int i;
attrs list, *listp;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
rtx canon[NUM_MACHINE_MODES];
/* If the list is empty or one entry, no need to canonicalize
anything. */
if (set->regs[i] == NULL || set->regs[i]->next == NULL)
continue;
memset (canon, 0, sizeof (canon));
for (list = set->regs[i]; list; list = list->next)
if (list->offset == 0 && dv_is_value_p (list->dv))
{
rtx val = dv_as_value (list->dv);
rtx *cvalp = &canon[(int)GET_MODE (val)];
rtx cval = *cvalp;
if (canon_value_cmp (val, cval))
*cvalp = val;
}
for (list = set->regs[i]; list; list = list->next)
if (list->offset == 0 && dv_onepart_p (list->dv))
{
rtx cval = canon[(int)GET_MODE (list->loc)];
if (!cval)
continue;
if (dv_is_value_p (list->dv))
{
rtx val = dv_as_value (list->dv);
if (val == cval)
continue;
VALUE_RECURSED_INTO (val) = true;
set_variable_part (set, val, dv_from_value (cval), 0,
VAR_INIT_STATUS_INITIALIZED,
NULL, NO_INSERT);
}
VALUE_RECURSED_INTO (cval) = true;
set_variable_part (set, cval, list->dv, 0,
VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
}
for (listp = &set->regs[i]; (list = *listp);
listp = list ? &list->next : listp)
if (list->offset == 0 && dv_onepart_p (list->dv))
{
rtx cval = canon[(int)GET_MODE (list->loc)];
variable_def **slot;
if (!cval)
continue;
if (dv_is_value_p (list->dv))
{
rtx val = dv_as_value (list->dv);
if (!VALUE_RECURSED_INTO (val))
continue;
}
slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
canonicalize_values_star (slot, set);
if (*listp != list)
list = NULL;
}
}
}
/* Remove any redundant values in the location list of VAR, which must
be unshared and 1-part. */
static void
remove_duplicate_values (variable var)
{
location_chain node, *nodep;
gcc_assert (var->onepart);
gcc_assert (var->n_var_parts == 1);
gcc_assert (var->refcount == 1);
for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
{
if (GET_CODE (node->loc) == VALUE)
{
if (VALUE_RECURSED_INTO (node->loc))
{
/* Remove duplicate value node. */
*nodep = node->next;
pool_free (loc_chain_pool, node);
continue;
}
else
VALUE_RECURSED_INTO (node->loc) = true;
}
nodep = &node->next;
}
for (node = var->var_part[0].loc_chain; node; node = node->next)
if (GET_CODE (node->loc) == VALUE)
{
gcc_assert (VALUE_RECURSED_INTO (node->loc));
VALUE_RECURSED_INTO (node->loc) = false;
}
}
/* Hash table iteration argument passed to variable_post_merge. */
struct dfset_post_merge
{
/* The new input set for the current block. */
dataflow_set *set;
/* Pointer to the permanent input set for the current block, or
NULL. */
dataflow_set **permp;
};
/* Create values for incoming expressions associated with one-part
variables that don't have value numbers for them. */
int
variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
{
dataflow_set *set = dfpm->set;
variable var = *slot;
location_chain node;
if (!var->onepart || !var->n_var_parts)
return 1;
gcc_assert (var->n_var_parts == 1);
if (dv_is_decl_p (var->dv))
{
bool check_dupes = false;
restart:
for (node = var->var_part[0].loc_chain; node; node = node->next)
{
if (GET_CODE (node->loc) == VALUE)
gcc_assert (!VALUE_RECURSED_INTO (node->loc));
else if (GET_CODE (node->loc) == REG)
{
attrs att, *attp, *curp = NULL;
if (var->refcount != 1)
{
slot = unshare_variable (set, slot, var,
VAR_INIT_STATUS_INITIALIZED);
var = *slot;
goto restart;
}
for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
attp = &att->next)
if (att->offset == 0
&& GET_MODE (att->loc) == GET_MODE (node->loc))
{
if (dv_is_value_p (att->dv))
{
rtx cval = dv_as_value (att->dv);
node->loc = cval;
check_dupes = true;
break;
}
else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
curp = attp;
}
if (!curp)
{
curp = attp;
while (*curp)
if ((*curp)->offset == 0
&& GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
&& dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
break;
else
curp = &(*curp)->next;
gcc_assert (*curp);
}
if (!att)
{
decl_or_value cdv;
rtx cval;
if (!*dfpm->permp)
{
*dfpm->permp = XNEW (dataflow_set);
dataflow_set_init (*dfpm->permp);
}
for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
att; att = att->next)
if (GET_MODE (att->loc) == GET_MODE (node->loc))
{
gcc_assert (att->offset == 0
&& dv_is_value_p (att->dv));
val_reset (set, att->dv);
break;
}
if (att)
{
cdv = att->dv;
cval = dv_as_value (cdv);
}
else
{
/* Create a unique value to hold this register,
that ought to be found and reused in
subsequent rounds. */
cselib_val *v;
gcc_assert (!cselib_lookup (node->loc,
GET_MODE (node->loc), 0,
VOIDmode));
v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
VOIDmode);
cselib_preserve_value (v);
cselib_invalidate_rtx (node->loc);
cval = v->val_rtx;
cdv = dv_from_value (cval);
if (dump_file)
fprintf (dump_file,
"Created new value %u:%u for reg %i\n",
v->uid, v->hash, REGNO (node->loc));
}
var_reg_decl_set (*dfpm->permp, node->loc,
VAR_INIT_STATUS_INITIALIZED,
cdv, 0, NULL, INSERT);
node->loc = cval;
check_dupes = true;
}
/* Remove attribute referring to the decl, which now
uses the value for the register, already existing or
to be added when we bring perm in. */
att = *curp;
*curp = att->next;
pool_free (attrs_pool, att);
}
}
if (check_dupes)
remove_duplicate_values (var);
}
return 1;
}
/* Reset values in the permanent set that are not associated with the
chosen expression. */
int
variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
{
dataflow_set *set = dfpm->set;
variable pvar = *pslot, var;
location_chain pnode;
decl_or_value dv;
attrs att;
gcc_assert (dv_is_value_p (pvar->dv)
&& pvar->n_var_parts == 1);
pnode = pvar->var_part[0].loc_chain;
gcc_assert (pnode
&& !pnode->next
&& REG_P (pnode->loc));
dv = pvar->dv;
var = shared_hash_find (set->vars, dv);
if (var)
{
/* Although variable_post_merge_new_vals may have made decls
non-star-canonical, values that pre-existed in canonical form
remain canonical, and newly-created values reference a single
REG, so they are canonical as well. Since VAR has the
location list for a VALUE, using find_loc_in_1pdv for it is
fine, since VALUEs don't map back to DECLs. */
if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
return 1;
val_reset (set, dv);
}
for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
if (att->offset == 0
&& GET_MODE (att->loc) == GET_MODE (pnode->loc)
&& dv_is_value_p (att->dv))
break;
/* If there is a value associated with this register already, create
an equivalence. */
if (att && dv_as_value (att->dv) != dv_as_value (dv))
{
rtx cval = dv_as_value (att->dv);
set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
NULL, INSERT);
}
else if (!att)
{
attrs_list_insert (&set->regs[REGNO (pnode->loc)],
dv, 0, pnode->loc);
variable_union (pvar, set);
}
return 1;
}
/* Just checking stuff and registering register attributes for
now. */
static void
dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
{
struct dfset_post_merge dfpm;
dfpm.set = set;
dfpm.permp = permp;
shared_hash_htab (set->vars)
.traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
if (*permp)
shared_hash_htab ((*permp)->vars)
.traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
shared_hash_htab (set->vars)
.traverse <dataflow_set *, canonicalize_values_star> (set);
shared_hash_htab (set->vars)
.traverse <dataflow_set *, canonicalize_vars_star> (set);
}
/* Return a node whose loc is a MEM that refers to EXPR in the
location list of a one-part variable or value VAR, or in that of
any values recursively mentioned in the location lists. */
static location_chain
find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type vars)
{
location_chain node;
decl_or_value dv;
variable var;
location_chain where = NULL;
if (!val)
return NULL;
gcc_assert (GET_CODE (val) == VALUE
&& !VALUE_RECURSED_INTO (val));
dv = dv_from_value (val);
var = vars.find_with_hash (dv, dv_htab_hash (dv));
if (!var)
return NULL;
gcc_assert (var->onepart);
if (!var->n_var_parts)
return NULL;
VALUE_RECURSED_INTO (val) = true;
for (node = var->var_part[0].loc_chain; node; node = node->next)
if (MEM_P (node->loc)
&& MEM_EXPR (node->loc) == expr
&& INT_MEM_OFFSET (node->loc) == 0)
{
where = node;
break;
}
else if (GET_CODE (node->loc) == VALUE
&& !VALUE_RECURSED_INTO (node->loc)
&& (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
break;
VALUE_RECURSED_INTO (val) = false;
return where;
}
/* Return TRUE if the value of MEM may vary across a call. */
static bool
mem_dies_at_call (rtx mem)
{
tree expr = MEM_EXPR (mem);
tree decl;
if (!expr)
return true;
decl = get_base_address (expr);
if (!decl)
return true;
if (!DECL_P (decl))
return true;
return (may_be_aliased (decl)
|| (!TREE_READONLY (decl) && is_global_var (decl)));
}
/* Remove all MEMs from the location list of a hash table entry for a
one-part variable, except those whose MEM attributes map back to
the variable itself, directly or within a VALUE. */
int
dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
{
variable var = *slot;
if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
{
tree decl = dv_as_decl (var->dv);
location_chain loc, *locp;
bool changed = false;
if (!var->n_var_parts)
return 1;
gcc_assert (var->n_var_parts == 1);
if (shared_var_p (var, set->vars))
{
for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
{
/* We want to remove dying MEMs that doesn't refer to DECL. */
if (GET_CODE (loc->loc) == MEM
&& (MEM_EXPR (loc->loc) != decl
|| INT_MEM_OFFSET (loc->loc) != 0)
&& !mem_dies_at_call (loc->loc))
break;
/* We want to move here MEMs that do refer to DECL. */
else if (GET_CODE (loc->loc) == VALUE
&& find_mem_expr_in_1pdv (decl, loc->loc,
shared_hash_htab (set->vars)))
break;
}
if (!loc)
return 1;
slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
var = *slot;
gcc_assert (var->n_var_parts == 1);
}
for (locp = &var->var_part[0].loc_chain, loc = *locp;
loc; loc = *locp)
{
rtx old_loc = loc->loc;
if (GET_CODE (old_loc) == VALUE)
{
location_chain mem_node
= find_mem_expr_in_1pdv (decl, loc->loc,
shared_hash_htab (set->vars));
/* ??? This picks up only one out of multiple MEMs that
refer to the same variable. Do we ever need to be
concerned about dealing with more than one, or, given
that they should all map to the same variable
location, their addresses will have been merged and
they will be regarded as equivalent? */
if (mem_node)
{
loc->loc = mem_node->loc;
loc->set_src = mem_node->set_src;
loc->init = MIN (loc->init, mem_node->init);
}
}
if (GET_CODE (loc->loc) != MEM
|| (MEM_EXPR (loc->loc) == decl
&& INT_MEM_OFFSET (loc->loc) == 0)
|| !mem_dies_at_call (loc->loc))
{
if (old_loc != loc->loc && emit_notes)
{
if (old_loc == var->var_part[0].cur_loc)
{
changed = true;
var->var_part[0].cur_loc = NULL;
}
}
locp = &loc->next;
continue;
}
if (emit_notes)
{
if (old_loc == var->var_part[0].cur_loc)
{
changed = true;
var->var_part[0].cur_loc = NULL;
}
}
*locp = loc->next;
pool_free (loc_chain_pool, loc);
}
if (!var->var_part[0].loc_chain)
{
var->n_var_parts--;
changed = true;
}
if (changed)
variable_was_changed (var, set);
}
return 1;
}
/* Remove all MEMs from the location list of a hash table entry for a
value. */
int
dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
{
variable var = *slot;
if (var->onepart == ONEPART_VALUE)
{
location_chain loc, *locp;
bool changed = false;
rtx cur_loc;
gcc_assert (var->n_var_parts == 1);
if (shared_var_p (var, set->vars))
{
for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
if (GET_CODE (loc->loc) == MEM
&& mem_dies_at_call (loc->loc))
break;
if (!loc)
return 1;
slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
var = *slot;
gcc_assert (var->n_var_parts == 1);
}
if (VAR_LOC_1PAUX (var))
cur_loc = VAR_LOC_FROM (var);
else
cur_loc = var->var_part[0].cur_loc;
for (locp = &var->var_part[0].loc_chain, loc = *locp;
loc; loc = *locp)
{
if (GET_CODE (loc->loc) != MEM
|| !mem_dies_at_call (loc->loc))
{
locp = &loc->next;
continue;
}
*locp = loc->next;
/* If we have deleted the location which was last emitted
we have to emit new location so add the variable to set
of changed variables. */
if (cur_loc == loc->loc)
{
changed = true;
var->var_part[0].cur_loc = NULL;
if (VAR_LOC_1PAUX (var))
VAR_LOC_FROM (var) = NULL;
}
pool_free (loc_chain_pool, loc);
}
if (!var->var_part[0].loc_chain)
{
var->n_var_parts--;
changed = true;
}
if (changed)
variable_was_changed (var, set);
}
return 1;
}
/* Remove all variable-location information about call-clobbered
registers, as well as associations between MEMs and VALUEs. */
static void
dataflow_set_clear_at_call (dataflow_set *set)
{
unsigned int r;
hard_reg_set_iterator hrsi;
EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
var_regno_delete (set, r);
if (MAY_HAVE_DEBUG_INSNS)
{
set->traversed_vars = set->vars;
shared_hash_htab (set->vars)
.traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
set->traversed_vars = set->vars;
shared_hash_htab (set->vars)
.traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
set->traversed_vars = NULL;
}
}
static bool
variable_part_different_p (variable_part *vp1, variable_part *vp2)
{
location_chain lc1, lc2;
for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
{
for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
{
if (REG_P (lc1->loc) && REG_P (lc2->loc))
{
if (REGNO (lc1->loc) == REGNO (lc2->loc))
break;
}
if (rtx_equal_p (lc1->loc, lc2->loc))
break;
}
if (!lc2)
return true;
}
return false;
}
/* Return true if one-part variables VAR1 and VAR2 are different.
They must be in canonical order. */
static bool
onepart_variable_different_p (variable var1, variable var2)
{
location_chain lc1, lc2;
if (var1 == var2)
return false;
gcc_assert (var1->n_var_parts == 1
&& var2->n_var_parts == 1);
lc1 = var1->var_part[0].loc_chain;
lc2 = var2->var_part[0].loc_chain;
gcc_assert (lc1 && lc2);
while (lc1 && lc2)
{
if (loc_cmp (lc1->loc, lc2->loc))
return true;
lc1 = lc1->next;
lc2 = lc2->next;
}
return lc1 != lc2;
}
/* Return true if variables VAR1 and VAR2 are different. */
static bool
variable_different_p (variable var1, variable var2)
{
int i;
if (var1 == var2)
return false;
if (var1->onepart != var2->onepart)
return true;
if (var1->n_var_parts != var2->n_var_parts)
return true;
if (var1->onepart && var1->n_var_parts)
{
gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
&& var1->n_var_parts == 1);
/* One-part values have locations in a canonical order. */
return onepart_variable_different_p (var1, var2);
}
for (i = 0; i < var1->n_var_parts; i++)
{
if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
return true;
if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
return true;
if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
return true;
}
return false;
}
/* Return true if dataflow sets OLD_SET and NEW_SET differ. */
static bool
dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
{
variable_iterator_type hi;
variable var1;
if (old_set->vars == new_set->vars)
return false;
if (shared_hash_htab (old_set->vars).elements ()
!= shared_hash_htab (new_set->vars).elements ())
return true;
FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set->vars),
var1, variable, hi)
{
variable_table_type htab = shared_hash_htab (new_set->vars);
variable var2 = htab.find_with_hash (var1->dv, dv_htab_hash (var1->dv));
if (!var2)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "dataflow difference found: removal of:\n");
dump_var (var1);
}
return true;
}
if (variable_different_p (var1, var2))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "dataflow difference found: "
"old and new follow:\n");
dump_var (var1);
dump_var (var2);
}
return true;
}
}
/* No need to traverse the second hashtab, if both have the same number
of elements and the second one had all entries found in the first one,
then it can't have any extra entries. */
return false;
}
/* Free the contents of dataflow set SET. */
static void
dataflow_set_destroy (dataflow_set *set)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
attrs_list_clear (&set->regs[i]);
shared_hash_destroy (set->vars);
set->vars = NULL;
}
/* Return true if RTL X contains a SYMBOL_REF. */
static bool
contains_symbol_ref (rtx x)
{
const char *fmt;
RTX_CODE code;
int i;
if (!x)
return false;
code = GET_CODE (x);
if (code == SYMBOL_REF)
return true;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (contains_symbol_ref (XEXP (x, i)))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (contains_symbol_ref (XVECEXP (x, i, j)))
return true;
}
}
return false;
}
/* Shall EXPR be tracked? */
static bool
track_expr_p (tree expr, bool need_rtl)
{
rtx decl_rtl;
tree realdecl;
if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
return DECL_RTL_SET_P (expr);
/* If EXPR is not a parameter or a variable do not track it. */
if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
return 0;
/* It also must have a name... */
if (!DECL_NAME (expr) && need_rtl)
return 0;
/* ... and a RTL assigned to it. */
decl_rtl = DECL_RTL_IF_SET (expr);
if (!decl_rtl && need_rtl)
return 0;
/* If this expression is really a debug alias of some other declaration, we
don't need to track this expression if the ultimate declaration is
ignored. */
realdecl = expr;
if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
{
realdecl = DECL_DEBUG_EXPR (realdecl);
if (!DECL_P (realdecl))
{
if (handled_component_p (realdecl)
|| (TREE_CODE (realdecl) == MEM_REF
&& TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
{
HOST_WIDE_INT bitsize, bitpos, maxsize;
tree innerdecl
= get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
&maxsize);
if (!DECL_P (innerdecl)
|| DECL_IGNORED_P (innerdecl)
/* Do not track declarations for parts of tracked parameters
since we want to track them as a whole instead. */
|| (TREE_CODE (innerdecl) == PARM_DECL
&& DECL_MODE (innerdecl) != BLKmode
&& TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
|| TREE_STATIC (innerdecl)
|| bitsize <= 0
|| bitpos + bitsize > 256
|| bitsize != maxsize)
return 0;
else
realdecl = expr;
}
else
return 0;
}
}
/* Do not track EXPR if REALDECL it should be ignored for debugging
purposes. */
if (DECL_IGNORED_P (realdecl))
return 0;
/* Do not track global variables until we are able to emit correct location
list for them. */
if (TREE_STATIC (realdecl))
return 0;
/* When the EXPR is a DECL for alias of some variable (see example)
the TREE_STATIC flag is not used. Disable tracking all DECLs whose
DECL_RTL contains SYMBOL_REF.
Example:
extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
char **_dl_argv;
*/
if (decl_rtl && MEM_P (decl_rtl)
&& contains_symbol_ref (XEXP (decl_rtl, 0)))
return 0;
/* If RTX is a memory it should not be very large (because it would be
an array or struct). */
if (decl_rtl && MEM_P (decl_rtl))
{
/* Do not track structures and arrays. */
if (GET_MODE (decl_rtl) == BLKmode
|| AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
return 0;
if (MEM_SIZE_KNOWN_P (decl_rtl)
&& MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
return 0;
}
DECL_CHANGED (expr) = 0;
DECL_CHANGED (realdecl) = 0;
return 1;
}
/* Determine whether a given LOC refers to the same variable part as
EXPR+OFFSET. */
static bool
same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
{
tree expr2;
HOST_WIDE_INT offset2;
if (! DECL_P (expr))
return false;
if (REG_P (loc))
{
expr2 = REG_EXPR (loc);
offset2 = REG_OFFSET (loc);
}
else if (MEM_P (loc))
{
expr2 = MEM_EXPR (loc);
offset2 = INT_MEM_OFFSET (loc);
}
else
return false;
if (! expr2 || ! DECL_P (expr2))
return false;
expr = var_debug_decl (expr);
expr2 = var_debug_decl (expr2);
return (expr == expr2 && offset == offset2);
}
/* LOC is a REG or MEM that we would like to track if possible.
If EXPR is null, we don't know what expression LOC refers to,
otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
LOC is an lvalue register.
Return true if EXPR is nonnull and if LOC, or some lowpart of it,
is something we can track. When returning true, store the mode of
the lowpart we can track in *MODE_OUT (if nonnull) and its offset
from EXPR in *OFFSET_OUT (if nonnull). */
static bool
track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
{
enum machine_mode mode;
if (expr == NULL || !track_expr_p (expr, true))
return false;
/* If REG was a paradoxical subreg, its REG_ATTRS will describe the
whole subreg, but only the old inner part is really relevant. */
mode = GET_MODE (loc);
if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
{
enum machine_mode pseudo_mode;
pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
{
offset += byte_lowpart_offset (pseudo_mode, mode);
mode = pseudo_mode;
}
}
/* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
Do the same if we are storing to a register and EXPR occupies
the whole of register LOC; in that case, the whole of EXPR is
being changed. We exclude complex modes from the second case
because the real and imaginary parts are represented as separate
pseudo registers, even if the whole complex value fits into one
hard register. */
if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
|| (store_reg_p
&& !COMPLEX_MODE_P (DECL_MODE (expr))
&& hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
&& offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
{
mode = DECL_MODE (expr);
offset = 0;
}
if (offset < 0 || offset >= MAX_VAR_PARTS)
return false;
if (mode_out)
*mode_out = mode;
if (offset_out)
*offset_out = offset;
return true;
}
/* Return the MODE lowpart of LOC, or null if LOC is not something we
want to track. When returning nonnull, make sure that the attributes
on the returned value are updated. */
static rtx
var_lowpart (enum machine_mode mode, rtx loc)
{
unsigned int offset, reg_offset, regno;
if (GET_MODE (loc) == mode)
return loc;
if (!REG_P (loc) && !MEM_P (loc))
return NULL;
offset = byte_lowpart_offset (mode, GET_MODE (loc));
if (MEM_P (loc))
return adjust_address_nv (loc, mode, offset);
reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
reg_offset, mode);
return gen_rtx_REG_offset (loc, mode, regno, offset);
}
/* Carry information about uses and stores while walking rtx. */
struct count_use_info
{
/* The insn where the RTX is. */
rtx insn;
/* The basic block where insn is. */
basic_block bb;
/* The array of n_sets sets in the insn, as determined by cselib. */
struct cselib_set *sets;
int n_sets;
/* True if we're counting stores, false otherwise. */
bool store_p;
};
/* Find a VALUE corresponding to X. */
static inline cselib_val *
find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
{
int i;
if (cui->sets)
{
/* This is called after uses are set up and before stores are
processed by cselib, so it's safe to look up srcs, but not
dsts. So we look up expressions that appear in srcs or in
dest expressions, but we search the sets array for dests of
stores. */
if (cui->store_p)
{
/* Some targets represent memset and memcpy patterns
by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
(set (mem:BLK ...) (const_int ...)) or
(set (mem:BLK ...) (mem:BLK ...)). Don't return anything
in that case, otherwise we end up with mode mismatches. */
if (mode == BLKmode && MEM_P (x))
return NULL;
for (i = 0; i < cui->n_sets; i++)
if (cui->sets[i].dest == x)
return cui->sets[i].src_elt;
}
else
return cselib_lookup (x, mode, 0, VOIDmode);
}
return NULL;
}
/* Replace all registers and addresses in an expression with VALUE
expressions that map back to them, unless the expression is a
register. If no mapping is or can be performed, returns NULL. */
static rtx
replace_expr_with_values (rtx loc)
{
if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
return NULL;
else if (MEM_P (loc))
{
cselib_val *addr = cselib_lookup (XEXP (loc, 0),
get_address_mode (loc), 0,
GET_MODE (loc));
if (addr)
return replace_equiv_address_nv (loc, addr->val_rtx);
else
return NULL;
}
else
return cselib_subst_to_values (loc, VOIDmode);
}
/* Return true if *X is a DEBUG_EXPR. Usable as an argument to
for_each_rtx to tell whether there are any DEBUG_EXPRs within
RTX. */
static int
rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
{
rtx loc = *x;
return GET_CODE (loc) == DEBUG_EXPR;
}
/* Determine what kind of micro operation to choose for a USE. Return
MO_CLOBBER if no micro operation is to be generated. */
static enum micro_operation_type
use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
{
tree expr;
if (cui && cui->sets)
{
if (GET_CODE (loc) == VAR_LOCATION)
{
if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
{
rtx ploc = PAT_VAR_LOCATION_LOC (loc);
if (! VAR_LOC_UNKNOWN_P (ploc))
{
cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
VOIDmode);
/* ??? flag_float_store and volatile mems are never
given values, but we could in theory use them for
locations. */
gcc_assert (val || 1);
}
return MO_VAL_LOC;
}
else
return MO_CLOBBER;
}
if (REG_P (loc) || MEM_P (loc))
{
if (modep)
*modep = GET_MODE (loc);
if (cui->store_p)
{
if (REG_P (loc)
|| (find_use_val (loc, GET_MODE (loc), cui)
&& cselib_lookup (XEXP (loc, 0),
get_address_mode (loc), 0,
GET_MODE (loc))))
return MO_VAL_SET;
}
else
{
cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
if (val && !cselib_preserved_value_p (val))
return MO_VAL_USE;
}
}
}
if (REG_P (loc))
{
gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
if (loc == cfa_base_rtx)
return MO_CLOBBER;
expr = REG_EXPR (loc);
if (!expr)
return MO_USE_NO_VAR;
else if (target_for_debug_bind (var_debug_decl (expr)))
return MO_CLOBBER;
else if (track_loc_p (loc, expr, REG_OFFSET (loc),
false, modep, NULL))
return MO_USE;
else
return MO_USE_NO_VAR;
}
else if (MEM_P (loc))
{
expr = MEM_EXPR (loc);
if (!expr)
return MO_CLOBBER;
else if (target_for_debug_bind (var_debug_decl (expr)))
return MO_CLOBBER;
else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
false, modep, NULL)
/* Multi-part variables shouldn't refer to one-part
variable names such as VALUEs (never happens) or
DEBUG_EXPRs (only happens in the presence of debug
insns). */
&& (!MAY_HAVE_DEBUG_INSNS
|| !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
return MO_USE;
else
return MO_CLOBBER;
}
return MO_CLOBBER;
}
/* Log to OUT information about micro-operation MOPT involving X in
INSN of BB. */
static inline void
log_op_type (rtx x, basic_block bb, rtx insn,
enum micro_operation_type mopt, FILE *out)
{
fprintf (out, "bb %i op %i insn %i %s ",
bb->index, VTI (bb)->mos.length (),
INSN_UID (insn), micro_operation_type_name[mopt]);
print_inline_rtx (out, x, 2);
fputc ('\n', out);
}
/* Tell whether the CONCAT used to holds a VALUE and its location
needs value resolution, i.e., an attempt of mapping the location
back to other incoming values. */
#define VAL_NEEDS_RESOLUTION(x) \
(RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
/* Whether the location in the CONCAT is a tracked expression, that
should also be handled like a MO_USE. */
#define VAL_HOLDS_TRACK_EXPR(x) \
(RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
/* Whether the location in the CONCAT should be handled like a MO_COPY
as well. */
#define VAL_EXPR_IS_COPIED(x) \
(RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
/* Whether the location in the CONCAT should be handled like a
MO_CLOBBER as well. */
#define VAL_EXPR_IS_CLOBBERED(x) \
(RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
/* All preserved VALUEs. */
static vec<rtx> preserved_values;
/* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
static void
preserve_value (cselib_val *val)
{
cselib_preserve_value (val);
preserved_values.safe_push (val->val_rtx);
}
/* Helper function for MO_VAL_LOC handling. Return non-zero if
any rtxes not suitable for CONST use not replaced by VALUEs
are discovered. */
static int
non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
{
if (*x == NULL_RTX)
return 0;
switch (GET_CODE (*x))
{
case REG:
case DEBUG_EXPR:
case PC:
case SCRATCH:
case CC0:
case ASM_INPUT:
case ASM_OPERANDS:
return 1;
case MEM:
return !MEM_READONLY_P (*x);
default:
return 0;
}
}
/* Add uses (register and memory references) LOC which will be tracked
to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
static int
add_uses (rtx *ploc, void *data)
{
rtx loc = *ploc;
enum machine_mode mode = VOIDmode;
struct count_use_info *cui = (struct count_use_info *)data;
enum micro_operation_type type = use_type (loc, cui, &mode);
if (type != MO_CLOBBER)
{
basic_block bb = cui->bb;
micro_operation mo;
mo.type = type;
mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
mo.insn = cui->insn;
if (type == MO_VAL_LOC)
{
rtx oloc = loc;
rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
cselib_val *val;
gcc_assert (cui->sets);
if (MEM_P (vloc)
&& !REG_P (XEXP (vloc, 0))
&& !MEM_P (XEXP (vloc, 0)))
{
rtx mloc = vloc;
enum machine_mode address_mode = get_address_mode (mloc);
cselib_val *val
= cselib_lookup (XEXP (mloc, 0), address_mode, 0,
GET_MODE (mloc));
if (val && !cselib_preserved_value_p (val))
preserve_value (val);
}
if (CONSTANT_P (vloc)
&& (GET_CODE (vloc) != CONST
|| for_each_rtx (&vloc, non_suitable_const, NULL)))
/* For constants don't look up any value. */;
else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
&& (val = find_use_val (vloc, GET_MODE (oloc), cui)))
{
enum machine_mode mode2;
enum micro_operation_type type2;
rtx nloc = NULL;
bool resolvable = REG_P (vloc) || MEM_P (vloc);
if (resolvable)
nloc = replace_expr_with_values (vloc);
if (nloc)
{
oloc = shallow_copy_rtx (oloc);
PAT_VAR_LOCATION_LOC (oloc) = nloc;
}
oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
type2 = use_type (vloc, 0, &mode2);
gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
|| type2 == MO_CLOBBER);
if (type2 == MO_CLOBBER
&& !cselib_preserved_value_p (val))
{
VAL_NEEDS_RESOLUTION (oloc) = resolvable;
preserve_value (val);
}
}
else if (!VAR_LOC_UNKNOWN_P (vloc))
{
oloc = shallow_copy_rtx (oloc);
PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
}
mo.u.loc = oloc;
}
else if (type == MO_VAL_USE)
{
enum machine_mode mode2 = VOIDmode;
enum micro_operation_type type2;
cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
rtx vloc, oloc = loc, nloc;
gcc_assert (cui->sets);
if (MEM_P (oloc)
&& !REG_P (XEXP (oloc, 0))
&& !MEM_P (XEXP (oloc, 0)))
{
rtx mloc = oloc;
enum machine_mode address_mode = get_address_mode (mloc);
cselib_val *val
= cselib_lookup (XEXP (mloc, 0), address_mode, 0,
GET_MODE (mloc));
if (val && !cselib_preserved_value_p (val))
preserve_value (val);
}
type2 = use_type (loc, 0, &mode2);
gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
|| type2 == MO_CLOBBER);
if (type2 == MO_USE)
vloc = var_lowpart (mode2, loc);
else
vloc = oloc;
/* The loc of a MO_VAL_USE may have two forms:
(concat val src): val is at src, a value-based
representation.
(concat (concat val use) src): same as above, with use as
the MO_USE tracked value, if it differs from src.
*/
gcc_checking_assert (REG_P (loc) || MEM_P (loc));
nloc = replace_expr_with_values (loc);
if (!nloc)
nloc = oloc;
if (vloc != nloc)
oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
else
oloc = val->val_rtx;
mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
if (type2 == MO_USE)
VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
if (!cselib_preserved_value_p (val))
{
VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
preserve_value (val);
}
}
else
gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
if (dump_file && (dump_flags & TDF_DETAILS))
log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
VTI (bb)->mos.safe_push (mo);
}
return 0;
}
/* Helper function for finding all uses of REG/MEM in X in insn INSN. */
static void
add_uses_1 (rtx *x, void *cui)
{
for_each_rtx (x, add_uses, cui);
}
/* This is the value used during expansion of locations. We want it
to be unbounded, so that variables expanded deep in a recursion
nest are fully evaluated, so that their values are cached
correctly. We avoid recursion cycles through other means, and we
don't unshare RTL, so excess complexity is not a problem. */
#define EXPR_DEPTH (INT_MAX)
/* We use this to keep too-complex expressions from being emitted as
location notes, and then to debug information. Users can trade
compile time for ridiculously complex expressions, although they're
seldom useful, and they may often have to be discarded as not
representable anyway. */
#define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
/* Attempt to reverse the EXPR operation in the debug info and record
it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
no longer live we can express its value as VAL - 6. */
static void
reverse_op (rtx val, const_rtx expr, rtx insn)
{
rtx src, arg, ret;
cselib_val *v;
struct elt_loc_list *l;
enum rtx_code code;
int count;
if (GET_CODE (expr) != SET)
return;
if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
return;
src = SET_SRC (expr);
switch (GET_CODE (src))
{
case PLUS:
case MINUS:
case XOR:
case NOT:
case NEG:
if (!REG_P (XEXP (src, 0)))
return;
break;
case SIGN_EXTEND:
case ZERO_EXTEND:
if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
return;
break;
default:
return;
}
if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
return;
v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
if (!v || !cselib_preserved_value_p (v))
return;
/* Use canonical V to avoid creating multiple redundant expressions
for different VALUES equivalent to V. */
v = canonical_cselib_val (v);
/* Adding a reverse op isn't useful if V already has an always valid
location. Ignore ENTRY_VALUE, while it is always constant, we should
prefer non-ENTRY_VALUE locations whenever possible. */
for (l = v->locs, count = 0; l; l = l->next, count++)
if (CONSTANT_P (l->loc)
&& (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
return;
/* Avoid creating too large locs lists. */
else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
return;
switch (GET_CODE (src))
{
case NOT:
case NEG:
if (GET_MODE (v->val_rtx) != GET_MODE (val))
return;
ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
break;
case SIGN_EXTEND:
case ZERO_EXTEND:
ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
break;
case XOR:
code = XOR;
goto binary;
case PLUS:
code = MINUS;
goto binary;
case MINUS:
code = PLUS;
goto binary;
binary:
if (GET_MODE (v->val_rtx) != GET_MODE (val))
return;
arg = XEXP (src, 1);
if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
{
arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
if (arg == NULL_RTX)
return;
if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
return;
}
ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
if (ret == val)
/* Ensure ret isn't VALUE itself (which can happen e.g. for
(plus (reg1) (reg2)) when reg2 is known to be 0), as that
breaks a lot of routines during var-tracking. */
ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
break;
default:
gcc_unreachable ();
}
cselib_add_permanent_equiv (v, ret, insn);
}
/* Add stores (register and memory references) LOC which will be tracked
to VTI (bb)->mos. EXPR is the RTL expression containing the store.
CUIP->insn is instruction which the LOC is part of. */
static void
add_stores (rtx loc, const_rtx expr, void *cuip)
{
enum machine_mode mode = VOIDmode, mode2;
struct count_use_info *cui = (struct count_use_info *)cuip;
basic_block bb = cui->bb;
micro_operation mo;
rtx oloc = loc, nloc, src = NULL;
enum micro_operation_type type = use_type (loc, cui, &mode);
bool track_p = false;
cselib_val *v;
bool resolve, preserve;
if (type == MO_CLOBBER)
return;
mode2 = mode;
if (REG_P (loc))
{
gcc_assert (loc != cfa_base_rtx);
if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
|| !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
|| GET_CODE (expr) == CLOBBER)
{
mo.type = MO_CLOBBER;
mo.u.loc = loc;
if (GET_CODE (expr) == SET
&& SET_DEST (expr) == loc
&& !unsuitable_loc (SET_SRC (expr))
&& find_use_val (loc, mode, cui))
{
gcc_checking_assert (type == MO_VAL_SET);
mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
}
}
else
{
if (GET_CODE (expr) == SET
&& SET_DEST (expr) == loc
&& GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
src = var_lowpart (mode2, SET_SRC (expr));
loc = var_lowpart (mode2, loc);
if (src == NULL)
{
mo.type = MO_SET;
mo.u.loc = loc;
}
else
{
rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
{
/* If this is an instruction copying (part of) a parameter
passed by invisible reference to its register location,
pretend it's a SET so that the initial memory location
is discarded, as the parameter register can be reused
for other purposes and we do not track locations based
on generic registers. */
if (MEM_P (src)
&& REG_EXPR (loc)
&& TREE_CODE (REG_EXPR (loc)) == PARM_DECL
&& DECL_MODE (REG_EXPR (loc)) != BLKmode
&& MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
&& XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
!= arg_pointer_rtx)
mo.type = MO_SET;
else
mo.type = MO_COPY;
}
else
mo.type = MO_SET;
mo.u.loc = xexpr;
}
}
mo.insn = cui->insn;
}
else if (MEM_P (loc)
&& ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
|| cui->sets))
{
if (MEM_P (loc) && type == MO_VAL_SET
&& !REG_P (XEXP (loc, 0))
&& !MEM_P (XEXP (loc, 0)))
{
rtx mloc = loc;
enum machine_mode address_mode = get_address_mode (mloc);
cselib_val *val = cselib_lookup (XEXP (mloc, 0),
address_mode, 0,
GET_MODE (mloc));
if (val && !cselib_preserved_value_p (val))
preserve_value (val);
}
if (GET_CODE (expr) == CLOBBER || !track_p)
{
mo.type = MO_CLOBBER;
mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
}
else
{
if (GET_CODE (expr) == SET
&& SET_DEST (expr) == loc
&& GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
src = var_lowpart (mode2, SET_SRC (expr));
loc = var_lowpart (mode2, loc);
if (src == NULL)
{
mo.type = MO_SET;
mo.u.loc = loc;
}
else
{
rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
if (same_variable_part_p (SET_SRC (xexpr),
MEM_EXPR (loc),
INT_MEM_OFFSET (loc)))
mo.type = MO_COPY;
else
mo.type = MO_SET;
mo.u.loc = xexpr;
}
}
mo.insn = cui->insn;
}
else
return;
if (type != MO_VAL_SET)
goto log_and_return;
/* We cannot track values for multiple-part variables, so we track only
locations for tracked parameters passed either by invisible reference
or directly in multiple locations. */
if (track_p
&& REG_P (loc)
&& REG_EXPR (loc)
&& TREE_CODE (REG_EXPR (loc)) == PARM_DECL
&& DECL_MODE (REG_EXPR (loc)) != BLKmode
&& TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
&& ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
&& XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
|| (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
&& XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
goto log_and_return;
v = find_use_val (oloc, mode, cui);
if (!v)
goto log_and_return;
resolve = preserve = !cselib_preserved_value_p (v);
if (loc == stack_pointer_rtx
&& hard_frame_pointer_adjustment != -1
&& preserve)
cselib_set_value_sp_based (v);
nloc = replace_expr_with_values (oloc);
if (nloc)
oloc = nloc;
if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
{
cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
gcc_assert (oval != v);
gcc_assert (REG_P (oloc) || MEM_P (oloc));
if (oval && !cselib_preserved_value_p (oval))
{
micro_operation moa;
preserve_value (oval);
moa.type = MO_VAL_USE;
moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
moa.insn = cui->insn;
if (dump_file && (dump_flags & TDF_DETAILS))
log_op_type (moa.u.loc, cui->bb, cui->insn,
moa.type, dump_file);
VTI (bb)->mos.safe_push (moa);
}
resolve = false;
}
else if (resolve && GET_CODE (mo.u.loc) == SET)
{
if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
nloc = replace_expr_with_values (SET_SRC (expr));
else
nloc = NULL_RTX;
/* Avoid the mode mismatch between oexpr and expr. */
if (!nloc && mode != mode2)
{
nloc = SET_SRC (expr);
gcc_assert (oloc == SET_DEST (expr));
}
if (nloc && nloc != SET_SRC (mo.u.loc))
oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
else
{
if (oloc == SET_DEST (mo.u.loc))
/* No point in duplicating. */
oloc = mo.u.loc;
if (!REG_P (SET_SRC (mo.u.loc)))
resolve = false;
}
}
else if (!resolve)
{
if (GET_CODE (mo.u.loc) == SET
&& oloc == SET_DEST (mo.u.loc))
/* No point in duplicating. */
oloc = mo.u.loc;
}
else
resolve = false;
loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
if (mo.u.loc != oloc)
loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
/* The loc of a MO_VAL_SET may have various forms:
(concat val dst): dst now holds val
(concat val (set dst src)): dst now holds val, copied from src
(concat (concat val dstv) dst): dst now holds val; dstv is dst
after replacing mems and non-top-level regs with values.
(concat (concat val dstv) (set dst src)): dst now holds val,
copied from src. dstv is a value-based representation of dst, if
it differs from dst. If resolution is needed, src is a REG, and
its mode is the same as that of val.
(concat (concat val (set dstv srcv)) (set dst src)): src
copied to dst, holding val. dstv and srcv are value-based
representations of dst and src, respectively.
*/
if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
reverse_op (v->val_rtx, expr, cui->insn);
mo.u.loc = loc;
if (track_p)
VAL_HOLDS_TRACK_EXPR (loc) = 1;
if (preserve)
{
VAL_NEEDS_RESOLUTION (loc) = resolve;
preserve_value (v);
}
if (mo.type == MO_CLOBBER)
VAL_EXPR_IS_CLOBBERED (loc) = 1;
if (mo.type == MO_COPY)
VAL_EXPR_IS_COPIED (loc) = 1;
mo.type = MO_VAL_SET;
log_and_return:
if (dump_file && (dump_flags & TDF_DETAILS))
log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
VTI (bb)->mos.safe_push (mo);
}
/* Arguments to the call. */
static rtx call_arguments;
/* Compute call_arguments. */
static void
prepare_call_arguments (basic_block bb, rtx insn)
{
rtx link, x, call;
rtx prev, cur, next;
rtx this_arg = NULL_RTX;
tree type = NULL_TREE, t, fndecl = NULL_TREE;
tree obj_type_ref = NULL_TREE;
CUMULATIVE_ARGS args_so_far_v;
cumulative_args_t args_so_far;
memset (&args_so_far_v, 0, sizeof (args_so_far_v));
args_so_far = pack_cumulative_args (&args_so_far_v);
call = get_call_rtx_from (insn);
if (call)
{
if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
{
rtx symbol = XEXP (XEXP (call, 0), 0);
if (SYMBOL_REF_DECL (symbol))
fndecl = SYMBOL_REF_DECL (symbol);
}
if (fndecl == NULL_TREE)
fndecl = MEM_EXPR (XEXP (call, 0));
if (fndecl
&& TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
&& TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
fndecl = NULL_TREE;
if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
type = TREE_TYPE (fndecl);
if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
{
if (TREE_CODE (fndecl) == INDIRECT_REF
&& TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
obj_type_ref = TREE_OPERAND (fndecl, 0);
fndecl = NULL_TREE;
}
if (type)
{
for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
t = TREE_CHAIN (t))
if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
break;
if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
type = NULL;
else
{
int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
link = CALL_INSN_FUNCTION_USAGE (insn);
#ifndef PCC_STATIC_STRUCT_RETURN
if (aggregate_value_p (TREE_TYPE (type), type)
&& targetm.calls.struct_value_rtx (type, 0) == 0)
{
tree struct_addr = build_pointer_type (TREE_TYPE (type));
enum machine_mode mode = TYPE_MODE (struct_addr);
rtx reg;
INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
nargs + 1);
reg = targetm.calls.function_arg (args_so_far, mode,
struct_addr, true);
targetm.calls.function_arg_advance (args_so_far, mode,
struct_addr, true);
if (reg == NULL_RTX)
{
for (; link; link = XEXP (link, 1))
if (GET_CODE (XEXP (link, 0)) == USE
&& MEM_P (XEXP (XEXP (link, 0), 0)))
{
link = XEXP (link, 1);
break;
}
}
}
else
#endif
INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
nargs);
if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
{
enum machine_mode mode;
t = TYPE_ARG_TYPES (type);
mode = TYPE_MODE (TREE_VALUE (t));
this_arg = targetm.calls.function_arg (args_so_far, mode,
TREE_VALUE (t), true);
if (this_arg && !REG_P (this_arg))
this_arg = NULL_RTX;
else if (this_arg == NULL_RTX)
{
for (; link; link = XEXP (link, 1))
if (GET_CODE (XEXP (link, 0)) == USE
&& MEM_P (XEXP (XEXP (link, 0), 0)))
{
this_arg = XEXP (XEXP (link, 0), 0);
break;
}
}
}
}
}
}
t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
if (GET_CODE (XEXP (link, 0)) == USE)
{
rtx item = NULL_RTX;
x = XEXP (XEXP (link, 0), 0);
if (GET_MODE (link) == VOIDmode
|| GET_MODE (link) == BLKmode
|| (GET_MODE (link) != GET_MODE (x)
&& (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
|| GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
/* Can't do anything for these, if the original type mode
isn't known or can't be converted. */;
else if (REG_P (x))
{
cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
if (val && cselib_preserved_value_p (val))
item = val->val_rtx;
else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
{
enum machine_mode mode = GET_MODE (x);
while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
&& GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
{
rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
if (reg == NULL_RTX || !REG_P (reg))
continue;
val = cselib_lookup (reg, mode, 0, VOIDmode);
if (val && cselib_preserved_value_p (val))
{
item = val->val_rtx;
break;
}
}
}
}
else if (MEM_P (x))
{
rtx mem = x;
cselib_val *val;
if (!frame_pointer_needed)
{
struct adjust_mem_data amd;
amd.mem_mode = VOIDmode;
amd.stack_adjust = -VTI (bb)->out.stack_adjust;
amd.side_effects = NULL_RTX;
amd.store = true;
mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
&amd);
gcc_assert (amd.side_effects == NULL_RTX);
}
val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
if (val && cselib_preserved_value_p (val))
item = val->val_rtx;
else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
{
/* For non-integer stack argument see also if they weren't
initialized by integers. */
enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
if (imode != GET_MODE (mem) && imode != BLKmode)
{
val = cselib_lookup (adjust_address_nv (mem, imode, 0),
imode, 0, VOIDmode);
if (val && cselib_preserved_value_p (val))
item = lowpart_subreg (GET_MODE (x), val->val_rtx,
imode);
}
}
}
if (item)
{
rtx x2 = x;
if (GET_MODE (item) != GET_MODE (link))
item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
if (GET_MODE (x2) != GET_MODE (link))
x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
call_arguments
= gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
}
if (t && t != void_list_node)
{
tree argtype = TREE_VALUE (t);
enum machine_mode mode = TYPE_MODE (argtype);
rtx reg;
if (pass_by_reference (&args_so_far_v, mode, argtype, true))
{
argtype = build_pointer_type (argtype);
mode = TYPE_MODE (argtype);
}
reg = targetm.calls.function_arg (args_so_far, mode,
argtype, true);
if (TREE_CODE (argtype) == REFERENCE_TYPE
&& INTEGRAL_TYPE_P (TREE_TYPE (argtype))
&& reg
&& REG_P (reg)
&& GET_MODE (reg) == mode
&& GET_MODE_CLASS (mode) == MODE_INT
&& REG_P (x)
&& REGNO (x) == REGNO (reg)
&& GET_MODE (x) == mode
&& item)
{
enum machine_mode indmode
= TYPE_MODE (TREE_TYPE (argtype));
rtx mem = gen_rtx_MEM (indmode, x);
cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
if (val && cselib_preserved_value_p (val))
{
item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
call_arguments);
}
else
{
struct elt_loc_list *l;
tree initial;
/* Try harder, when passing address of a constant
pool integer it can be easily read back. */
item = XEXP (item, 1);
if (GET_CODE (item) == SUBREG)
item = SUBREG_REG (item);
gcc_assert (GET_CODE (item) == VALUE);
val = CSELIB_VAL_PTR (item);
for (l = val->locs; l; l = l->next)
if (GET_CODE (l->loc) == SYMBOL_REF
&& TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
&& SYMBOL_REF_DECL (l->loc)
&& DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
{
initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
if (tree_fits_shwi_p (initial))
{
item = GEN_INT (tree_to_shwi (initial));
item = gen_rtx_CONCAT (indmode, mem, item);
call_arguments
= gen_rtx_EXPR_LIST (VOIDmode, item,
call_arguments);
}
break;
}
}
}
targetm.calls.function_arg_advance (args_so_far, mode,
argtype, true);
t = TREE_CHAIN (t);
}
}
/* Add debug arguments. */
if (fndecl
&& TREE_CODE (fndecl) == FUNCTION_DECL
&& DECL_HAS_DEBUG_ARGS_P (fndecl))
{
vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
if (debug_args)
{
unsigned int ix;
tree param;
for (ix = 0; vec_safe_iterate (*debug_args, ix, ¶m); ix += 2)
{
rtx item;
tree dtemp = (**debug_args)[ix + 1];
enum machine_mode mode = DECL_MODE (dtemp);
item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
call_arguments);
}
}
}
/* Reverse call_arguments chain. */
prev = NULL_RTX;
for (cur = call_arguments; cur; cur = next)
{
next = XEXP (cur, 1);
XEXP (cur, 1) = prev;
prev = cur;
}
call_arguments = prev;
x = get_call_rtx_from (insn);
if (x)
{
x = XEXP (XEXP (x, 0), 0);
if (GET_CODE (x) == SYMBOL_REF)
/* Don't record anything. */;
else if (CONSTANT_P (x))
{
x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
pc_rtx, x);
call_arguments
= gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
}
else
{
cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
if (val && cselib_preserved_value_p (val))
{
x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
call_arguments
= gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
}
}
}
if (this_arg)
{
enum machine_mode mode
= TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
rtx clobbered = gen_rtx_MEM (mode, this_arg);
HOST_WIDE_INT token
= tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
if (token)
clobbered = plus_constant (mode, clobbered,
token * GET_MODE_SIZE (mode));
clobbered = gen_rtx_MEM (mode, clobbered);
x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
call_arguments
= gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
}
}
/* Callback for cselib_record_sets_hook, that records as micro
operations uses and stores in an insn after cselib_record_sets has
analyzed the sets in an insn, but before it modifies the stored
values in the internal tables, unless cselib_record_sets doesn't
call it directly (perhaps because we're not doing cselib in the
first place, in which case sets and n_sets will be 0). */
static void
add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
{
basic_block bb = BLOCK_FOR_INSN (insn);
int n1, n2;
struct count_use_info cui;
micro_operation *mos;
cselib_hook_called = true;
cui.insn = insn;
cui.bb = bb;
cui.sets = sets;
cui.n_sets = n_sets;
n1 = VTI (bb)->mos.length ();
cui.store_p = false;
note_uses (&PATTERN (insn), add_uses_1, &cui);
n2 = VTI (bb)->mos.length () - 1;
mos = VTI (bb)->mos.address ();
/* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
MO_VAL_LOC last. */
while (n1 < n2)
{
while (n1 < n2 && mos[n1].type == MO_USE)
n1++;
while (n1 < n2 && mos[n2].type != MO_USE)
n2--;
if (n1 < n2)
{
micro_operation sw;
sw = mos[n1];
mos[n1] = mos[n2];
mos[n2] = sw;
}
}
n2 = VTI (bb)->mos.length () - 1;
while (n1 < n2)
{
while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
n1++;
while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
n2--;
if (n1 < n2)
{
micro_operation sw;
sw = mos[n1];
mos[n1] = mos[n2];
mos[n2] = sw;
}
}
if (CALL_P (insn))
{
micro_operation mo;
mo.type = MO_CALL;
mo.insn = insn;
mo.u.loc = call_arguments;
call_arguments = NULL_RTX;
if (dump_file && (dump_flags & TDF_DETAILS))
log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
VTI (bb)->mos.safe_push (mo);
}
n1 = VTI (bb)->mos.length ();
/* This will record NEXT_INSN (insn), such that we can
insert notes before it without worrying about any
notes that MO_USEs might emit after the insn. */
cui.store_p = true;
note_stores (PATTERN (insn), add_stores, &cui);
n2 = VTI (bb)->mos.length () - 1;
mos = VTI (bb)->mos.address ();
/* Order the MO_VAL_USEs first (note_stores does nothing
on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
while (n1 < n2)
{
while (n1 < n2 && mos[n1].type == MO_VAL_USE)
n1++;
while (n1 < n2 && mos[n2].type != MO_VAL_USE)
n2--;
if (n1 < n2)
{
micro_operation sw;
sw = mos[n1];
mos[n1] = mos[n2];
mos[n2] = sw;
}
}
n2 = VTI (bb)->mos.length () - 1;
while (n1 < n2)
{
while (n1 < n2 && mos[n1].type == MO_CLOBBER)
n1++;
while (n1 < n2 && mos[n2].type != MO_CLOBBER)
n2--;
if (n1 < n2)
{
micro_operation sw;
sw = mos[n1];
mos[n1] = mos[n2];
mos[n2] = sw;
}
}
}
static enum var_init_status
find_src_status (dataflow_set *in, rtx src)
{
tree decl = NULL_TREE;
enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
if (! flag_var_tracking_uninit)
status = VAR_INIT_STATUS_INITIALIZED;
if (src && REG_P (src))
decl = var_debug_decl (REG_EXPR (src));
else if (src && MEM_P (src))
decl = var_debug_decl (MEM_EXPR (src));
if (src && decl)
status = get_init_value (in, src, dv_from_decl (decl));
return status;
}
/* SRC is the source of an assignment. Use SET to try to find what
was ultimately assigned to SRC. Return that value if known,
otherwise return SRC itself. */
static rtx
find_src_set_src (dataflow_set *set, rtx src)
{
tree decl = NULL_TREE; /* The variable being copied around. */
rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
variable var;
location_chain nextp;
int i;
bool found;
if (src && REG_P (src))
decl = var_debug_decl (REG_EXPR (src));
else if (src && MEM_P (src))
decl = var_debug_decl (MEM_EXPR (src));
if (src && decl)
{
decl_or_value dv = dv_from_decl (decl);
var = shared_hash_find (set->vars, dv);
if (var)
{
found = false;
for (i = 0; i < var->n_var_parts && !found; i++)
for (nextp = var->var_part[i].loc_chain; nextp && !found;
nextp = nextp->next)
if (rtx_equal_p (nextp->loc, src))
{
set_src = nextp->set_src;
found = true;
}
}
}
return set_src;
}
/* Compute the changes of variable locations in the basic block BB. */
static bool
compute_bb_dataflow (basic_block bb)
{
unsigned int i;
micro_operation *mo;
bool changed;
dataflow_set old_out;
dataflow_set *in = &VTI (bb)->in;
dataflow_set *out = &VTI (bb)->out;
dataflow_set_init (&old_out);
dataflow_set_copy (&old_out, out);
dataflow_set_copy (out, in);
if (MAY_HAVE_DEBUG_INSNS)
local_get_addr_cache = pointer_map_create ();
FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
{
rtx insn = mo->insn;
switch (mo->type)
{
case MO_CALL:
dataflow_set_clear_at_call (out);
break;
case MO_USE:
{
rtx loc = mo->u.loc;
if (REG_P (loc))
var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
else if (MEM_P (loc))
var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
}
break;
case MO_VAL_LOC:
{
rtx loc = mo->u.loc;
rtx val, vloc;
tree var;
if (GET_CODE (loc) == CONCAT)
{
val = XEXP (loc, 0);
vloc = XEXP (loc, 1);
}
else
{
val = NULL_RTX;
vloc = loc;
}
var = PAT_VAR_LOCATION_DECL (vloc);
clobber_variable_part (out, NULL_RTX,
dv_from_decl (var), 0, NULL_RTX);
if (val)
{
if (VAL_NEEDS_RESOLUTION (loc))
val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
set_variable_part (out, val, dv_from_decl (var), 0,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
INSERT);
}
else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
dv_from_decl (var), 0,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
INSERT);
}
break;
case MO_VAL_USE:
{
rtx loc = mo->u.loc;
rtx val, vloc, uloc;
vloc = uloc = XEXP (loc, 1);
val = XEXP (loc, 0);
if (GET_CODE (val) == CONCAT)
{
uloc = XEXP (val, 1);
val = XEXP (val, 0);
}
if (VAL_NEEDS_RESOLUTION (loc))
val_resolve (out, val, vloc, insn);
else
val_store (out, val, uloc, insn, false);
if (VAL_HOLDS_TRACK_EXPR (loc))
{
if (GET_CODE (uloc) == REG)
var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
NULL);
else if (GET_CODE (uloc) == MEM)
var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
NULL);
}
}
break;
case MO_VAL_SET:
{
rtx loc = mo->u.loc;
rtx val, vloc, uloc;
rtx dstv, srcv;
vloc = loc;
uloc = XEXP (vloc, 1);
val = XEXP (vloc, 0);
vloc = uloc;
if (GET_CODE (uloc) == SET)
{
dstv = SET_DEST (uloc);
srcv = SET_SRC (uloc);
}
else
{
dstv = uloc;
srcv = NULL;
}
if (GET_CODE (val) == CONCAT)
{
dstv = vloc = XEXP (val, 1);
val = XEXP (val, 0);
}
if (GET_CODE (vloc) == SET)
{
srcv = SET_SRC (vloc);
gcc_assert (val != srcv);
gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
dstv = vloc = SET_DEST (vloc);
if (VAL_NEEDS_RESOLUTION (loc))
val_resolve (out, val, srcv, insn);
}
else if (VAL_NEEDS_RESOLUTION (loc))
{
gcc_assert (GET_CODE (uloc) == SET
&& GET_CODE (SET_SRC (uloc)) == REG);
val_resolve (out, val, SET_SRC (uloc), insn);
}
if (VAL_HOLDS_TRACK_EXPR (loc))
{
if (VAL_EXPR_IS_CLOBBERED (loc))
{
if (REG_P (uloc))
var_reg_delete (out, uloc, true);
else if (MEM_P (uloc))
{
gcc_assert (MEM_P (dstv));
gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
var_mem_delete (out, dstv, true);
}
}
else
{
bool copied_p = VAL_EXPR_IS_COPIED (loc);
rtx src = NULL, dst = uloc;
enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
if (GET_CODE (uloc) == SET)
{
src = SET_SRC (uloc);
dst = SET_DEST (uloc);
}
if (copied_p)
{
if (flag_var_tracking_uninit)
{
status = find_src_status (in, src);
if (status == VAR_INIT_STATUS_UNKNOWN)
status = find_src_status (out, src);
}
src = find_src_set_src (in, src);
}
if (REG_P (dst))
var_reg_delete_and_set (out, dst, !copied_p,
status, srcv);
else if (MEM_P (dst))
{
gcc_assert (MEM_P (dstv));
gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
var_mem_delete_and_set (out, dstv, !copied_p,
status, srcv);
}
}
}
else if (REG_P (uloc))
var_regno_delete (out, REGNO (uloc));
else if (MEM_P (uloc))
{
gcc_checking_assert (GET_CODE (vloc) == MEM);
gcc_checking_assert (dstv == vloc);
if (dstv != vloc)
clobber_overlapping_mems (out, vloc);
}
val_store (out, val, dstv, insn, true);
}
break;
case MO_SET:
{
rtx loc = mo->u.loc;
rtx set_src = NULL;
if (GET_CODE (loc) == SET)
{
set_src = SET_SRC (loc);
loc = SET_DEST (loc);
}
if (REG_P (loc))
var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
set_src);
else if (MEM_P (loc))
var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
set_src);
}
break;
case MO_COPY:
{
rtx loc = mo->u.loc;
enum var_init_status src_status;
rtx set_src = NULL;
if (GET_CODE (loc) == SET)
{
set_src = SET_SRC (loc);
loc = SET_DEST (loc);
}
if (! flag_var_tracking_uninit)
src_status = VAR_INIT_STATUS_INITIALIZED;
else
{
src_status = find_src_status (in, set_src);
if (src_status == VAR_INIT_STATUS_UNKNOWN)
src_status = find_src_status (out, set_src);
}
set_src = find_src_set_src (in, set_src);
if (REG_P (loc))
var_reg_delete_and_set (out, loc, false, src_status, set_src);
else if (MEM_P (loc))
var_mem_delete_and_set (out, loc, false, src_status, set_src);
}
break;
case MO_USE_NO_VAR:
{
rtx loc = mo->u.loc;
if (REG_P (loc))
var_reg_delete (out, loc, false);
else if (MEM_P (loc))
var_mem_delete (out, loc, false);
}
break;
case MO_CLOBBER:
{
rtx loc = mo->u.loc;
if (REG_P (loc))
var_reg_delete (out, loc, true);
else if (MEM_P (loc))
var_mem_delete (out, loc, true);
}
break;
case MO_ADJUST:
out->stack_adjust += mo->u.adjust;
break;
}
}
if (MAY_HAVE_DEBUG_INSNS)
{
pointer_map_destroy (local_get_addr_cache);
local_get_addr_cache = NULL;
dataflow_set_equiv_regs (out);
shared_hash_htab (out->vars)
.traverse <dataflow_set *, canonicalize_values_mark> (out);
shared_hash_htab (out->vars)
.traverse <dataflow_set *, canonicalize_values_star> (out);
#if ENABLE_CHECKING
shared_hash_htab (out->vars)
.traverse <dataflow_set *, canonicalize_loc_order_check> (out);
#endif
}
changed = dataflow_set_different (&old_out, out);
dataflow_set_destroy (&old_out);
return changed;
}
/* Find the locations of variables in the whole function. */
static bool
vt_find_locations (void)
{
fibheap_t worklist, pending, fibheap_swap;
sbitmap visited, in_worklist, in_pending, sbitmap_swap;
basic_block bb;
edge e;
int *bb_order;
int *rc_order;
int i;
int htabsz = 0;
int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
bool success = true;
timevar_push (TV_VAR_TRACKING_DATAFLOW);
/* Compute reverse completion order of depth first search of the CFG
so that the data-flow runs faster. */
rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
pre_and_rev_post_order_compute (NULL, rc_order, false);
for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
bb_order[rc_order[i]] = i;
free (rc_order);
worklist = fibheap_new ();
pending = fibheap_new ();
visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
bitmap_clear (in_worklist);
FOR_EACH_BB_FN (bb, cfun)
fibheap_insert (pending, bb_order[bb->index], bb);
bitmap_ones (in_pending);
while (success && !fibheap_empty (pending))
{
fibheap_swap = pending;
pending = worklist;
worklist = fibheap_swap;
sbitmap_swap = in_pending;
in_pending = in_worklist;
in_worklist = sbitmap_swap;
bitmap_clear (visited);
while (!fibheap_empty (worklist))
{
bb = (basic_block) fibheap_extract_min (worklist);
bitmap_clear_bit (in_worklist, bb->index);
gcc_assert (!bitmap_bit_p (visited, bb->index));
if (!bitmap_bit_p (visited, bb->index))
{
bool changed;
edge_iterator ei;
int oldinsz, oldoutsz;
bitmap_set_bit (visited, bb->index);
if (VTI (bb)->in.vars)
{
htabsz
-= shared_hash_htab (VTI (bb)->in.vars).size ()
+ shared_hash_htab (VTI (bb)->out.vars).size ();
oldinsz = shared_hash_htab (VTI (bb)->in.vars).elements ();
oldoutsz = shared_hash_htab (VTI (bb)->out.vars).elements ();
}
else
oldinsz = oldoutsz = 0;
if (MAY_HAVE_DEBUG_INSNS)
{
dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
bool first = true, adjust = false;
/* Calculate the IN set as the intersection of
predecessor OUT sets. */
dataflow_set_clear (in);
dst_can_be_shared = true;
FOR_EACH_EDGE (e, ei, bb->preds)
if (!VTI (e->src)->flooded)
gcc_assert (bb_order[bb->index]
<= bb_order[e->src->index]);
else if (first)
{
dataflow_set_copy (in, &VTI (e->src)->out);
first_out = &VTI (e->src)->out;
first = false;
}
else
{
dataflow_set_merge (in, &VTI (e->src)->out);
adjust = true;
}
if (adjust)
{
dataflow_post_merge_adjust (in, &VTI (bb)->permp);
#if ENABLE_CHECKING
/* Merge and merge_adjust should keep entries in
canonical order. */
shared_hash_htab (in->vars)
.traverse <dataflow_set *,
canonicalize_loc_order_check> (in);
#endif
if (dst_can_be_shared)
{
shared_hash_destroy (in->vars);
in->vars = shared_hash_copy (first_out->vars);
}
}
VTI (bb)->flooded = true;
}
else
{
/* Calculate the IN set as union of predecessor OUT sets. */
dataflow_set_clear (&VTI (bb)->in);
FOR_EACH_EDGE (e, ei, bb->preds)
dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
}
changed = compute_bb_dataflow (bb);
htabsz += shared_hash_htab (VTI (bb)->in.vars).size ()
+ shared_hash_htab (VTI (bb)->out.vars).size ();
if (htabmax && htabsz > htabmax)
{
if (MAY_HAVE_DEBUG_INSNS)
inform (DECL_SOURCE_LOCATION (cfun->decl),
"variable tracking size limit exceeded with "
"-fvar-tracking-assignments, retrying without");
else
inform (DECL_SOURCE_LOCATION (cfun->decl),
"variable tracking size limit exceeded");
success = false;
break;
}
if (changed)
{
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
continue;
if (bitmap_bit_p (visited, e->dest->index))
{
if (!bitmap_bit_p (in_pending, e->dest->index))
{
/* Send E->DEST to next round. */
bitmap_set_bit (in_pending, e->dest->index);
fibheap_insert (pending,
bb_order[e->dest->index],
e->dest);
}
}
else if (!bitmap_bit_p (in_worklist, e->dest->index))
{
/* Add E->DEST to current round. */
bitmap_set_bit (in_worklist, e->dest->index);
fibheap_insert (worklist, bb_order[e->dest->index],
e->dest);
}
}
}
if (dump_file)
fprintf (dump_file,
"BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
bb->index,
(int)shared_hash_htab (VTI (bb)->in.vars).size (),
oldinsz,
(int)shared_hash_htab (VTI (bb)->out.vars).size (),
oldoutsz,
(int)worklist->nodes, (int)pending->nodes, htabsz);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "BB %i IN:\n", bb->index);
dump_dataflow_set (&VTI (bb)->in);
fprintf (dump_file, "BB %i OUT:\n", bb->index);
dump_dataflow_set (&VTI (bb)->out);
}
}
}
}
if (success && MAY_HAVE_DEBUG_INSNS)
FOR_EACH_BB_FN (bb, cfun)
gcc_assert (VTI (bb)->flooded);
free (bb_order);
fibheap_delete (worklist);
fibheap_delete (pending);
sbitmap_free (visited);
sbitmap_free (in_worklist);
sbitmap_free (in_pending);
timevar_pop (TV_VAR_TRACKING_DATAFLOW);
return success;
}
/* Print the content of the LIST to dump file. */
static void
dump_attrs_list (attrs list)
{
for (; list; list = list->next)
{
if (dv_is_decl_p (list->dv))
print_mem_expr (dump_file, dv_as_decl (list->dv));
else
print_rtl_single (dump_file, dv_as_value (list->dv));
fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
}
fprintf (dump_file, "\n");
}
/* Print the information about variable *SLOT to dump file. */
int
dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
{
variable var = *slot;
dump_var (var);
/* Continue traversing the hash table. */
return 1;
}
/* Print the information about variable VAR to dump file. */
static void
dump_var (variable var)
{
int i;
location_chain node;
if (dv_is_decl_p (var->dv))
{
const_tree decl = dv_as_decl (var->dv);
if (DECL_NAME (decl))
{
fprintf (dump_file, " name: %s",
IDENTIFIER_POINTER (DECL_NAME (decl)));
if (dump_flags & TDF_UID)
fprintf (dump_file, "D.%u", DECL_UID (decl));
}
else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
else
fprintf (dump_file, " name: D.%u", DECL_UID (decl));
fprintf (dump_file, "\n");
}
else
{
fputc (' ', dump_file);
print_rtl_single (dump_file, dv_as_value (var->dv));
}
for (i = 0; i < var->n_var_parts; i++)
{
fprintf (dump_file, " offset %ld\n",
(long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
for (node = var->var_part[i].loc_chain; node; node = node->next)
{
fprintf (dump_file, " ");
if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
fprintf (dump_file, "[uninit]");
print_rtl_single (dump_file, node->loc);
}
}
}
/* Print the information about variables from hash table VARS to dump file. */
static void
dump_vars (variable_table_type vars)
{
if (vars.elements () > 0)
{
fprintf (dump_file, "Variables:\n");
vars.traverse <void *, dump_var_tracking_slot> (NULL);
}
}
/* Print the dataflow set SET to dump file. */
static void
dump_dataflow_set (dataflow_set *set)
{
int i;
fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
set->stack_adjust);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (set->regs[i])
{
fprintf (dump_file, "Reg %d:", i);
dump_attrs_list (set->regs[i]);
}
}
dump_vars (shared_hash_htab (set->vars));
fprintf (dump_file, "\n");
}
/* Print the IN and OUT sets for each basic block to dump file. */
static void
dump_dataflow_sets (void)
{
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
fprintf (dump_file, "\nBasic block %d:\n", bb->index);
fprintf (dump_file, "IN:\n");
dump_dataflow_set (&VTI (bb)->in);
fprintf (dump_file, "OUT:\n");
dump_dataflow_set (&VTI (bb)->out);
}
}
/* Return the variable for DV in dropped_values, inserting one if
requested with INSERT. */
static inline variable
variable_from_dropped (decl_or_value dv, enum insert_option insert)
{
variable_def **slot;
variable empty_var;
onepart_enum_t onepart;
slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv), insert);
if (!slot)
return NULL;
if (*slot)
return *slot;
gcc_checking_assert (insert == INSERT);
onepart = dv_onepart_p (dv);
gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
empty_var = (variable) pool_alloc (onepart_pool (onepart));
empty_var->dv = dv;
empty_var->refcount = 1;
empty_var->n_var_parts = 0;
empty_var->onepart = onepart;
empty_var->in_changed_variables = false;
empty_var->var_part[0].loc_chain = NULL;
empty_var->var_part[0].cur_loc = NULL;
VAR_LOC_1PAUX (empty_var) = NULL;
set_dv_changed (dv, true);
*slot = empty_var;
return empty_var;
}
/* Recover the one-part aux from dropped_values. */
static struct onepart_aux *
recover_dropped_1paux (variable var)
{
variable dvar;
gcc_checking_assert (var->onepart);
if (VAR_LOC_1PAUX (var))
return VAR_LOC_1PAUX (var);
if (var->onepart == ONEPART_VDECL)
return NULL;
dvar = variable_from_dropped (var->dv, NO_INSERT);
if (!dvar)
return NULL;
VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
VAR_LOC_1PAUX (dvar) = NULL;
return VAR_LOC_1PAUX (var);
}
/* Add variable VAR to the hash table of changed variables and
if it has no locations delete it from SET's hash table. */
static void
variable_was_changed (variable var, dataflow_set *set)
{
hashval_t hash = dv_htab_hash (var->dv);
if (emit_notes)
{
variable_def **slot;
/* Remember this decl or VALUE has been added to changed_variables. */
set_dv_changed (var->dv, true);
slot = changed_variables.find_slot_with_hash (var->dv, hash, INSERT);
if (*slot)
{
variable old_var = *slot;
gcc_assert (old_var->in_changed_variables);
old_var->in_changed_variables = false;
if (var != old_var && var->onepart)
{
/* Restore the auxiliary info from an empty variable
previously created for changed_variables, so it is
not lost. */
gcc_checking_assert (!VAR_LOC_1PAUX (var));
VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
VAR_LOC_1PAUX (old_var) = NULL;
}
variable_htab_free (*slot);
}
if (set && var->n_var_parts == 0)
{
onepart_enum_t onepart = var->onepart;
variable empty_var = NULL;
variable_def **dslot = NULL;
if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
{
dslot = dropped_values.find_slot_with_hash (var->dv,
dv_htab_hash (var->dv),
INSERT);
empty_var = *dslot;
if (empty_var)
{
gcc_checking_assert (!empty_var->in_changed_variables);
if (!VAR_LOC_1PAUX (var))
{
VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
VAR_LOC_1PAUX (empty_var) = NULL;
}
else
gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
}
}
if (!empty_var)
{
empty_var = (variable) pool_alloc (onepart_pool (onepart));
empty_var->dv = var->dv;
empty_var->refcount = 1;
empty_var->n_var_parts = 0;
empty_var->onepart = onepart;
if (dslot)
{
empty_var->refcount++;
*dslot = empty_var;
}
}
else
empty_var->refcount++;
empty_var->in_changed_variables = true;
*slot = empty_var;
if (onepart)
{
empty_var->var_part[0].loc_chain = NULL;
empty_var->var_part[0].cur_loc = NULL;
VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
VAR_LOC_1PAUX (var) = NULL;
}
goto drop_var;
}
else
{
if (var->onepart && !VAR_LOC_1PAUX (var))
recover_dropped_1paux (var);
var->refcount++;
var->in_changed_variables = true;
*slot = var;
}
}
else
{
gcc_assert (set);
if (var->n_var_parts == 0)
{
variable_def **slot;
drop_var:
slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
if (slot)
{
if (shared_hash_shared (set->vars))
slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
NO_INSERT);
shared_hash_htab (set->vars).clear_slot (slot);
}
}
}
}
/* Look for the index in VAR->var_part corresponding to OFFSET.
Return -1 if not found. If INSERTION_POINT is non-NULL, the
referenced int will be set to the index that the part has or should
have, if it should be inserted. */
static inline int
find_variable_location_part (variable var, HOST_WIDE_INT offset,
int *insertion_point)
{
int pos, low, high;
if (var->onepart)
{
if (offset != 0)
return -1;
if (insertion_point)
*insertion_point = 0;
return var->n_var_parts - 1;
}
/* Find the location part. */
low = 0;
high = var->n_var_parts;
while (low != high)
{
pos = (low + high) / 2;
if (VAR_PART_OFFSET (var, pos) < offset)
low = pos + 1;
else
high = pos;
}
pos = low;
if (insertion_point)
*insertion_point = pos;
if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
return pos;
return -1;
}
static variable_def **
set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
decl_or_value dv, HOST_WIDE_INT offset,
enum var_init_status initialized, rtx set_src)
{
int pos;
location_chain node, next;
location_chain *nextp;
variable var;
onepart_enum_t onepart;
var = *slot;
if (var)
onepart = var->onepart;
else
onepart = dv_onepart_p (dv);
gcc_checking_assert (offset == 0 || !onepart);
gcc_checking_assert (loc != dv_as_opaque (dv));
if (! flag_var_tracking_uninit)
initialized = VAR_INIT_STATUS_INITIALIZED;
if (!var)
{
/* Create new variable information. */
var = (variable) pool_alloc (onepart_pool (onepart));
var->dv = dv;
var->refcount = 1;
var->n_var_parts = 1;
var->onepart = onepart;
var->in_changed_variables = false;
if (var->onepart)
VAR_LOC_1PAUX (var) = NULL;
else
VAR_PART_OFFSET (var, 0) = offset;
var->var_part[0].loc_chain = NULL;
var->var_part[0].cur_loc = NULL;
*slot = var;
pos = 0;
nextp = &var->var_part[0].loc_chain;
}
else if (onepart)
{
int r = -1, c = 0;
gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
pos = 0;
if (GET_CODE (loc) == VALUE)
{
for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
nextp = &node->next)
if (GET_CODE (node->loc) == VALUE)
{
if (node->loc == loc)
{
r = 0;
break;
}
if (canon_value_cmp (node->loc, loc))
c++;
else
{
r = 1;
break;
}
}
else if (REG_P (node->loc) || MEM_P (node->loc))
c++;
else
{
r = 1;
break;
}
}
else if (REG_P (loc))
{
for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
nextp = &node->next)
if (REG_P (node->loc))
{
if (REGNO (node->loc) < REGNO (loc))
c++;
else
{
if (REGNO (node->loc) == REGNO (loc))
r = 0;
else
r = 1;
break;
}
}
else
{
r = 1;
break;
}
}
else if (MEM_P (loc))
{
for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
nextp = &node->next)
if (REG_P (node->loc))
c++;
else if (MEM_P (node->loc))
{
if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
break;
else
c++;
}
else
{
r = 1;
break;
}
}
else
for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
nextp = &node->next)
if ((r = loc_cmp (node->loc, loc)) >= 0)
break;
else
c++;
if (r == 0)
return slot;
if (shared_var_p (var, set->vars))
{
slot = unshare_variable (set, slot, var, initialized);
var = *slot;
for (nextp = &var->var_part[0].loc_chain; c;
nextp = &(*nextp)->next)
c--;
gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
}
}
else
{
int inspos = 0;
gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
pos = find_variable_location_part (var, offset, &inspos);
if (pos >= 0)
{
node = var->var_part[pos].loc_chain;
if (node
&& ((REG_P (node->loc) && REG_P (loc)
&& REGNO (node->loc) == REGNO (loc))
|| rtx_equal_p (node->loc, loc)))
{
/* LOC is in the beginning of the chain so we have nothing
to do. */
if (node->init < initialized)
node->init = initialized;
if (set_src != NULL)
node->set_src = set_src;
return slot;
}
else
{
/* We have to make a copy of a shared variable. */
if (shared_var_p (var, set->vars))
{
slot = unshare_variable (set, slot, var, initialized);
var = *slot;
}
}
}
else
{
/* We have not found the location part, new one will be created. */
/* We have to make a copy of the shared variable. */
if (shared_var_p (var, set->vars))
{
slot = unshare_variable (set, slot, var, initialized);
var = *slot;
}
/* We track only variables whose size is <= MAX_VAR_PARTS bytes
thus there are at most MAX_VAR_PARTS different offsets. */
gcc_assert (var->n_var_parts < MAX_VAR_PARTS
&& (!var->n_var_parts || !onepart));
/* We have to move the elements of array starting at index
inspos to the next position. */
for (pos = var->n_var_parts; pos > inspos; pos--)
var->var_part[pos] = var->var_part[pos - 1];
var->n_var_parts++;
gcc_checking_assert (!onepart);
VAR_PART_OFFSET (var, pos) = offset;
var->var_part[pos].loc_chain = NULL;
var->var_part[pos].cur_loc = NULL;
}
/* Delete the location from the list. */
nextp = &var->var_part[pos].loc_chain;
for (node = var->var_part[pos].loc_chain; node; node = next)
{
next = node->next;
if ((REG_P (node->loc) && REG_P (loc)
&& REGNO (node->loc) == REGNO (loc))
|| rtx_equal_p (node->loc, loc))
{
/* Save these values, to assign to the new node, before
deleting this one. */
if (node->init > initialized)
initialized = node->init;
if (node->set_src != NULL && set_src == NULL)
set_src = node->set_src;
if (var->var_part[pos].cur_loc == node->loc)
var->var_part[pos].cur_loc = NULL;
pool_free (loc_chain_pool, node);
*nextp = next;
break;
}
else
nextp = &node->next;
}
nextp = &var->var_part[pos].loc_chain;
}
/* Add the location to the beginning. */
node = (location_chain) pool_alloc (loc_chain_pool);
node->loc = loc;
node->init = initialized;
node->set_src = set_src;
node->next = *nextp;
*nextp = node;
/* If no location was emitted do so. */
if (var->var_part[pos].cur_loc == NULL)
variable_was_changed (var, set);
return slot;
}
/* Set the part of variable's location in the dataflow set SET. The
variable part is specified by variable's declaration in DV and
offset OFFSET and the part's location by LOC. IOPT should be
NO_INSERT if the variable is known to be in SET already and the
variable hash table must not be resized, and INSERT otherwise. */
static void
set_variable_part (dataflow_set *set, rtx loc,
decl_or_value dv, HOST_WIDE_INT offset,
enum var_init_status initialized, rtx set_src,
enum insert_option iopt)
{
variable_def **slot;
if (iopt == NO_INSERT)
slot = shared_hash_find_slot_noinsert (set->vars, dv);
else
{
slot = shared_hash_find_slot (set->vars, dv);
if (!slot)
slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
}
set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
}
/* Remove all recorded register locations for the given variable part
from dataflow set SET, except for those that are identical to loc.
The variable part is specified by variable's declaration or value
DV and offset OFFSET. */
static variable_def **
clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
HOST_WIDE_INT offset, rtx set_src)
{
variable var = *slot;
int pos = find_variable_location_part (var, offset, NULL);
if (pos >= 0)
{
location_chain node, next;
/* Remove the register locations from the dataflow set. */
next = var->var_part[pos].loc_chain;
for (node = next; node; node = next)
{
next = node->next;
if (node->loc != loc
&& (!flag_var_tracking_uninit
|| !set_src
|| MEM_P (set_src)
|| !rtx_equal_p (set_src, node->set_src)))
{
if (REG_P (node->loc))
{
attrs anode, anext;
attrs *anextp;
/* Remove the variable part from the register's
list, but preserve any other variable parts
that might be regarded as live in that same
register. */
anextp = &set->regs[REGNO (node->loc)];
for (anode = *anextp; anode; anode = anext)
{
anext = anode->next;
if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
&& anode->offset == offset)
{
pool_free (attrs_pool, anode);
*anextp = anext;
}
else
anextp = &anode->next;
}
}
slot = delete_slot_part (set, node->loc, slot, offset);
}
}
}
return slot;
}
/* Remove all recorded register locations for the given variable part
from dataflow set SET, except for those that are identical to loc.
The variable part is specified by variable's declaration or value
DV and offset OFFSET. */
static void
clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
HOST_WIDE_INT offset, rtx set_src)
{
variable_def **slot;
if (!dv_as_opaque (dv)
|| (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
return;
slot = shared_hash_find_slot_noinsert (set->vars, dv);
if (!slot)
return;
clobber_slot_part (set, loc, slot, offset, set_src);
}
/* Delete the part of variable's location from dataflow set SET. The
variable part is specified by its SET->vars slot SLOT and offset
OFFSET and the part's location by LOC. */
static variable_def **
delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
HOST_WIDE_INT offset)
{
variable var = *slot;
int pos = find_variable_location_part (var, offset, NULL);
if (pos >= 0)
{
location_chain node, next;
location_chain *nextp;
bool changed;
rtx cur_loc;
if (shared_var_p (var, set->vars))
{
/* If the variable contains the location part we have to
make a copy of the variable. */
for (node = var->var_part[pos].loc_chain; node;
node = node->next)
{
if ((REG_P (node->loc) && REG_P (loc)
&& REGNO (node->loc) == REGNO (loc))
|| rtx_equal_p (node->loc, loc))
{
slot = unshare_variable (set, slot, var,
VAR_INIT_STATUS_UNKNOWN);
var = *slot;
break;
}
}
}
if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
cur_loc = VAR_LOC_FROM (var);
else
cur_loc = var->var_part[pos].cur_loc;
/* Delete the location part. */
changed = false;
nextp = &var->var_part[pos].loc_chain;
for (node = *nextp; node; node = next)
{
next = node->next;
if ((REG_P (node->loc) && REG_P (loc)
&& REGNO (node->loc) == REGNO (loc))
|| rtx_equal_p (node->loc, loc))
{
/* If we have deleted the location which was last emitted
we have to emit new location so add the variable to set
of changed variables. */
if (cur_loc == node->loc)
{
changed = true;
var->var_part[pos].cur_loc = NULL;
if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
VAR_LOC_FROM (var) = NULL;
}
pool_free (loc_chain_pool, node);
*nextp = next;
break;
}
else
nextp = &node->next;
}
if (var->var_part[pos].loc_chain == NULL)
{
changed = true;
var->n_var_parts--;
while (pos < var->n_var_parts)
{
var->var_part[pos] = var->var_part[pos + 1];
pos++;
}
}
if (changed)
variable_was_changed (var, set);
}
return slot;
}
/* Delete the part of variable's location from dataflow set SET. The
variable part is specified by variable's declaration or value DV
and offset OFFSET and the part's location by LOC. */
static void
delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
HOST_WIDE_INT offset)
{
variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
if (!slot)
return;
delete_slot_part (set, loc, slot, offset);
}
/* Structure for passing some other parameters to function
vt_expand_loc_callback. */
struct expand_loc_callback_data
{
/* The variables and values active at this point. */
variable_table_type vars;
/* Stack of values and debug_exprs under expansion, and their
children. */
auto_vec<rtx, 4> expanding;
/* Stack of values and debug_exprs whose expansion hit recursion
cycles. They will have VALUE_RECURSED_INTO marked when added to
this list. This flag will be cleared if any of its dependencies
resolves to a valid location. So, if the flag remains set at the
end of the search, we know no valid location for this one can
possibly exist. */
auto_vec<rtx, 4> pending;
/* The maximum depth among the sub-expressions under expansion.
Zero indicates no expansion so far. */
expand_depth depth;
};
/* Allocate the one-part auxiliary data structure for VAR, with enough
room for COUNT dependencies. */
static void
loc_exp_dep_alloc (variable var, int count)
{
size_t allocsize;
gcc_checking_assert (var->onepart);
/* We can be called with COUNT == 0 to allocate the data structure
without any dependencies, e.g. for the backlinks only. However,
if we are specifying a COUNT, then the dependency list must have
been emptied before. It would be possible to adjust pointers or
force it empty here, but this is better done at an earlier point
in the algorithm, so we instead leave an assertion to catch
errors. */
gcc_checking_assert (!count
|| VAR_LOC_DEP_VEC (var) == NULL
|| VAR_LOC_DEP_VEC (var)->is_empty ());
if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
return;
allocsize = offsetof (struct onepart_aux, deps)
+ vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
if (VAR_LOC_1PAUX (var))
{
VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
VAR_LOC_1PAUX (var), allocsize);
/* If the reallocation moves the onepaux structure, the
back-pointer to BACKLINKS in the first list member will still
point to its old location. Adjust it. */
if (VAR_LOC_DEP_LST (var))
VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
}
else
{
VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
*VAR_LOC_DEP_LSTP (var) = NULL;
VAR_LOC_FROM (var) = NULL;
VAR_LOC_DEPTH (var).complexity = 0;
VAR_LOC_DEPTH (var).entryvals = 0;
}
VAR_LOC_DEP_VEC (var)->embedded_init (count);
}
/* Remove all entries from the vector of active dependencies of VAR,
removing them from the back-links lists too. */
static void
loc_exp_dep_clear (variable var)
{
while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
{
loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
if (led->next)
led->next->pprev = led->pprev;
if (led->pprev)
*led->pprev = led->next;
VAR_LOC_DEP_VEC (var)->pop ();
}
}
/* Insert an active dependency from VAR on X to the vector of
dependencies, and add the corresponding back-link to X's list of
back-links in VARS. */
static void
loc_exp_insert_dep (variable var, rtx x, variable_table_type vars)
{
decl_or_value dv;
variable xvar;
loc_exp_dep *led;
dv = dv_from_rtx (x);
/* ??? Build a vector of variables parallel to EXPANDING, to avoid
an additional look up? */
xvar = vars.find_with_hash (dv, dv_htab_hash (dv));
if (!xvar)
{
xvar = variable_from_dropped (dv, NO_INSERT);
gcc_checking_assert (xvar);
}
/* No point in adding the same backlink more than once. This may
arise if say the same value appears in two complex expressions in
the same loc_list, or even more than once in a single
expression. */
if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
return;
if (var->onepart == NOT_ONEPART)
led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
else
{
loc_exp_dep empty;
memset (&empty, 0, sizeof (empty));
VAR_LOC_DEP_VEC (var)->quick_push (empty);
led = &VAR_LOC_DEP_VEC (var)->last ();
}
led->dv = var->dv;
led->value = x;
loc_exp_dep_alloc (xvar, 0);
led->pprev = VAR_LOC_DEP_LSTP (xvar);
led->next = *led->pprev;
if (led->next)
led->next->pprev = &led->next;
*led->pprev = led;
}
/* Create active dependencies of VAR on COUNT values starting at
VALUE, and corresponding back-links to the entries in VARS. Return
true if we found any pending-recursion results. */
static bool
loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
variable_table_type vars)
{
bool pending_recursion = false;
gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
|| VAR_LOC_DEP_VEC (var)->is_empty ());
/* Set up all dependencies from last_child (as set up at the end of
the loop above) to the end. */
loc_exp_dep_alloc (var, count);
while (count--)
{
rtx x = *value++;
if (!pending_recursion)
pending_recursion = !result && VALUE_RECURSED_INTO (x);
loc_exp_insert_dep (var, x, vars);
}
return pending_recursion;
}
/* Notify the back-links of IVAR that are pending recursion that we
have found a non-NIL value for it, so they are cleared for another
attempt to compute a current location. */
static void
notify_dependents_of_resolved_value (variable ivar, variable_table_type vars)
{
loc_exp_dep *led, *next;
for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
{
decl_or_value dv = led->dv;
variable var;
next = led->next;
if (dv_is_value_p (dv))
{
rtx value = dv_as_value (dv);
/* If we have already resolved it, leave it alone. */
if (!VALUE_RECURSED_INTO (value))
continue;
/* Check that VALUE_RECURSED_INTO, true from the test above,
implies NO_LOC_P. */
gcc_checking_assert (NO_LOC_P (value));
/* We won't notify variables that are being expanded,
because their dependency list is cleared before
recursing. */
NO_LOC_P (value) = false;
VALUE_RECURSED_INTO (value) = false;
gcc_checking_assert (dv_changed_p (dv));
}
else
{
gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
if (!dv_changed_p (dv))
continue;
}
var = vars.find_with_hash (dv, dv_htab_hash (dv));
if (!var)
var = variable_from_dropped (dv, NO_INSERT);
if (var)
notify_dependents_of_resolved_value (var, vars);
if (next)
next->pprev = led->pprev;
if (led->pprev)
*led->pprev = next;
led->next = NULL;
led->pprev = NULL;
}
}
static rtx vt_expand_loc_callback (rtx x, bitmap regs,
int max_depth, void *data);
/* Return the combined depth, when one sub-expression evaluated to
BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
static inline expand_depth
update_depth (expand_depth saved_depth, expand_depth best_depth)
{
/* If we didn't find anything, stick with what we had. */
if (!best_depth.complexity)
return saved_depth;
/* If we found hadn't found anything, use the depth of the current
expression. Do NOT add one extra level, we want to compute the
maximum depth among sub-expressions. We'll increment it later,
if appropriate. */
if (!saved_depth.complexity)
return best_depth;
/* Combine the entryval count so that regardless of which one we
return, the entryval count is accurate. */
best_depth.entryvals = saved_depth.entryvals
= best_depth.entryvals + saved_depth.entryvals;
if (saved_depth.complexity < best_depth.complexity)
return best_depth;
else
return saved_depth;
}
/* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
DATA for cselib expand callback. If PENDRECP is given, indicate in
it whether any sub-expression couldn't be fully evaluated because
it is pending recursion resolution. */
static inline rtx
vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
{
struct expand_loc_callback_data *elcd
= (struct expand_loc_callback_data *) data;
location_chain loc, next;
rtx result = NULL;
int first_child, result_first_child, last_child;
bool pending_recursion;
rtx loc_from = NULL;
struct elt_loc_list *cloc = NULL;
expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
int wanted_entryvals, found_entryvals = 0;
/* Clear all backlinks pointing at this, so that we're not notified
while we're active. */
loc_exp_dep_clear (var);
retry:
if (var->onepart == ONEPART_VALUE)
{
cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
gcc_checking_assert (cselib_preserved_value_p (val));
cloc = val->locs;
}
first_child = result_first_child = last_child
= elcd->expanding.length ();
wanted_entryvals = found_entryvals;
/* Attempt to expand each available location in turn. */
for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
loc || cloc; loc = next)
{
result_first_child = last_child;
if (!loc)
{
loc_from = cloc->loc;
next = loc;
cloc = cloc->next;
if (unsuitable_loc (loc_from))
continue;
}
else
{
loc_from = loc->loc;
next = loc->next;
}
gcc_checking_assert (!unsuitable_loc (loc_from));
elcd->depth.complexity = elcd->depth.entryvals = 0;
result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
vt_expand_loc_callback, data);
last_child = elcd->expanding.length ();
if (result)
{
depth = elcd->depth;
gcc_checking_assert (depth.complexity
|| result_first_child == last_child);
if (last_child - result_first_child != 1)
{
if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
depth.entryvals++;
depth.complexity++;
}
if (depth.complexity <= EXPR_USE_DEPTH)
{
if (depth.entryvals <= wanted_entryvals)
break;
else if (!found_entryvals || depth.entryvals < found_entryvals)
found_entryvals = depth.entryvals;
}
result = NULL;
}
/* Set it up in case we leave the loop. */
depth.complexity = depth.entryvals = 0;
loc_from = NULL;
result_first_child = first_child;
}
if (!loc_from && wanted_entryvals < found_entryvals)
{
/* We found entries with ENTRY_VALUEs and skipped them. Since
we could not find any expansions without ENTRY_VALUEs, but we
found at least one with them, go back and get an entry with
the minimum number ENTRY_VALUE count that we found. We could
avoid looping, but since each sub-loc is already resolved,
the re-expansion should be trivial. ??? Should we record all
attempted locs as dependencies, so that we retry the
expansion should any of them change, in the hope it can give
us a new entry without an ENTRY_VALUE? */
elcd->expanding.truncate (first_child);
goto retry;
}
/* Register all encountered dependencies as active. */
pending_recursion = loc_exp_dep_set
(var, result, elcd->expanding.address () + result_first_child,
last_child - result_first_child, elcd->vars);
elcd->expanding.truncate (first_child);
/* Record where the expansion came from. */
gcc_checking_assert (!result || !pending_recursion);
VAR_LOC_FROM (var) = loc_from;
VAR_LOC_DEPTH (var) = depth;
gcc_checking_assert (!depth.complexity == !result);
elcd->depth = update_depth (saved_depth, depth);
/* Indicate whether any of the dependencies are pending recursion
resolution. */
if (pendrecp)
*pendrecp = pending_recursion;
if (!pendrecp || !pending_recursion)
var->var_part[0].cur_loc = result;
return result;
}
/* Callback for cselib_expand_value, that looks for expressions
holding the value in the var-tracking hash tables. Return X for
standard processing, anything else is to be used as-is. */
static rtx
vt_expand_loc_callback (rtx x, bitmap regs,
int max_depth ATTRIBUTE_UNUSED,
void *data)
{
struct expand_loc_callback_data *elcd
= (struct expand_loc_callback_data *) data;
decl_or_value dv;
variable var;
rtx result, subreg;
bool pending_recursion = false;
bool from_empty = false;
switch (GET_CODE (x))
{
case SUBREG:
subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
EXPR_DEPTH,
vt_expand_loc_callback, data);
if (!subreg)
return NULL;
result = simplify_gen_subreg (GET_MODE (x), subreg,
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
/* Invalid SUBREGs are ok in debug info. ??? We could try
alternate expansions for the VALUE as well. */
if (!result)
result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
return result;
case DEBUG_EXPR:
case VALUE:
dv = dv_from_rtx (x);
break;
default:
return x;
}
elcd->expanding.safe_push (x);
/* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
if (NO_LOC_P (x))
{
gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
return NULL;
}
var = elcd->vars.find_with_hash (dv, dv_htab_hash (dv));
if (!var)
{
from_empty = true;
var = variable_from_dropped (dv, INSERT);
}
gcc_checking_assert (var);
if (!dv_changed_p (dv))
{
gcc_checking_assert (!NO_LOC_P (x));
gcc_checking_assert (var->var_part[0].cur_loc);
gcc_checking_assert (VAR_LOC_1PAUX (var));
gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
return var->var_part[0].cur_loc;
}
VALUE_RECURSED_INTO (x) = true;
/* This is tentative, but it makes some tests simpler. */
NO_LOC_P (x) = true;
gcc_checking_assert (var->n_var_parts == 1 || from_empty);
result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
if (pending_recursion)
{
gcc_checking_assert (!result);
elcd->pending.safe_push (x);
}
else
{
NO_LOC_P (x) = !result;
VALUE_RECURSED_INTO (x) = false;
set_dv_changed (dv, false);
if (result)
notify_dependents_of_resolved_value (var, elcd->vars);
}
return result;
}
/* While expanding variables, we may encounter recursion cycles
because of mutual (possibly indirect) dependencies between two
particular variables (or values), say A and B. If we're trying to
expand A when we get to B, which in turn attempts to expand A, if
we can't find any other expansion for B, we'll add B to this
pending-recursion stack, and tentatively return NULL for its
location. This tentative value will be used for any other
occurrences of B, unless A gets some other location, in which case
it will notify B that it is worth another try at computing a
location for it, and it will use the location computed for A then.
At the end of the expansion, the tentative NULL locations become
final for all members of PENDING that didn't get a notification.
This function performs this finalization of NULL locations. */
static void
resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
{
while (!pending->is_empty ())
{
rtx x = pending->pop ();
decl_or_value dv;
if (!VALUE_RECURSED_INTO (x))
continue;
gcc_checking_assert (NO_LOC_P (x));
VALUE_RECURSED_INTO (x) = false;
dv = dv_from_rtx (x);
gcc_checking_assert (dv_changed_p (dv));
set_dv_changed (dv, false);
}
}
/* Initialize expand_loc_callback_data D with variable hash table V.
It must be a macro because of alloca (vec stack). */
#define INIT_ELCD(d, v) \
do \
{ \
(d).vars = (v); \
(d).depth.complexity = (d).depth.entryvals = 0; \
} \
while (0)
/* Finalize expand_loc_callback_data D, resolved to location L. */
#define FINI_ELCD(d, l) \
do \
{ \
resolve_expansions_pending_recursion (&(d).pending); \
(d).pending.release (); \
(d).expanding.release (); \
\
if ((l) && MEM_P (l)) \
(l) = targetm.delegitimize_address (l); \
} \
while (0)
/* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
equivalences in VARS, updating their CUR_LOCs in the process. */
static rtx
vt_expand_loc (rtx loc, variable_table_type vars)
{
struct expand_loc_callback_data data;
rtx result;
if (!MAY_HAVE_DEBUG_INSNS)
return loc;
INIT_ELCD (data, vars);
result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
vt_expand_loc_callback, &data);
FINI_ELCD (data, result);
return result;
}
/* Expand the one-part VARiable to a location, using the equivalences
in VARS, updating their CUR_LOCs in the process. */
static rtx
vt_expand_1pvar (variable var, variable_table_type vars)
{
struct expand_loc_callback_data data;
rtx loc;
gcc_checking_assert (var->onepart && var->n_var_parts == 1);
if (!dv_changed_p (var->dv))
return var->var_part[0].cur_loc;
INIT_ELCD (data, vars);
loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
gcc_checking_assert (data.expanding.is_empty ());
FINI_ELCD (data, loc);
return loc;
}
/* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
additional parameters: WHERE specifies whether the note shall be emitted
before or after instruction INSN. */
int
emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
{
variable var = *varp;
rtx insn = data->insn;
enum emit_note_where where = data->where;
variable_table_type vars = data->vars;
rtx note, note_vl;
int i, j, n_var_parts;
bool complete;
enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
HOST_WIDE_INT last_limit;
tree type_size_unit;
HOST_WIDE_INT offsets[MAX_VAR_PARTS];
rtx loc[MAX_VAR_PARTS];
tree decl;
location_chain lc;
gcc_checking_assert (var->onepart == NOT_ONEPART
|| var->onepart == ONEPART_VDECL);
decl = dv_as_decl (var->dv);
complete = true;
last_limit = 0;
n_var_parts = 0;
if (!var->onepart)
for (i = 0; i < var->n_var_parts; i++)
if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
for (i = 0; i < var->n_var_parts; i++)
{
enum machine_mode mode, wider_mode;
rtx loc2;
HOST_WIDE_INT offset;
if (i == 0 && var->onepart)
{
gcc_checking_assert (var->n_var_parts == 1);
offset = 0;
initialized = VAR_INIT_STATUS_INITIALIZED;
loc2 = vt_expand_1pvar (var, vars);
}
else
{
if (last_limit < VAR_PART_OFFSET (var, i))
{
complete = false;
break;
}
else if (last_limit > VAR_PART_OFFSET (var, i))
continue;
offset = VAR_PART_OFFSET (var, i);
loc2 = var->var_part[i].cur_loc;
if (loc2 && GET_CODE (loc2) == MEM
&& GET_CODE (XEXP (loc2, 0)) == VALUE)
{
rtx depval = XEXP (loc2, 0);
loc2 = vt_expand_loc (loc2, vars);
if (loc2)
loc_exp_insert_dep (var, depval, vars);
}
if (!loc2)
{
complete = false;
continue;
}
gcc_checking_assert (GET_CODE (loc2) != VALUE);
for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
if (var->var_part[i].cur_loc == lc->loc)
{
initialized = lc->init;
break;
}
gcc_assert (lc);
}
offsets[n_var_parts] = offset;
if (!loc2)
{
complete = false;
continue;
}
loc[n_var_parts] = loc2;
mode = GET_MODE (var->var_part[i].cur_loc);
if (mode == VOIDmode && var->onepart)
mode = DECL_MODE (decl);
last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
/* Attempt to merge adjacent registers or memory. */
wider_mode = GET_MODE_WIDER_MODE (mode);
for (j = i + 1; j < var->n_var_parts; j++)
if (last_limit <= VAR_PART_OFFSET (var, j))
break;
if (j < var->n_var_parts
&& wider_mode != VOIDmode
&& var->var_part[j].cur_loc
&& mode == GET_MODE (var->var_part[j].cur_loc)
&& (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
&& last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
&& (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
&& GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
{
rtx new_loc = NULL;
if (REG_P (loc[n_var_parts])
&& hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
== hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
&& end_hard_regno (mode, REGNO (loc[n_var_parts]))
== REGNO (loc2))
{
if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
mode, 0);
else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
if (new_loc)
{
if (!REG_P (new_loc)
|| REGNO (new_loc) != REGNO (loc[n_var_parts]))
new_loc = NULL;
else
REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
}
}
else if (MEM_P (loc[n_var_parts])
&& GET_CODE (XEXP (loc2, 0)) == PLUS
&& REG_P (XEXP (XEXP (loc2, 0), 0))
&& CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
{
if ((REG_P (XEXP (loc[n_var_parts], 0))
&& rtx_equal_p (XEXP (loc[n_var_parts], 0),
XEXP (XEXP (loc2, 0), 0))
&& INTVAL (XEXP (XEXP (loc2, 0), 1))
== GET_MODE_SIZE (mode))
|| (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
&& CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
&& rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
XEXP (XEXP (loc2, 0), 0))
&& INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
+ GET_MODE_SIZE (mode)
== INTVAL (XEXP (XEXP (loc2, 0), 1))))
new_loc = adjust_address_nv (loc[n_var_parts],
wider_mode, 0);
}
if (new_loc)
{
loc[n_var_parts] = new_loc;
mode = wider_mode;
last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
i = j;
}
}
++n_var_parts;
}
type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
complete = false;
if (! flag_var_tracking_uninit)
initialized = VAR_INIT_STATUS_INITIALIZED;
note_vl = NULL_RTX;
if (!complete)
note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
(int) initialized);
else if (n_var_parts == 1)
{
rtx expr_list;
if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
else
expr_list = loc[0];
note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
(int) initialized);
}
else if (n_var_parts)
{
rtx parallel;
for (i = 0; i < n_var_parts; i++)
loc[i]
= gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
parallel = gen_rtx_PARALLEL (VOIDmode,
gen_rtvec_v (n_var_parts, loc));
note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
parallel, (int) initialized);
}
if (where != EMIT_NOTE_BEFORE_INSN)
{
note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
if (where == EMIT_NOTE_AFTER_CALL_INSN)
NOTE_DURING_CALL_P (note) = true;
}
else
{
/* Make sure that the call related notes come first. */
while (NEXT_INSN (insn)
&& NOTE_P (insn)
&& ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
&& NOTE_DURING_CALL_P (insn))
|| NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
insn = NEXT_INSN (insn);
if (NOTE_P (insn)
&& ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
&& NOTE_DURING_CALL_P (insn))
|| NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
else
note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
}
NOTE_VAR_LOCATION (note) = note_vl;
set_dv_changed (var->dv, false);
gcc_assert (var->in_changed_variables);
var->in_changed_variables = false;
changed_variables.clear_slot (varp);
/* Continue traversing the hash table. */
return 1;
}
/* While traversing changed_variables, push onto DATA (a stack of RTX
values) entries that aren't user variables. */
int
var_track_values_to_stack (variable_def **slot,
vec<rtx, va_heap> *changed_values_stack)
{
variable var = *slot;
if (var->onepart == ONEPART_VALUE)
changed_values_stack->safe_push (dv_as_value (var->dv));
else if (var->onepart == ONEPART_DEXPR)
changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
return 1;
}
/* Remove from changed_variables the entry whose DV corresponds to
value or debug_expr VAL. */
static void
remove_value_from_changed_variables (rtx val)
{
decl_or_value dv = dv_from_rtx (val);
variable_def **slot;
variable var;
slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
NO_INSERT);
var = *slot;
var->in_changed_variables = false;
changed_variables.clear_slot (slot);
}
/* If VAL (a value or debug_expr) has backlinks to variables actively
dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
changed, adding to CHANGED_VALUES_STACK any dependencies that may
have dependencies of their own to notify. */
static void
notify_dependents_of_changed_value (rtx val, variable_table_type htab,
vec<rtx, va_heap> *changed_values_stack)
{
variable_def **slot;
variable var;
loc_exp_dep *led;
decl_or_value dv = dv_from_rtx (val);
slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
NO_INSERT);
if (!slot)
slot = htab.find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
if (!slot)
slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv),
NO_INSERT);
var = *slot;
while ((led = VAR_LOC_DEP_LST (var)))
{
decl_or_value ldv = led->dv;
variable ivar;
/* Deactivate and remove the backlink, as it was “used up”. It
makes no sense to attempt to notify the same entity again:
either it will be recomputed and re-register an active
dependency, or it will still have the changed mark. */
if (led->next)
led->next->pprev = led->pprev;
if (led->pprev)
*led->pprev = led->next;
led->next = NULL;
led->pprev = NULL;
if (dv_changed_p (ldv))
continue;
switch (dv_onepart_p (ldv))
{
case ONEPART_VALUE:
case ONEPART_DEXPR:
set_dv_changed (ldv, true);
changed_values_stack->safe_push (dv_as_rtx (ldv));
break;
case ONEPART_VDECL:
ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
variable_was_changed (ivar, NULL);
break;
case NOT_ONEPART:
pool_free (loc_exp_dep_pool, led);
ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
if (ivar)
{
int i = ivar->n_var_parts;
while (i--)
{
rtx loc = ivar->var_part[i].cur_loc;
if (loc && GET_CODE (loc) == MEM
&& XEXP (loc, 0) == val)
{
variable_was_changed (ivar, NULL);
break;
}
}
}
break;
default:
gcc_unreachable ();
}
}
}
/* Take out of changed_variables any entries that don't refer to use
variables. Back-propagate change notifications from values and
debug_exprs to their active dependencies in HTAB or in
CHANGED_VARIABLES. */
static void
process_changed_values (variable_table_type htab)
{
int i, n;
rtx val;
auto_vec<rtx, 20> changed_values_stack;
/* Move values from changed_variables to changed_values_stack. */
changed_variables
.traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
(&changed_values_stack);
/* Back-propagate change notifications in values while popping
them from the stack. */
for (n = i = changed_values_stack.length ();
i > 0; i = changed_values_stack.length ())
{
val = changed_values_stack.pop ();
notify_dependents_of_changed_value (val, htab, &changed_values_stack);
/* This condition will hold when visiting each of the entries
originally in changed_variables. We can't remove them
earlier because this could drop the backlinks before we got a
chance to use them. */
if (i == n)
{
remove_value_from_changed_variables (val);
n--;
}
}
}
/* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
CHANGED_VARIABLES and delete this chain. WHERE specifies whether
the notes shall be emitted before of after instruction INSN. */
static void
emit_notes_for_changes (rtx insn, enum emit_note_where where,
shared_hash vars)
{
emit_note_data data;
variable_table_type htab = shared_hash_htab (vars);
if (!changed_variables.elements ())
return;
if (MAY_HAVE_DEBUG_INSNS)
process_changed_values (htab);
data.insn = insn;
data.where = where;
data.vars = htab;
changed_variables
.traverse <emit_note_data*, emit_note_insn_var_location> (&data);
}
/* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
same variable in hash table DATA or is not there at all. */
int
emit_notes_for_differences_1 (variable_def **slot, variable_table_type new_vars)
{
variable old_var, new_var;
old_var = *slot;
new_var = new_vars.find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
if (!new_var)
{
/* Variable has disappeared. */
variable empty_var = NULL;
if (old_var->onepart == ONEPART_VALUE
|| old_var->onepart == ONEPART_DEXPR)
{
empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
if (empty_var)
{
gcc_checking_assert (!empty_var->in_changed_variables);
if (!VAR_LOC_1PAUX (old_var))
{
VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
VAR_LOC_1PAUX (empty_var) = NULL;
}
else
gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
}
}
if (!empty_var)
{
empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
empty_var->dv = old_var->dv;
empty_var->refcount = 0;
empty_var->n_var_parts = 0;
empty_var->onepart = old_var->onepart;
empty_var->in_changed_variables = false;
}
if (empty_var->onepart)
{
/* Propagate the auxiliary data to (ultimately)
changed_variables. */
empty_var->var_part[0].loc_chain = NULL;
empty_var->var_part[0].cur_loc = NULL;
VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
VAR_LOC_1PAUX (old_var) = NULL;
}
variable_was_changed (empty_var, NULL);
/* Continue traversing the hash table. */
return 1;
}
/* Update cur_loc and one-part auxiliary data, before new_var goes
through variable_was_changed. */
if (old_var != new_var && new_var->onepart)
{
gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
VAR_LOC_1PAUX (old_var) = NULL;
new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
}
if (variable_different_p (old_var, new_var))
variable_was_changed (new_var, NULL);
/* Continue traversing the hash table. */
return 1;
}
/* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
table DATA. */
int
emit_notes_for_differences_2 (variable_def **slot, variable_table_type old_vars)
{
variable old_var, new_var;
new_var = *slot;
old_var = old_vars.find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
if (!old_var)
{
int i;
for (i = 0; i < new_var->n_var_parts; i++)
new_var->var_part[i].cur_loc = NULL;
variable_was_changed (new_var, NULL);
}
/* Continue traversing the hash table. */
return 1;
}
/* Emit notes before INSN for differences between dataflow sets OLD_SET and
NEW_SET. */
static void
emit_notes_for_differences (rtx insn, dataflow_set *old_set,
dataflow_set *new_set)
{
shared_hash_htab (old_set->vars)
.traverse <variable_table_type, emit_notes_for_differences_1>
(shared_hash_htab (new_set->vars));
shared_hash_htab (new_set->vars)
.traverse <variable_table_type, emit_notes_for_differences_2>
(shared_hash_htab (old_set->vars));
emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
}
/* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
static rtx
next_non_note_insn_var_location (rtx insn)
{
while (insn)
{
insn = NEXT_INSN (insn);
if (insn == 0
|| !NOTE_P (insn)
|| NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
break;
}
return insn;
}
/* Emit the notes for changes of location parts in the basic block BB. */
static void
emit_notes_in_bb (basic_block bb, dataflow_set *set)
{
unsigned int i;
micro_operation *mo;
dataflow_set_clear (set);
dataflow_set_copy (set, &VTI (bb)->in);
FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
{
rtx insn = mo->insn;
rtx next_insn = next_non_note_insn_var_location (insn);
switch (mo->type)
{
case MO_CALL:
dataflow_set_clear_at_call (set);
emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
{
rtx arguments = mo->u.loc, *p = &arguments, note;
while (*p)
{
XEXP (XEXP (*p, 0), 1)
= vt_expand_loc (XEXP (XEXP (*p, 0), 1),
shared_hash_htab (set->vars));
/* If expansion is successful, keep it in the list. */
if (XEXP (XEXP (*p, 0), 1))
p = &XEXP (*p, 1);
/* Otherwise, if the following item is data_value for it,
drop it too too. */
else if (XEXP (*p, 1)
&& REG_P (XEXP (XEXP (*p, 0), 0))
&& MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
&& REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
0))
&& REGNO (XEXP (XEXP (*p, 0), 0))
== REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
0), 0)))
*p = XEXP (XEXP (*p, 1), 1);
/* Just drop this item. */
else
*p = XEXP (*p, 1);
}
note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
NOTE_VAR_LOCATION (note) = arguments;
}
break;
case MO_USE:
{
rtx loc = mo->u.loc;
if (REG_P (loc))
var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
else
var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
}
break;
case MO_VAL_LOC:
{
rtx loc = mo->u.loc;
rtx val, vloc;
tree var;
if (GET_CODE (loc) == CONCAT)
{
val = XEXP (loc, 0);
vloc = XEXP (loc, 1);
}
else
{
val = NULL_RTX;
vloc = loc;
}
var = PAT_VAR_LOCATION_DECL (vloc);
clobber_variable_part (set, NULL_RTX,
dv_from_decl (var), 0, NULL_RTX);
if (val)
{
if (VAL_NEEDS_RESOLUTION (loc))
val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
set_variable_part (set, val, dv_from_decl (var), 0,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
INSERT);
}
else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
dv_from_decl (var), 0,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
INSERT);
emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
}
break;
case MO_VAL_USE:
{
rtx loc = mo->u.loc;
rtx val, vloc, uloc;
vloc = uloc = XEXP (loc, 1);
val = XEXP (loc, 0);
if (GET_CODE (val) == CONCAT)
{
uloc = XEXP (val, 1);
val = XEXP (val, 0);
}
if (VAL_NEEDS_RESOLUTION (loc))
val_resolve (set, val, vloc, insn);
else
val_store (set, val, uloc, insn, false);
if (VAL_HOLDS_TRACK_EXPR (loc))
{
if (GET_CODE (uloc) == REG)
var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
NULL);
else if (GET_CODE (uloc) == MEM)
var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
NULL);
}
emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
}
break;
case MO_VAL_SET:
{
rtx loc = mo->u.loc;
rtx val, vloc, uloc;
rtx dstv, srcv;
vloc = loc;
uloc = XEXP (vloc, 1);
val = XEXP (vloc, 0);
vloc = uloc;
if (GET_CODE (uloc) == SET)
{
dstv = SET_DEST (uloc);
srcv = SET_SRC (uloc);
}
else
{
dstv = uloc;
srcv = NULL;
}
if (GET_CODE (val) == CONCAT)
{
dstv = vloc = XEXP (val, 1);
val = XEXP (val, 0);
}
if (GET_CODE (vloc) == SET)
{
srcv = SET_SRC (vloc);
gcc_assert (val != srcv);
gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
dstv = vloc = SET_DEST (vloc);
if (VAL_NEEDS_RESOLUTION (loc))
val_resolve (set, val, srcv, insn);
}
else if (VAL_NEEDS_RESOLUTION (loc))
{
gcc_assert (GET_CODE (uloc) == SET
&& GET_CODE (SET_SRC (uloc)) == REG);
val_resolve (set, val, SET_SRC (uloc), insn);
}
if (VAL_HOLDS_TRACK_EXPR (loc))
{
if (VAL_EXPR_IS_CLOBBERED (loc))
{
if (REG_P (uloc))
var_reg_delete (set, uloc, true);
else if (MEM_P (uloc))
{
gcc_assert (MEM_P (dstv));
gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
var_mem_delete (set, dstv, true);
}
}
else
{
bool copied_p = VAL_EXPR_IS_COPIED (loc);
rtx src = NULL, dst = uloc;
enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
if (GET_CODE (uloc) == SET)
{
src = SET_SRC (uloc);
dst = SET_DEST (uloc);
}
if (copied_p)
{
status = find_src_status (set, src);
src = find_src_set_src (set, src);
}
if (REG_P (dst))
var_reg_delete_and_set (set, dst, !copied_p,
status, srcv);
else if (MEM_P (dst))
{
gcc_assert (MEM_P (dstv));
gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
var_mem_delete_and_set (set, dstv, !copied_p,
status, srcv);
}
}
}
else if (REG_P (uloc))
var_regno_delete (set, REGNO (uloc));
else if (MEM_P (uloc))
{
gcc_checking_assert (GET_CODE (vloc) == MEM);
gcc_checking_assert (vloc == dstv);
if (vloc != dstv)
clobber_overlapping_mems (set, vloc);
}
val_store (set, val, dstv, insn, true);
emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
set->vars);
}
break;
case MO_SET:
{
rtx loc = mo->u.loc;
rtx set_src = NULL;
if (GET_CODE (loc) == SET)
{
set_src = SET_SRC (loc);
loc = SET_DEST (loc);
}
if (REG_P (loc))
var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
set_src);
else
var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
set_src);
emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
set->vars);
}
break;
case MO_COPY:
{
rtx loc = mo->u.loc;
enum var_init_status src_status;
rtx set_src = NULL;
if (GET_CODE (loc) == SET)
{
set_src = SET_SRC (loc);
loc = SET_DEST (loc);
}
src_status = find_src_status (set, set_src);
set_src = find_src_set_src (set, set_src);
if (REG_P (loc))
var_reg_delete_and_set (set, loc, false, src_status, set_src);
else
var_mem_delete_and_set (set, loc, false, src_status, set_src);
emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
set->vars);
}
break;
case MO_USE_NO_VAR:
{
rtx loc = mo->u.loc;
if (REG_P (loc))
var_reg_delete (set, loc, false);
else
var_mem_delete (set, loc, false);
emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
}
break;
case MO_CLOBBER:
{
rtx loc = mo->u.loc;
if (REG_P (loc))
var_reg_delete (set, loc, true);
else
var_mem_delete (set, loc, true);
emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
set->vars);
}
break;
case MO_ADJUST:
set->stack_adjust += mo->u.adjust;
break;
}
}
}
/* Emit notes for the whole function. */
static void
vt_emit_notes (void)
{
basic_block bb;
dataflow_set cur;
gcc_assert (!changed_variables.elements ());
/* Free memory occupied by the out hash tables, as they aren't used
anymore. */
FOR_EACH_BB_FN (bb, cfun)
dataflow_set_clear (&VTI (bb)->out);
/* Enable emitting notes by functions (mainly by set_variable_part and
delete_variable_part). */
emit_notes = true;
if (MAY_HAVE_DEBUG_INSNS)
{
dropped_values.create (cselib_get_next_uid () * 2);
loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
sizeof (loc_exp_dep), 64);
}
dataflow_set_init (&cur);
FOR_EACH_BB_FN (bb, cfun)
{
/* Emit the notes for changes of variable locations between two
subsequent basic blocks. */
emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
if (MAY_HAVE_DEBUG_INSNS)
local_get_addr_cache = pointer_map_create ();
/* Emit the notes for the changes in the basic block itself. */
emit_notes_in_bb (bb, &cur);
if (MAY_HAVE_DEBUG_INSNS)
pointer_map_destroy (local_get_addr_cache);
local_get_addr_cache = NULL;
/* Free memory occupied by the in hash table, we won't need it
again. */
dataflow_set_clear (&VTI (bb)->in);
}
#ifdef ENABLE_CHECKING
shared_hash_htab (cur.vars)
.traverse <variable_table_type, emit_notes_for_differences_1>
(shared_hash_htab (empty_shared_hash));
#endif
dataflow_set_destroy (&cur);
if (MAY_HAVE_DEBUG_INSNS)
dropped_values.dispose ();
emit_notes = false;
}
/* If there is a declaration and offset associated with register/memory RTL
assign declaration to *DECLP and offset to *OFFSETP, and return true. */
static bool
vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
{
if (REG_P (rtl))
{
if (REG_ATTRS (rtl))
{
*declp = REG_EXPR (rtl);
*offsetp = REG_OFFSET (rtl);
return true;
}
}
else if (GET_CODE (rtl) == PARALLEL)
{
tree decl = NULL_TREE;
HOST_WIDE_INT offset = MAX_VAR_PARTS;
int len = XVECLEN (rtl, 0), i;
for (i = 0; i < len; i++)
{
rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
if (!REG_P (reg) || !REG_ATTRS (reg))
break;
if (!decl)
decl = REG_EXPR (reg);
if (REG_EXPR (reg) != decl)
break;
if (REG_OFFSET (reg) < offset)
offset = REG_OFFSET (reg);
}
if (i == len)
{
*declp = decl;
*offsetp = offset;
return true;
}
}
else if (MEM_P (rtl))
{
if (MEM_ATTRS (rtl))
{
*declp = MEM_EXPR (rtl);
*offsetp = INT_MEM_OFFSET (rtl);
return true;
}
}
return false;
}
/* Record the value for the ENTRY_VALUE of RTL as a global equivalence
of VAL. */
static void
record_entry_value (cselib_val *val, rtx rtl)
{
rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
ENTRY_VALUE_EXP (ev) = rtl;
cselib_add_permanent_equiv (val, ev, get_insns ());
}
/* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
static void
vt_add_function_parameter (tree parm)
{
rtx decl_rtl = DECL_RTL_IF_SET (parm);
rtx incoming = DECL_INCOMING_RTL (parm);
tree decl;
enum machine_mode mode;
HOST_WIDE_INT offset;
dataflow_set *out;
decl_or_value dv;
if (TREE_CODE (parm) != PARM_DECL)
return;
if (!decl_rtl || !incoming)
return;
if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
return;
/* If there is a DRAP register or a pseudo in internal_arg_pointer,
rewrite the incoming location of parameters passed on the stack
into MEMs based on the argument pointer, so that incoming doesn't
depend on a pseudo. */
if (MEM_P (incoming)
&& (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
|| (GET_CODE (XEXP (incoming, 0)) == PLUS
&& XEXP (XEXP (incoming, 0), 0)
== crtl->args.internal_arg_pointer
&& CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
{
HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
if (GET_CODE (XEXP (incoming, 0)) == PLUS)
off += INTVAL (XEXP (XEXP (incoming, 0), 1));
incoming
= replace_equiv_address_nv (incoming,
plus_constant (Pmode,
arg_pointer_rtx, off));
}
#ifdef HAVE_window_save
/* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
If the target machine has an explicit window save instruction, the
actual entry value is the corresponding OUTGOING_REGNO instead. */
if (HAVE_window_save && !crtl->uses_only_leaf_regs)
{
if (REG_P (incoming)
&& HARD_REGISTER_P (incoming)
&& OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
{
parm_reg_t p;
p.incoming = incoming;
incoming
= gen_rtx_REG_offset (incoming, GET_MODE (incoming),
OUTGOING_REGNO (REGNO (incoming)), 0);
p.outgoing = incoming;
vec_safe_push (windowed_parm_regs, p);
}
else if (GET_CODE (incoming) == PARALLEL)
{
rtx outgoing
= gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
int i;
for (i = 0; i < XVECLEN (incoming, 0); i++)
{
rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
parm_reg_t p;
p.incoming = reg;
reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
OUTGOING_REGNO (REGNO (reg)), 0);
p.outgoing = reg;
XVECEXP (outgoing, 0, i)
= gen_rtx_EXPR_LIST (VOIDmode, reg,
XEXP (XVECEXP (incoming, 0, i), 1));
vec_safe_push (windowed_parm_regs, p);
}
incoming = outgoing;
}
else if (MEM_P (incoming)
&& REG_P (XEXP (incoming, 0))
&& HARD_REGISTER_P (XEXP (incoming, 0)))
{
rtx reg = XEXP (incoming, 0);
if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
{
parm_reg_t p;
p.incoming = reg;
reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
p.outgoing = reg;
vec_safe_push (windowed_parm_regs, p);
incoming = replace_equiv_address_nv (incoming, reg);
}
}
}
#endif
if (!vt_get_decl_and_offset (incoming, &decl, &offset))
{
if (MEM_P (incoming))
{
/* This means argument is passed by invisible reference. */
offset = 0;
decl = parm;
}
else
{
if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
return;
offset += byte_lowpart_offset (GET_MODE (incoming),
GET_MODE (decl_rtl));
}
}
if (!decl)
return;
if (parm != decl)
{
/* If that DECL_RTL wasn't a pseudo that got spilled to
memory, bail out. Otherwise, the spill slot sharing code
will force the memory to reference spill_slot_decl (%sfp),
so we don't match above. That's ok, the pseudo must have
referenced the entire parameter, so just reset OFFSET. */
if (decl != get_spill_slot_decl (false))
return;
offset = 0;
}
if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
return;
out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
dv = dv_from_decl (parm);
if (target_for_debug_bind (parm)
/* We can't deal with these right now, because this kind of
variable is single-part. ??? We could handle parallels
that describe multiple locations for the same single
value, but ATM we don't. */
&& GET_CODE (incoming) != PARALLEL)
{
cselib_val *val;
rtx lowpart;
/* ??? We shouldn't ever hit this, but it may happen because
arguments passed by invisible reference aren't dealt with
above: incoming-rtl will have Pmode rather than the
expected mode for the type. */
if (offset)
return;
lowpart = var_lowpart (mode, incoming);
if (!lowpart)
return;
val = cselib_lookup_from_insn (lowpart, mode, true,
VOIDmode, get_insns ());
/* ??? Float-typed values in memory are not handled by
cselib. */
if (val)
{
preserve_value (val);
set_variable_part (out, val->val_rtx, dv, offset,
VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
dv = dv_from_value (val->val_rtx);
}
if (MEM_P (incoming))
{
val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
VOIDmode, get_insns ());
if (val)
{
preserve_value (val);
incoming = replace_equiv_address_nv (incoming, val->val_rtx);
}
}
}
if (REG_P (incoming))
{
incoming = var_lowpart (mode, incoming);
gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
incoming);
set_variable_part (out, incoming, dv, offset,
VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
if (dv_is_value_p (dv))
{
record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
{
enum machine_mode indmode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
rtx mem = gen_rtx_MEM (indmode, incoming);
cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
VOIDmode,
get_insns ());
if (val)
{
preserve_value (val);
record_entry_value (val, mem);
set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
}
}
}
}
else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
{
int i;
for (i = 0; i < XVECLEN (incoming, 0); i++)
{
rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
offset = REG_OFFSET (reg);
gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
set_variable_part (out, reg, dv, offset,
VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
}
}
else if (MEM_P (incoming))
{
incoming = var_lowpart (mode, incoming);
set_variable_part (out, incoming, dv, offset,
VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
}
}
/* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
static void
vt_add_function_parameters (void)
{
tree parm;
for (parm = DECL_ARGUMENTS (current_function_decl);
parm; parm = DECL_CHAIN (parm))
vt_add_function_parameter (parm);
if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
{
tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
if (TREE_CODE (vexpr) == INDIRECT_REF)
vexpr = TREE_OPERAND (vexpr, 0);
if (TREE_CODE (vexpr) == PARM_DECL
&& DECL_ARTIFICIAL (vexpr)
&& !DECL_IGNORED_P (vexpr)
&& DECL_NAMELESS (vexpr))
vt_add_function_parameter (vexpr);
}
}
/* Initialize cfa_base_rtx, create a preserved VALUE for it and
ensure it isn't flushed during cselib_reset_table.
Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
has been eliminated. */
static void
vt_init_cfa_base (void)
{
cselib_val *val;
#ifdef FRAME_POINTER_CFA_OFFSET
cfa_base_rtx = frame_pointer_rtx;
cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
#else
cfa_base_rtx = arg_pointer_rtx;
cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
#endif
if (cfa_base_rtx == hard_frame_pointer_rtx
|| !fixed_regs[REGNO (cfa_base_rtx)])
{
cfa_base_rtx = NULL_RTX;
return;
}
if (!MAY_HAVE_DEBUG_INSNS)
return;
/* Tell alias analysis that cfa_base_rtx should share
find_base_term value with stack pointer or hard frame pointer. */
if (!frame_pointer_needed)
vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
else if (!crtl->stack_realign_tried)
vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
VOIDmode, get_insns ());
preserve_value (val);
cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
}
/* Allocate and initialize the data structures for variable tracking
and parse the RTL to get the micro operations. */
static bool
vt_initialize (void)
{
basic_block bb;
HOST_WIDE_INT fp_cfa_offset = -1;
alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
attrs_pool = create_alloc_pool ("attrs_def pool",
sizeof (struct attrs_def), 1024);
var_pool = create_alloc_pool ("variable_def pool",
sizeof (struct variable_def)
+ (MAX_VAR_PARTS - 1)
* sizeof (((variable)NULL)->var_part[0]), 64);
loc_chain_pool = create_alloc_pool ("location_chain_def pool",
sizeof (struct location_chain_def),
1024);
shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
sizeof (struct shared_hash_def), 256);
empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
empty_shared_hash->refcount = 1;
empty_shared_hash->htab.create (1);
changed_variables.create (10);
/* Init the IN and OUT sets. */
FOR_ALL_BB_FN (bb, cfun)
{
VTI (bb)->visited = false;
VTI (bb)->flooded = false;
dataflow_set_init (&VTI (bb)->in);
dataflow_set_init (&VTI (bb)->out);
VTI (bb)->permp = NULL;
}
if (MAY_HAVE_DEBUG_INSNS)
{
cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
scratch_regs = BITMAP_ALLOC (NULL);
valvar_pool = create_alloc_pool ("small variable_def pool",
sizeof (struct variable_def), 256);
preserved_values.create (256);
global_get_addr_cache = pointer_map_create ();
}
else
{
scratch_regs = NULL;
valvar_pool = NULL;
global_get_addr_cache = NULL;
}
if (MAY_HAVE_DEBUG_INSNS)
{
rtx reg, expr;
int ofst;
cselib_val *val;
#ifdef FRAME_POINTER_CFA_OFFSET
reg = frame_pointer_rtx;
ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
#else
reg = arg_pointer_rtx;
ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
#endif
ofst -= INCOMING_FRAME_SP_OFFSET;
val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
VOIDmode, get_insns ());
preserve_value (val);
cselib_preserve_cfa_base_value (val, REGNO (reg));
expr = plus_constant (GET_MODE (stack_pointer_rtx),
stack_pointer_rtx, -ofst);
cselib_add_permanent_equiv (val, expr, get_insns ());
if (ofst)
{
val = cselib_lookup_from_insn (stack_pointer_rtx,
GET_MODE (stack_pointer_rtx), 1,
VOIDmode, get_insns ());
preserve_value (val);
expr = plus_constant (GET_MODE (reg), reg, ofst);
cselib_add_permanent_equiv (val, expr, get_insns ());
}
}
/* In order to factor out the adjustments made to the stack pointer or to
the hard frame pointer and thus be able to use DW_OP_fbreg operations
instead of individual location lists, we're going to rewrite MEMs based
on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
resp. arg_pointer_rtx. We can do this either when there is no frame
pointer in the function and stack adjustments are consistent for all
basic blocks or when there is a frame pointer and no stack realignment.
But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
has been eliminated. */
if (!frame_pointer_needed)
{
rtx reg, elim;
if (!vt_stack_adjustments ())
return false;
#ifdef FRAME_POINTER_CFA_OFFSET
reg = frame_pointer_rtx;
#else
reg = arg_pointer_rtx;
#endif
elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
if (elim != reg)
{
if (GET_CODE (elim) == PLUS)
elim = XEXP (elim, 0);
if (elim == stack_pointer_rtx)
vt_init_cfa_base ();
}
}
else if (!crtl->stack_realign_tried)
{
rtx reg, elim;
#ifdef FRAME_POINTER_CFA_OFFSET
reg = frame_pointer_rtx;
fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
#else
reg = arg_pointer_rtx;
fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
#endif
elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
if (elim != reg)
{
if (GET_CODE (elim) == PLUS)
{
fp_cfa_offset -= INTVAL (XEXP (elim, 1));
elim = XEXP (elim, 0);
}
if (elim != hard_frame_pointer_rtx)
fp_cfa_offset = -1;
}
else
fp_cfa_offset = -1;
}
/* If the stack is realigned and a DRAP register is used, we're going to
rewrite MEMs based on it representing incoming locations of parameters
passed on the stack into MEMs based on the argument pointer. Although
we aren't going to rewrite other MEMs, we still need to initialize the
virtual CFA pointer in order to ensure that the argument pointer will
be seen as a constant throughout the function.
??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
else if (stack_realign_drap)
{
rtx reg, elim;
#ifdef FRAME_POINTER_CFA_OFFSET
reg = frame_pointer_rtx;
#else
reg = arg_pointer_rtx;
#endif
elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
if (elim != reg)
{
if (GET_CODE (elim) == PLUS)
elim = XEXP (elim, 0);
if (elim == hard_frame_pointer_rtx)
vt_init_cfa_base ();
}
}
hard_frame_pointer_adjustment = -1;
vt_add_function_parameters ();
FOR_EACH_BB_FN (bb, cfun)
{
rtx insn;
HOST_WIDE_INT pre, post = 0;
basic_block first_bb, last_bb;
if (MAY_HAVE_DEBUG_INSNS)
{
cselib_record_sets_hook = add_with_sets;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "first value: %i\n",
cselib_get_next_uid ());
}
first_bb = bb;
for (;;)
{
edge e;
if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|| ! single_pred_p (bb->next_bb))
break;
e = find_edge (bb, bb->next_bb);
if (! e || (e->flags & EDGE_FALLTHRU) == 0)
break;
bb = bb->next_bb;
}
last_bb = bb;
/* Add the micro-operations to the vector. */
FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
{
HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
if (!frame_pointer_needed)
{
insn_stack_adjust_offset_pre_post (insn, &pre, &post);
if (pre)
{
micro_operation mo;
mo.type = MO_ADJUST;
mo.u.adjust = pre;
mo.insn = insn;
if (dump_file && (dump_flags & TDF_DETAILS))
log_op_type (PATTERN (insn), bb, insn,
MO_ADJUST, dump_file);
VTI (bb)->mos.safe_push (mo);
VTI (bb)->out.stack_adjust += pre;
}
}
cselib_hook_called = false;
adjust_insn (bb, insn);
if (MAY_HAVE_DEBUG_INSNS)
{
if (CALL_P (insn))
prepare_call_arguments (bb, insn);
cselib_process_insn (insn);
if (dump_file && (dump_flags & TDF_DETAILS))
{
print_rtl_single (dump_file, insn);
dump_cselib_table (dump_file);
}
}
if (!cselib_hook_called)
add_with_sets (insn, 0, 0);
cancel_changes (0);
if (!frame_pointer_needed && post)
{
micro_operation mo;
mo.type = MO_ADJUST;
mo.u.adjust = post;
mo.insn = insn;
if (dump_file && (dump_flags & TDF_DETAILS))
log_op_type (PATTERN (insn), bb, insn,
MO_ADJUST, dump_file);
VTI (bb)->mos.safe_push (mo);
VTI (bb)->out.stack_adjust += post;
}
if (fp_cfa_offset != -1
&& hard_frame_pointer_adjustment == -1
&& fp_setter_insn (insn))
{
vt_init_cfa_base ();
hard_frame_pointer_adjustment = fp_cfa_offset;
/* Disassociate sp from fp now. */
if (MAY_HAVE_DEBUG_INSNS)
{
cselib_val *v;
cselib_invalidate_rtx (stack_pointer_rtx);
v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
VOIDmode);
if (v && !cselib_preserved_value_p (v))
{
cselib_set_value_sp_based (v);
preserve_value (v);
}
}
}
}
}
gcc_assert (offset == VTI (bb)->out.stack_adjust);
}
bb = last_bb;
if (MAY_HAVE_DEBUG_INSNS)
{
cselib_preserve_only_values ();
cselib_reset_table (cselib_get_next_uid ());
cselib_record_sets_hook = NULL;
}
}
hard_frame_pointer_adjustment = -1;
VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
cfa_base_rtx = NULL_RTX;
return true;
}
/* This is *not* reset after each function. It gives each
NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
a unique label number. */
static int debug_label_num = 1;
/* Get rid of all debug insns from the insn stream. */
static void
delete_debug_insns (void)
{
basic_block bb;
rtx insn, next;
if (!MAY_HAVE_DEBUG_INSNS)
return;
FOR_EACH_BB_FN (bb, cfun)
{
FOR_BB_INSNS_SAFE (bb, insn, next)
if (DEBUG_INSN_P (insn))
{
tree decl = INSN_VAR_LOCATION_DECL (insn);
if (TREE_CODE (decl) == LABEL_DECL
&& DECL_NAME (decl)
&& !DECL_RTL_SET_P (decl))
{
PUT_CODE (insn, NOTE);
NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
NOTE_DELETED_LABEL_NAME (insn)
= IDENTIFIER_POINTER (DECL_NAME (decl));
SET_DECL_RTL (decl, insn);
CODE_LABEL_NUMBER (insn) = debug_label_num++;
}
else
delete_insn (insn);
}
}
}
/* Run a fast, BB-local only version of var tracking, to take care of
information that we don't do global analysis on, such that not all
information is lost. If SKIPPED holds, we're skipping the global
pass entirely, so we should try to use information it would have
handled as well.. */
static void
vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
{
/* ??? Just skip it all for now. */
delete_debug_insns ();
}
/* Free the data structures needed for variable tracking. */
static void
vt_finalize (void)
{
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
VTI (bb)->mos.release ();
}
FOR_ALL_BB_FN (bb, cfun)
{
dataflow_set_destroy (&VTI (bb)->in);
dataflow_set_destroy (&VTI (bb)->out);
if (VTI (bb)->permp)
{
dataflow_set_destroy (VTI (bb)->permp);
XDELETE (VTI (bb)->permp);
}
}
free_aux_for_blocks ();
empty_shared_hash->htab.dispose ();
changed_variables.dispose ();
free_alloc_pool (attrs_pool);
free_alloc_pool (var_pool);
free_alloc_pool (loc_chain_pool);
free_alloc_pool (shared_hash_pool);
if (MAY_HAVE_DEBUG_INSNS)
{
if (global_get_addr_cache)
pointer_map_destroy (global_get_addr_cache);
global_get_addr_cache = NULL;
if (loc_exp_dep_pool)
free_alloc_pool (loc_exp_dep_pool);
loc_exp_dep_pool = NULL;
free_alloc_pool (valvar_pool);
preserved_values.release ();
cselib_finish ();
BITMAP_FREE (scratch_regs);
scratch_regs = NULL;
}
#ifdef HAVE_window_save
vec_free (windowed_parm_regs);
#endif
if (vui_vec)
XDELETEVEC (vui_vec);
vui_vec = NULL;
vui_allocated = 0;
}
/* The entry point to variable tracking pass. */
static inline unsigned int
variable_tracking_main_1 (void)
{
bool success;
if (flag_var_tracking_assignments < 0)
{
delete_debug_insns ();
return 0;
}
if (n_basic_blocks_for_fn (cfun) > 500 &&
n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
{
vt_debug_insns_local (true);
return 0;
}
mark_dfs_back_edges ();
if (!vt_initialize ())
{
vt_finalize ();
vt_debug_insns_local (true);
return 0;
}
success = vt_find_locations ();
if (!success && flag_var_tracking_assignments > 0)
{
vt_finalize ();
delete_debug_insns ();
/* This is later restored by our caller. */
flag_var_tracking_assignments = 0;
success = vt_initialize ();
gcc_assert (success);
success = vt_find_locations ();
}
if (!success)
{
vt_finalize ();
vt_debug_insns_local (false);
return 0;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
dump_dataflow_sets ();
dump_reg_info (dump_file);
dump_flow_info (dump_file, dump_flags);
}
timevar_push (TV_VAR_TRACKING_EMIT);
vt_emit_notes ();
timevar_pop (TV_VAR_TRACKING_EMIT);
vt_finalize ();
vt_debug_insns_local (false);
return 0;
}
unsigned int
variable_tracking_main (void)
{
unsigned int ret;
int save = flag_var_tracking_assignments;
ret = variable_tracking_main_1 ();
flag_var_tracking_assignments = save;
return ret;
}
static bool
gate_handle_var_tracking (void)
{
return (flag_var_tracking && !targetm.delay_vartrack);
}
namespace {
const pass_data pass_data_variable_tracking =
{
RTL_PASS, /* type */
"vartrack", /* name */
OPTGROUP_NONE, /* optinfo_flags */
true, /* has_gate */
true, /* has_execute */
TV_VAR_TRACKING, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_verify_rtl_sharing | TODO_verify_flow ), /* todo_flags_finish */
};
class pass_variable_tracking : public rtl_opt_pass
{
public:
pass_variable_tracking (gcc::context *ctxt)
: rtl_opt_pass (pass_data_variable_tracking, ctxt)
{}
/* opt_pass methods: */
bool gate () { return gate_handle_var_tracking (); }
unsigned int execute () { return variable_tracking_main (); }
}; // class pass_variable_tracking
} // anon namespace
rtl_opt_pass *
make_pass_variable_tracking (gcc::context *ctxt)
{
return new pass_variable_tracking (ctxt);
}
|