summaryrefslogtreecommitdiff
path: root/gcc/unwind-dw2-fde.c
blob: 6f450c59bcee1b55e8ba357bd57c72916f3d10a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/* Subroutines needed for unwinding stack frames for exception handling.  */
/* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
   Contributed by Jason Merrill <jason@cygnus.com>.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "tconfig.h"
#include "tsystem.h"
#include "unwind-dw2-fde.h"
#include "gthr.h"

static struct object *objects;

#ifdef __GTHREAD_MUTEX_INIT
static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
#else
static __gthread_mutex_t object_mutex;
#endif

#ifdef __GTHREAD_MUTEX_INIT_FUNCTION
static void 
init_object_mutex (void)
{
  __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
}

static void
init_object_mutex_once (void)
{
  static __gthread_once_t once = __GTHREAD_ONCE_INIT;
  __gthread_once (&once, init_object_mutex);
}
#else
#define init_object_mutex_once()
#endif

/* Called from crtbegin.o to register the unwind info for an object.  */

void
__register_frame_info (void *begin, struct object *ob)
{
  ob->pc_begin = ob->pc_end = 0;
  ob->fde_begin = begin;
  ob->fde_array = 0;
  ob->count = 0;

  init_object_mutex_once ();
  __gthread_mutex_lock (&object_mutex);

  ob->next = objects;
  objects = ob;

  __gthread_mutex_unlock (&object_mutex);
}

void
__register_frame (void *begin)
{
  struct object *ob = (struct object *) malloc (sizeof (struct object));
  __register_frame_info (begin, ob);                       
}

/* Similar, but BEGIN is actually a pointer to a table of unwind entries
   for different translation units.  Called from the file generated by
   collect2.  */

void
__register_frame_info_table (void *begin, struct object *ob)
{
  ob->pc_begin = ob->pc_end = 0;
  ob->fde_begin = begin;
  ob->fde_array = begin;
  ob->count = 0;

  init_object_mutex_once ();
  __gthread_mutex_lock (&object_mutex);

  ob->next = objects;
  objects = ob;

  __gthread_mutex_unlock (&object_mutex);
}

void
__register_frame_table (void *begin)
{
  struct object *ob = (struct object *) malloc (sizeof (struct object));
  __register_frame_info_table (begin, ob);
}

/* Called from crtbegin.o to deregister the unwind info for an object.  */

void *
__deregister_frame_info (void *begin)
{
  struct object **p;

  init_object_mutex_once ();
  __gthread_mutex_lock (&object_mutex);

  p = &objects;
  while (*p)
    {
      if ((*p)->fde_begin == begin)
	{
	  struct object *ob = *p;
	  *p = (*p)->next;

	  /* If we've run init_frame for this object, free the FDE array.  */
	  if (ob->fde_array && ob->fde_array != begin)
	    free (ob->fde_array);

	  __gthread_mutex_unlock (&object_mutex);
	  return (void *) ob;
	}
      p = &((*p)->next);
    }

  __gthread_mutex_unlock (&object_mutex);
  abort ();
}

void
__deregister_frame (void *begin)
{
  free (__deregister_frame_info (begin));
}


/* Sorting an array of FDEs by address.
   (Ideally we would have the linker sort the FDEs so we don't have to do
   it at run time. But the linkers are not yet prepared for this.)  */

/* This is a special mix of insertion sort and heap sort, optimized for
   the data sets that actually occur. They look like
   101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
   I.e. a linearly increasing sequence (coming from functions in the text
   section), with additionally a few unordered elements (coming from functions
   in gnu_linkonce sections) whose values are higher than the values in the
   surrounding linear sequence (but not necessarily higher than the values
   at the end of the linear sequence!).
   The worst-case total run time is O(N) + O(n log (n)), where N is the
   total number of FDEs and n is the number of erratic ones.  */

typedef struct fde_vector
{
  fde **array;
  size_t count;
} fde_vector;

typedef struct fde_accumulator
{
  fde_vector linear;
  fde_vector erratic;
} fde_accumulator;

static inline saddr
fde_compare (fde *x, fde *y)
{
  return (saddr)x->pc_begin - (saddr)y->pc_begin;
}

static inline int
start_fde_sort (fde_accumulator *accu, size_t count)
{
  accu->linear.array = count ? (fde **) malloc (sizeof (fde *) * count) : NULL;
  accu->erratic.array = accu->linear.array ?
      (fde **) malloc (sizeof (fde *) * count) : NULL;
  accu->linear.count = 0;
  accu->erratic.count = 0;
  
  return accu->linear.array != NULL;
}

static inline void
fde_insert (fde_accumulator *accu, fde *this_fde)
{
  if (accu->linear.array)
    accu->linear.array[accu->linear.count++] = this_fde;
}

/* Split LINEAR into a linear sequence with low values and an erratic
   sequence with high values, put the linear one (of longest possible
   length) into LINEAR and the erratic one into ERRATIC. This is O(N).
   
   Because the longest linear sequence we are trying to locate within the
   incoming LINEAR array can be interspersed with (high valued) erratic
   entries.  We construct a chain indicating the sequenced entries.
   To avoid having to allocate this chain, we overlay it onto the space of
   the ERRATIC array during construction.  A final pass iterates over the
   chain to determine what should be placed in the ERRATIC array, and
   what is the linear sequence.  This overlay is safe from aliasing.  */
static inline void
fde_split (fde_vector *linear, fde_vector *erratic)
{
  static fde *marker;
  size_t count = linear->count;
  fde **chain_end = &marker;
  size_t i, j, k;

  /* This should optimize out, but it is wise to make sure this assumption
     is correct. Should these have different sizes, we cannot cast between
     them and the overlaying onto ERRATIC will not work.  */
  if (sizeof (fde *) != sizeof (fde **))
    abort ();
  
  for (i = 0; i < count; i++)
    {
      fde **probe;
      
      for (probe = chain_end;
           probe != &marker && fde_compare (linear->array[i], *probe) < 0;
           probe = chain_end)
        {
          chain_end = (fde **)erratic->array[probe - linear->array];
          erratic->array[probe - linear->array] = NULL;
        }
      erratic->array[i] = (fde *)chain_end;
      chain_end = &linear->array[i];
    }

  /* Each entry in LINEAR which is part of the linear sequence we have
     discovered will correspond to a non-NULL entry in the chain we built in
     the ERRATIC array.  */
  for (i = j = k = 0; i < count; i++)
    if (erratic->array[i])
      linear->array[j++] = linear->array[i];
    else
      erratic->array[k++] = linear->array[i];
  linear->count = j;
  erratic->count = k;
}

/* This is O(n log(n)).  BSD/OS defines heapsort in stdlib.h, so we must
   use a name that does not conflict.  */
static inline void
frame_heapsort (fde_vector *erratic)
{
  /* For a description of this algorithm, see:
     Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
     p. 60-61. */
  fde ** a = erratic->array;
  /* A portion of the array is called a "heap" if for all i>=0:
     If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
     If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
#define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
  size_t n = erratic->count;
  size_t m = n;
  size_t i;

  while (m > 0)
    {
      /* Invariant: a[m..n-1] is a heap. */
      m--;
      for (i = m; 2*i+1 < n; )
        {
          if (2*i+2 < n
              && fde_compare (a[2*i+2], a[2*i+1]) > 0
              && fde_compare (a[2*i+2], a[i]) > 0)
            {
              SWAP (a[i], a[2*i+2]);
              i = 2*i+2;
            }
          else if (fde_compare (a[2*i+1], a[i]) > 0)
            {
              SWAP (a[i], a[2*i+1]);
              i = 2*i+1;
            }
          else
            break;
        }
    }
  while (n > 1)
    {
      /* Invariant: a[0..n-1] is a heap. */
      n--;
      SWAP (a[0], a[n]);
      for (i = 0; 2*i+1 < n; )
        {
          if (2*i+2 < n
              && fde_compare (a[2*i+2], a[2*i+1]) > 0
              && fde_compare (a[2*i+2], a[i]) > 0)
            {
              SWAP (a[i], a[2*i+2]);
              i = 2*i+2;
            }
          else if (fde_compare (a[2*i+1], a[i]) > 0)
            {
              SWAP (a[i], a[2*i+1]);
              i = 2*i+1;
            }
          else
            break;
        }
    }
#undef SWAP
}

/* Merge V1 and V2, both sorted, and put the result into V1. */
static void
fde_merge (fde_vector *v1, const fde_vector *v2)
{
  size_t i1, i2;
  fde * fde2;

  i2 = v2->count;
  if (i2 > 0)
    {
      i1 = v1->count;
      do {
        i2--;
        fde2 = v2->array[i2];
        while (i1 > 0 && fde_compare (v1->array[i1-1], fde2) > 0)
          {
            v1->array[i1+i2] = v1->array[i1-1];
            i1--;
          }
        v1->array[i1+i2] = fde2;
      } while (i2 > 0);
      v1->count += v2->count;
    }
}

static fde **
end_fde_sort (fde_accumulator *accu, size_t count)
{
  if (accu->linear.array && accu->linear.count != count)
    abort ();
  
  if (accu->erratic.array)
    {
      fde_split (&accu->linear, &accu->erratic);
      if (accu->linear.count + accu->erratic.count != count)
	abort ();
      frame_heapsort (&accu->erratic);
      fde_merge (&accu->linear, &accu->erratic);
      free (accu->erratic.array);
    }
  else
    {
      /* We've not managed to malloc an erratic array, so heap sort in the
         linear one.  */
      frame_heapsort (&accu->linear);
    }
  return accu->linear.array;
}


static size_t
count_fdes (fde *this_fde)
{
  size_t count;

  for (count = 0; this_fde->length != 0; this_fde = next_fde (this_fde))
    /* Skip CIEs and omitted link-once FDE entries.  */
    if (this_fde->CIE_delta != 0 && this_fde->pc_begin != 0)
      ++count;

  return count;
}

static void
add_fdes (fde *this_fde, fde_accumulator *accu, void **beg_ptr, void **end_ptr)
{
  void *pc_begin = *beg_ptr;
  void *pc_end = *end_ptr;

  for (; this_fde->length != 0; this_fde = next_fde (this_fde))
    {
      /* Skip CIEs and linked once FDE entries.  */
      if (this_fde->CIE_delta == 0 || this_fde->pc_begin == 0)
        continue;

      fde_insert (accu, this_fde);

      if (this_fde->pc_begin < pc_begin)
        pc_begin = this_fde->pc_begin;
      if (this_fde->pc_begin + this_fde->pc_range > pc_end)
        pc_end = this_fde->pc_begin + this_fde->pc_range;
    }

  *beg_ptr = pc_begin;
  *end_ptr = pc_end;
}

static fde *
search_fdes (fde *this_fde, void *pc)
{
  for (; this_fde->length != 0; this_fde = next_fde (this_fde))
    {
      /* Skip CIEs and linked once FDE entries.  */
      if (this_fde->CIE_delta == 0 || this_fde->pc_begin == 0)
        continue;

      if ((uaddr)((char *)pc - (char *)this_fde->pc_begin) < this_fde->pc_range)
        return this_fde;
    }
  return NULL;
}

/* Set up a sorted array of pointers to FDEs for a loaded object.  We
   count up the entries before allocating the array because it's likely to
   be faster.  We can be called multiple times, should we have failed to
   allocate a sorted fde array on a previous occasion.  */

static void
frame_init (struct object* ob)
{
  size_t count;
  fde_accumulator accu;
  void *pc_begin, *pc_end;
  fde **array;

  if (ob->pc_begin)
    count = ob->count;
  else if (ob->fde_array)
    {
      fde **p = ob->fde_array;
      for (count = 0; *p; ++p)
        count += count_fdes (*p);
    }
  else
    count = count_fdes (ob->fde_begin);
  ob->count = count;

  if (!start_fde_sort (&accu, count) && ob->pc_begin)
    return;

  pc_begin = (void*)(uaddr)-1;
  pc_end = 0;

  if (ob->fde_array)
    {
      fde **p = ob->fde_array;
      for (; *p; ++p)
        add_fdes (*p, &accu, &pc_begin, &pc_end);
    }
  else
    add_fdes (ob->fde_begin, &accu, &pc_begin, &pc_end);
  array = end_fde_sort (&accu, count);
  if (array)
    ob->fde_array = array;
  ob->pc_begin = pc_begin;
  ob->pc_end = pc_end;
}

fde *
_Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
{
  struct object *ob;
  size_t lo, hi;

  init_object_mutex_once ();
  __gthread_mutex_lock (&object_mutex);

  /* Linear search through the objects, to find the one containing the pc. */
  for (ob = objects; ob; ob = ob->next)
    {
      if (ob->pc_begin == 0)
        frame_init (ob);
      if (pc >= ob->pc_begin && pc < ob->pc_end)
        break;
    }

  if (ob == 0)
    {
      __gthread_mutex_unlock (&object_mutex);
      return 0;
    }

  if (!ob->fde_array || (void *)ob->fde_array == (void *)ob->fde_begin)
    frame_init (ob);

  if (ob->fde_array && (void *)ob->fde_array != (void *)ob->fde_begin)
    {
      __gthread_mutex_unlock (&object_mutex);
      
      /* Standard binary search algorithm.  */
      for (lo = 0, hi = ob->count; lo < hi; )
        {
          size_t i = (lo + hi) / 2;
          fde *f = ob->fde_array[i];

          if (pc < f->pc_begin)
            hi = i;
          else if (pc >= f->pc_begin + f->pc_range)
            lo = i + 1;
          else
            return f;
        }
    }
  else
    {
      /* Long slow labourious linear search, cos we've no memory. */
      fde *f;
      
      if (ob->fde_array)
        {
          fde **p = ob->fde_array;
          
          do
            {
              f = search_fdes (*p, pc);
              if (f)
                break;
              p++;
            }
          while (*p);
        }
      else
        f = search_fdes (ob->fde_begin, pc);

      __gthread_mutex_unlock (&object_mutex);
      return f;
    }

  return 0;
}