summaryrefslogtreecommitdiff
path: root/gcc/tree.c
blob: 054852fa113e3d9483d7ac75ce92f878ebc64f16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
/* Language-independent node constructors for parse phase of GNU compiler.
   Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */


/* This file contains the low level primitives for operating on tree nodes,
   including allocation, list operations, interning of identifiers,
   construction of data type nodes and statement nodes,
   and construction of type conversion nodes.  It also contains
   tables index by tree code that describe how to take apart
   nodes of that code.

   It is intended to be language-independent, but occasionally
   calls language-dependent routines defined (for C) in typecheck.c.

   The low-level allocation routines oballoc and permalloc
   are used also for allocating many other kinds of objects
   by all passes of the compiler.  */

#include "config.h"
#include <stdio.h>
#include "flags.h"
#include "function.h"
#include "tree.h"
#include "obstack.h"
#include "gvarargs.h"

#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free

/* Tree nodes of permanent duration are allocated in this obstack.
   They are the identifier nodes, and everything outside of
   the bodies and parameters of function definitions.  */

struct obstack permanent_obstack;

/* The initial RTL, and all ..._TYPE nodes, in a function
   are allocated in this obstack.  Usually they are freed at the
   end of the function, but if the function is inline they are saved.
   For top-level functions, this is maybepermanent_obstack.
   Separate obstacks are made for nested functions.  */

struct obstack *function_maybepermanent_obstack;

/* This is the function_maybepermanent_obstack for top-level functions.  */

struct obstack maybepermanent_obstack;

/* The contents of the current function definition are allocated
   in this obstack, and all are freed at the end of the function.
   For top-level functions, this is temporary_obstack.
   Separate obstacks are made for nested functions.  */

struct obstack *function_obstack;

/* This is used for reading initializers of global variables.  */

struct obstack temporary_obstack;

/* The tree nodes of an expression are allocated
   in this obstack, and all are freed at the end of the expression.  */

struct obstack momentary_obstack;

/* The tree nodes of a declarator are allocated
   in this obstack, and all are freed when the declarator
   has been parsed.  */

static struct obstack temp_decl_obstack;

/* This points at either permanent_obstack
   or the current function_maybepermanent_obstack.  */

struct obstack *saveable_obstack;

/* This is same as saveable_obstack during parse and expansion phase;
   it points to the current function's obstack during optimization.
   This is the obstack to be used for creating rtl objects.  */

struct obstack *rtl_obstack;

/* This points at either permanent_obstack or the current function_obstack.  */

struct obstack *current_obstack;

/* This points at either permanent_obstack or the current function_obstack
   or momentary_obstack.  */

struct obstack *expression_obstack;

/* Stack of obstack selections for push_obstacks and pop_obstacks.  */

struct obstack_stack
{
  struct obstack_stack *next;
  struct obstack *current;
  struct obstack *saveable;
  struct obstack *expression;
  struct obstack *rtl;
};

struct obstack_stack *obstack_stack;

/* Obstack for allocating struct obstack_stack entries.  */

static struct obstack obstack_stack_obstack;

/* Addresses of first objects in some obstacks.
   This is for freeing their entire contents.  */
char *maybepermanent_firstobj;
char *temporary_firstobj;
char *momentary_firstobj;
char *temp_decl_firstobj;

/* Nonzero means all ..._TYPE nodes should be allocated permanently.  */

int all_types_permanent;

/* Stack of places to restore the momentary obstack back to.  */
   
struct momentary_level
{
  /* Pointer back to previous such level.  */
  struct momentary_level *prev;
  /* First object allocated within this level.  */
  char *base;
  /* Value of expression_obstack saved at entry to this level.  */
  struct obstack *obstack;
};

struct momentary_level *momentary_stack;

/* Table indexed by tree code giving a string containing a character
   classifying the tree code.  Possibilities are
   t, d, s, c, r, <, 1, 2 and e.  See tree.def for details.  */

#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,

char *standard_tree_code_type[] = {
#include "tree.def"
};
#undef DEFTREECODE

/* Table indexed by tree code giving number of expression
   operands beyond the fixed part of the node structure.
   Not used for types or decls.  */

#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,

int standard_tree_code_length[] = {
#include "tree.def"
};
#undef DEFTREECODE

/* Names of tree components.
   Used for printing out the tree and error messages.  */
#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,

char *standard_tree_code_name[] = {
#include "tree.def"
};
#undef DEFTREECODE

/* Table indexed by tree code giving a string containing a character
   classifying the tree code.  Possibilities are
   t, d, s, c, r, e, <, 1 and 2.  See tree.def for details.  */

char **tree_code_type;

/* Table indexed by tree code giving number of expression
   operands beyond the fixed part of the node structure.
   Not used for types or decls.  */

int *tree_code_length;

/* Table indexed by tree code giving name of tree code, as a string.  */

char **tree_code_name;

/* Statistics-gathering stuff.  */
typedef enum
{
  d_kind,
  t_kind,
  b_kind,
  s_kind,
  r_kind,
  e_kind,
  c_kind,
  id_kind,
  op_id_kind,
  perm_list_kind,
  temp_list_kind,
  vec_kind,
  x_kind,
  lang_decl,
  lang_type,
  all_kinds
} tree_node_kind;

int tree_node_counts[(int)all_kinds];
int tree_node_sizes[(int)all_kinds];
int id_string_size = 0;

char *tree_node_kind_names[] = {
  "decls",
  "types",
  "blocks",
  "stmts",
  "refs",
  "exprs",
  "constants",
  "identifiers",
  "op_identifiers",
  "perm_tree_lists",
  "temp_tree_lists",
  "vecs",
  "random kinds",
  "lang_decl kinds",
  "lang_type kinds"
};

/* Hash table for uniquizing IDENTIFIER_NODEs by name.  */

#define MAX_HASH_TABLE 1009
static tree hash_table[MAX_HASH_TABLE];	/* id hash buckets */

/* 0 while creating built-in identifiers.  */
static int do_identifier_warnings;

/* Unique id for next decl created.  */
static int next_decl_uid;

extern char *mode_name[];

void gcc_obstack_init ();
static tree stabilize_reference_1 ();

/* Init the principal obstacks.  */

void
init_obstacks ()
{
  gcc_obstack_init (&obstack_stack_obstack);
  gcc_obstack_init (&permanent_obstack);

  gcc_obstack_init (&temporary_obstack);
  temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
  gcc_obstack_init (&momentary_obstack);
  momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
  gcc_obstack_init (&maybepermanent_obstack);
  maybepermanent_firstobj
    = (char *) obstack_alloc (&maybepermanent_obstack, 0);
  gcc_obstack_init (&temp_decl_obstack);
  temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);

  function_obstack = &temporary_obstack;
  function_maybepermanent_obstack = &maybepermanent_obstack;
  current_obstack = &permanent_obstack;
  expression_obstack = &permanent_obstack;
  rtl_obstack = saveable_obstack = &permanent_obstack;

  /* Init the hash table of identifiers.  */
  bzero (hash_table, sizeof hash_table);
}

void
gcc_obstack_init (obstack)
     struct obstack *obstack;
{
  /* Let particular systems override the size of a chunk.  */
#ifndef OBSTACK_CHUNK_SIZE
#define OBSTACK_CHUNK_SIZE 0
#endif
  /* Let them override the alloc and free routines too.  */
#ifndef OBSTACK_CHUNK_ALLOC
#define OBSTACK_CHUNK_ALLOC xmalloc
#endif
#ifndef OBSTACK_CHUNK_FREE
#define OBSTACK_CHUNK_FREE free
#endif
  _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
		  (void *(*) ()) OBSTACK_CHUNK_ALLOC,
		  (void (*) ()) OBSTACK_CHUNK_FREE);
}

/* Save all variables describing the current status into the structure *P.
   This is used before starting a nested function.  */

void
save_tree_status (p)
     struct function *p;
{
  p->all_types_permanent = all_types_permanent;
  p->momentary_stack = momentary_stack;
  p->maybepermanent_firstobj = maybepermanent_firstobj;
  p->momentary_firstobj = momentary_firstobj;
  p->function_obstack = function_obstack;
  p->function_maybepermanent_obstack = function_maybepermanent_obstack;
  p->current_obstack = current_obstack;
  p->expression_obstack = expression_obstack;
  p->saveable_obstack = saveable_obstack;
  p->rtl_obstack = rtl_obstack;

  function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
  gcc_obstack_init (function_obstack);

  function_maybepermanent_obstack
    = (struct obstack *) xmalloc (sizeof (struct obstack));
  gcc_obstack_init (function_maybepermanent_obstack);

  current_obstack = &permanent_obstack;
  expression_obstack = &permanent_obstack;
  rtl_obstack = saveable_obstack = &permanent_obstack;

  momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
  maybepermanent_firstobj
    = (char *) obstack_finish (function_maybepermanent_obstack);
}

/* Restore all variables describing the current status from the structure *P.
   This is used after a nested function.  */

void
restore_tree_status (p)
     struct function *p;
{
  all_types_permanent = p->all_types_permanent;
  momentary_stack = p->momentary_stack;

  obstack_free (&momentary_obstack, momentary_firstobj);
  obstack_free (function_obstack, 0);
  obstack_free (function_maybepermanent_obstack, 0);
  free (function_obstack);

  momentary_firstobj = p->momentary_firstobj;
  maybepermanent_firstobj = p->maybepermanent_firstobj;
  function_obstack = p->function_obstack;
  function_maybepermanent_obstack = p->function_maybepermanent_obstack;
  current_obstack = p->current_obstack;
  expression_obstack = p->expression_obstack;
  saveable_obstack = p->saveable_obstack;
  rtl_obstack = p->rtl_obstack;
}

/* Start allocating on the temporary (per function) obstack.
   This is done in start_function before parsing the function body,
   and before each initialization at top level, and to go back
   to temporary allocation after doing end_temporary_allocation.  */

void
temporary_allocation ()
{
  /* Note that function_obstack at top level points to temporary_obstack.
     But within a nested function context, it is a separate obstack.  */
  current_obstack = function_obstack;
  expression_obstack = function_obstack;
  rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
  momentary_stack = 0;
}

/* Start allocating on the permanent obstack but don't
   free the temporary data.  After calling this, call
   `permanent_allocation' to fully resume permanent allocation status.  */

void
end_temporary_allocation ()
{
  current_obstack = &permanent_obstack;
  expression_obstack = &permanent_obstack;
  rtl_obstack = saveable_obstack = &permanent_obstack;
}

/* Resume allocating on the temporary obstack, undoing
   effects of `end_temporary_allocation'.  */

void
resume_temporary_allocation ()
{
  current_obstack = function_obstack;
  expression_obstack = function_obstack;
  rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
}

/* While doing temporary allocation, switch to allocating in such a
   way as to save all nodes if the function is inlined.  Call
   resume_temporary_allocation to go back to ordinary temporary
   allocation.  */

void
saveable_allocation ()
{
  /* Note that function_obstack at top level points to temporary_obstack.
     But within a nested function context, it is a separate obstack.  */
  expression_obstack = current_obstack = saveable_obstack;
}

/* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
   recording the previously current obstacks on a stack.
   This does not free any storage in any obstack.  */

void
push_obstacks (current, saveable)
     struct obstack *current, *saveable;
{
  struct obstack_stack *p
    = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
					      (sizeof (struct obstack_stack)));

  p->current = current_obstack;
  p->saveable = saveable_obstack;
  p->expression = expression_obstack;
  p->rtl = rtl_obstack;
  p->next = obstack_stack;
  obstack_stack = p;

  current_obstack = current;
  expression_obstack = current;
  rtl_obstack = saveable_obstack = saveable;
}

/* Save the current set of obstacks, but don't change them.  */

void
push_obstacks_nochange ()
{
  struct obstack_stack *p
    = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
					      (sizeof (struct obstack_stack)));

  p->current = current_obstack;
  p->saveable = saveable_obstack;
  p->expression = expression_obstack;
  p->rtl = rtl_obstack;
  p->next = obstack_stack;
  obstack_stack = p;
}

/* Pop the obstack selection stack.  */

void
pop_obstacks ()
{
  struct obstack_stack *p = obstack_stack;
  obstack_stack = p->next;

  current_obstack = p->current;
  saveable_obstack = p->saveable;
  expression_obstack = p->expression;
  rtl_obstack = p->rtl;

  obstack_free (&obstack_stack_obstack, p);
}

/* Nonzero if temporary allocation is currently in effect.
   Zero if currently doing permanent allocation.  */

int
allocation_temporary_p ()
{
  return current_obstack != &permanent_obstack;
}

/* Go back to allocating on the permanent obstack
   and free everything in the temporary obstack.
   This is done in finish_function after fully compiling a function.  */

void
permanent_allocation ()
{
  /* Free up previous temporary obstack data */
  obstack_free (&temporary_obstack, temporary_firstobj);
  obstack_free (&momentary_obstack, momentary_firstobj);
  obstack_free (&maybepermanent_obstack, maybepermanent_firstobj);
  obstack_free (&temp_decl_obstack, temp_decl_firstobj);

  current_obstack = &permanent_obstack;
  expression_obstack = &permanent_obstack;
  rtl_obstack = saveable_obstack = &permanent_obstack;
}

/* Save permanently everything on the maybepermanent_obstack.  */

void
preserve_data ()
{
  maybepermanent_firstobj
    = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
}

void
preserve_initializer ()
{
  temporary_firstobj
    = (char *) obstack_alloc (&temporary_obstack, 0);
  momentary_firstobj
    = (char *) obstack_alloc (&momentary_obstack, 0);
  maybepermanent_firstobj
    = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
}

/* Start allocating new rtl in current_obstack.
   Use resume_temporary_allocation
   to go back to allocating rtl in saveable_obstack.  */

void
rtl_in_current_obstack ()
{
  rtl_obstack = current_obstack;
}

/* Temporarily allocate rtl from saveable_obstack.  Return 1 if we were
   previously allocating it from current_obstack.  */

int
rtl_in_saveable_obstack ()
{
  if (rtl_obstack == current_obstack)
    {
      rtl_obstack = saveable_obstack;
      return 1;
    }
  else
    return 0;
}

/* Allocate SIZE bytes in the current obstack
   and return a pointer to them.
   In practice the current obstack is always the temporary one.  */

char *
oballoc (size)
     int size;
{
  return (char *) obstack_alloc (current_obstack, size);
}

/* Free the object PTR in the current obstack
   as well as everything allocated since PTR.
   In practice the current obstack is always the temporary one.  */

void
obfree (ptr)
     char *ptr;
{
  obstack_free (current_obstack, ptr);
}

/* Allocate SIZE bytes in the permanent obstack
   and return a pointer to them.  */

char *
permalloc (size)
     int size;
{
  return (char *) obstack_alloc (&permanent_obstack, size);
}

/* Allocate NELEM items of SIZE bytes in the permanent obstack
   and return a pointer to them.  The storage is cleared before
   returning the value.  */

char *
perm_calloc (nelem, size)
     int nelem;
     long size;
{
  char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
  bzero (rval, nelem * size);
  return rval;
}

/* Allocate SIZE bytes in the saveable obstack
   and return a pointer to them.  */

char *
savealloc (size)
     int size;
{
  return (char *) obstack_alloc (saveable_obstack, size);
}

/* Print out which obstack an object is in.  */

void
debug_obstack (object)
     char *object;
{
  struct obstack *obstack = NULL;
  char *obstack_name = NULL;
  struct function *p;

  for (p = outer_function_chain; p; p = p->next)
    {
      if (_obstack_allocated_p (p->function_obstack, object))
	{
	  obstack = p->function_obstack;
	  obstack_name = "containing function obstack";
	}
      if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
	{
	  obstack = p->function_maybepermanent_obstack;
	  obstack_name = "containing function maybepermanent obstack";
	}
    }

  if (_obstack_allocated_p (&obstack_stack_obstack, object))
    {
      obstack = &obstack_stack_obstack;
      obstack_name = "obstack_stack_obstack";
    }
  else if (_obstack_allocated_p (function_obstack, object))
    {
      obstack = function_obstack;
      obstack_name = "function obstack";
    }
  else if (_obstack_allocated_p (&permanent_obstack, object))
    {
      obstack = &permanent_obstack;
      obstack_name = "permanent_obstack";
    }
  else if (_obstack_allocated_p (&momentary_obstack, object))
    {
      obstack = &momentary_obstack;
      obstack_name = "momentary_obstack";
    }
  else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
    {
      obstack = function_maybepermanent_obstack;
      obstack_name = "function maybepermanent obstack";
    }
  else if (_obstack_allocated_p (&temp_decl_obstack, object))
    {
      obstack = &temp_decl_obstack;
      obstack_name = "temp_decl_obstack";
    }

  /* Check to see if the object is in the free area of the obstack. */
  if (obstack != NULL)
    {
      if (object >= obstack->next_free
	  && object < obstack->chunk_limit)
	fprintf (stderr, "object in free portion of obstack %s.\n",
		 obstack_name);
      else
	fprintf (stderr, "object allocated from %s.\n", obstack_name);
    }
  else
    fprintf (stderr, "object not allocated from any obstack.\n");
}

/* Return 1 if OBJ is in the permanent obstack.
   This is slow, and should be used only for debugging.
   Use TREE_PERMANENT for other purposes.  */

int
object_permanent_p (obj)
     tree obj;
{
  return _obstack_allocated_p (&permanent_obstack, obj);
}

/* Start a level of momentary allocation.
   In C, each compound statement has its own level
   and that level is freed at the end of each statement.
   All expression nodes are allocated in the momentary allocation level.  */

void
push_momentary ()
{
  struct momentary_level *tem
    = (struct momentary_level *) obstack_alloc (&momentary_obstack,
						sizeof (struct momentary_level));
  tem->prev = momentary_stack;
  tem->base = (char *) obstack_base (&momentary_obstack);
  tem->obstack = expression_obstack;
  momentary_stack = tem;
  expression_obstack = &momentary_obstack;
}

/* Free all the storage in the current momentary-allocation level.
   In C, this happens at the end of each statement.  */

void
clear_momentary ()
{
  obstack_free (&momentary_obstack, momentary_stack->base);
}

/* Discard a level of momentary allocation.
   In C, this happens at the end of each compound statement.
   Restore the status of expression node allocation
   that was in effect before this level was created.  */

void
pop_momentary ()
{
  struct momentary_level *tem = momentary_stack;
  momentary_stack = tem->prev;
  expression_obstack = tem->obstack;
  obstack_free (&momentary_obstack, tem);
}

/* Call when starting to parse a declaration:
   make expressions in the declaration last the length of the function.
   Returns an argument that should be passed to resume_momentary later.  */

int
suspend_momentary ()
{
  register int tem = expression_obstack == &momentary_obstack;
  expression_obstack = saveable_obstack;
  return tem;
}

/* Call when finished parsing a declaration:
   restore the treatment of node-allocation that was
   in effect before the suspension.
   YES should be the value previously returned by suspend_momentary.  */

void
resume_momentary (yes)
     int yes;
{
  if (yes)
    expression_obstack = &momentary_obstack;
}

/* Init the tables indexed by tree code.
   Note that languages can add to these tables to define their own codes.  */

void
init_tree_codes ()
{
  tree_code_type = (char **) xmalloc (sizeof (standard_tree_code_type));
  tree_code_length = (int *) xmalloc (sizeof (standard_tree_code_length));
  tree_code_name = (char **) xmalloc (sizeof (standard_tree_code_name));
  bcopy (standard_tree_code_type, tree_code_type,
	 sizeof (standard_tree_code_type));
  bcopy (standard_tree_code_length, tree_code_length,
	 sizeof (standard_tree_code_length));
  bcopy (standard_tree_code_name, tree_code_name,
	 sizeof (standard_tree_code_name));
}

/* Return a newly allocated node of code CODE.
   Initialize the node's unique id and its TREE_PERMANENT flag.
   For decl and type nodes, some other fields are initialized.
   The rest of the node is initialized to zero.

   Achoo!  I got a code in the node.  */

tree
make_node (code)
     enum tree_code code;
{
  register tree t;
  register int type = TREE_CODE_CLASS (code);
  register int length;
  register struct obstack *obstack = current_obstack;
  register int i;
  register tree_node_kind kind;

  switch (type)
    {
    case 'd':  /* A decl node */
#ifdef GATHER_STATISTICS
      kind = d_kind;
#endif
      length = sizeof (struct tree_decl);
      /* All decls in an inline function need to be saved.  */
      if (obstack != &permanent_obstack)
	obstack = saveable_obstack;
      /* PARM_DECLs always go on saveable_obstack, not permanent,
	 even though we may make them before the function turns
	 on temporary allocation.  */
      else if (code == PARM_DECL)
	obstack = function_maybepermanent_obstack;
      break;

    case 't':  /* a type node */
#ifdef GATHER_STATISTICS
      kind = t_kind;
#endif
      length = sizeof (struct tree_type);
      /* All data types are put where we can preserve them if nec.  */
      if (obstack != &permanent_obstack)
	obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
      break;

    case 'b':  /* a lexical block */
#ifdef GATHER_STATISTICS
      kind = b_kind;
#endif
      length = sizeof (struct tree_block);
      /* All BLOCK nodes are put where we can preserve them if nec.  */
      if (obstack != &permanent_obstack)
	obstack = saveable_obstack;
      break;

    case 's':  /* an expression with side effects */
#ifdef GATHER_STATISTICS
      kind = s_kind;
      goto usual_kind;
#endif
    case 'r':  /* a reference */
#ifdef GATHER_STATISTICS
      kind = r_kind;
      goto usual_kind;
#endif
    case 'e':  /* an expression */
    case '<':  /* a comparison expression */
    case '1':  /* a unary arithmetic expression */
    case '2':  /* a binary arithmetic expression */
#ifdef GATHER_STATISTICS
      kind = e_kind;
    usual_kind:
#endif
      obstack = expression_obstack;
      /* All BIND_EXPR nodes are put where we can preserve them if nec.  */
      if (code == BIND_EXPR && obstack != &permanent_obstack)
	obstack = saveable_obstack;
      length = sizeof (struct tree_exp)
	+ (tree_code_length[(int) code] - 1) * sizeof (char *);
      break;

    case 'c':  /* a constant */
#ifdef GATHER_STATISTICS
      kind = c_kind;
#endif
      obstack = expression_obstack;
      /* We can't use tree_code_length for this, since the number of words
	 is machine-dependent due to varying alignment of `double'.  */
      if (code == REAL_CST)
	{
	  length = sizeof (struct tree_real_cst);
	  break;
	}

    case 'x':  /* something random, like an identifier.  */
#ifdef GATHER_STATISTICS
      if (code == IDENTIFIER_NODE)
	kind = id_kind;
      else if (code == OP_IDENTIFIER)
	kind = op_id_kind;
      else if (code == TREE_VEC)
	kind = vec_kind;
      else
	kind = x_kind;
#endif
      length = sizeof (struct tree_common)
	+ tree_code_length[(int) code] * sizeof (char *);
      /* Identifier nodes are always permanent since they are
	 unique in a compiler run.  */
      if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
    }

  t = (tree) obstack_alloc (obstack, length);

#ifdef GATHER_STATISTICS
  tree_node_counts[(int)kind]++;
  tree_node_sizes[(int)kind] += length;
#endif

  /* We assume here that the length of a tree node is a multiple of the
     size of an int.  Rounding up won't work because it would clobber
     the next object.  */
  for (i = (length / sizeof (int)) - 1; i >= 0; i--)
    ((int *) t)[i] = 0;

  TREE_SET_CODE (t, code);
  if (obstack == &permanent_obstack)
    TREE_PERMANENT (t) = 1;

  switch (type)
    {
    case 's':
      TREE_SIDE_EFFECTS (t) = 1;
      TREE_TYPE (t) = void_type_node;
      break;

    case 'd':
      if (code != FUNCTION_DECL)
      DECL_IN_SYSTEM_HEADER (t)
	= in_system_header && (obstack == &permanent_obstack);
      DECL_ALIGN (t) = 1;
      DECL_SOURCE_LINE (t) = lineno;
      DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
      DECL_UID (t) = next_decl_uid++;
      break;

    case 't':
      {
	static unsigned next_type_uid = 1;

	TYPE_UID (t) = next_type_uid++;
      }
      TYPE_ALIGN (t) = 1;
      TYPE_MAIN_VARIANT (t) = t;
      break;

    case 'c':
      TREE_CONSTANT (t) = 1;
      break;
    }

  return t;
}

/* Return a new node with the same contents as NODE
   except that its TREE_CHAIN is zero and it has a fresh uid.  */

tree
copy_node (node)
     tree node;
{
  register tree t;
  register enum tree_code code = TREE_CODE (node);
  register int length;
  register int i;

  switch (TREE_CODE_CLASS (code))
    {
    case 'd':  /* A decl node */
      length = sizeof (struct tree_decl);
      break;

    case 't':  /* a type node */
      length = sizeof (struct tree_type);
      break;

    case 'b':  /* a lexical block node */
      length = sizeof (struct tree_block);
      break;

    case 'r':  /* a reference */
    case 'e':  /* a expression */
    case 's':  /* an expression with side effects */
    case '<':  /* a comparison expression */
    case '1':  /* a unary arithmetic expression */
    case '2':  /* a binary arithmetic expression */
      length = sizeof (struct tree_exp)
	+ (tree_code_length[(int) code] - 1) * sizeof (char *);
      break;

    case 'c':  /* a constant */
      /* We can't use tree_code_length for this, since the number of words
	 is machine-dependent due to varying alignment of `double'.  */
      if (code == REAL_CST)
	{
	  length = sizeof (struct tree_real_cst);
	  break;
	}

    case 'x':  /* something random, like an identifier.  */
      length = sizeof (struct tree_common)
	+ tree_code_length[(int) code] * sizeof (char *);
      if (code == TREE_VEC)
	length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
    }

  t = (tree) obstack_alloc (current_obstack, length);

  for (i = (length / sizeof (int)) - 1; i >= 0; i--)
    ((int *) t)[i] = ((int *) node)[i];

  TREE_CHAIN (t) = 0;

  TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);

  return t;
}

/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
   For example, this can copy a list made of TREE_LIST nodes.  */

tree
copy_list (list)
     tree list;
{
  tree head;
  register tree prev, next;

  if (list == 0)
    return 0;

  head = prev = copy_node (list);
  next = TREE_CHAIN (list);
  while (next)
    {
      TREE_CHAIN (prev) = copy_node (next);
      prev = TREE_CHAIN (prev);
      next = TREE_CHAIN (next);
    }
  return head;
}

#define HASHBITS 30

/* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
   If an identifier with that name has previously been referred to,
   the same node is returned this time.  */

tree
get_identifier (text)
     register char *text;
{
  register int hi;
  register int i;
  register tree idp;
  register int len, hash_len;

  /* Compute length of text in len.  */
  for (len = 0; text[len]; len++);

  /* Decide how much of that length to hash on */
  hash_len = len;
  if (warn_id_clash && len > id_clash_len)
    hash_len = id_clash_len;

  /* Compute hash code */
  hi = hash_len * 613 + (unsigned)text[0];
  for (i = 1; i < hash_len; i += 2)
    hi = ((hi * 613) + (unsigned)(text[i]));

  hi &= (1 << HASHBITS) - 1;
  hi %= MAX_HASH_TABLE;
  
  /* Search table for identifier */
  for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
    if (IDENTIFIER_LENGTH (idp) == len
	&& IDENTIFIER_POINTER (idp)[0] == text[0]
	&& !bcmp (IDENTIFIER_POINTER (idp), text, len))
      return idp;		/* <-- return if found */

  /* Not found; optionally warn about a similar identifier */
  if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
    for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
      if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
	{
	  warning ("`%s' and `%s' identical in first %d characters",
		   IDENTIFIER_POINTER (idp), text, id_clash_len);
	  break;
	}

  if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
    abort ();			/* set_identifier_size hasn't been called.  */

  /* Not found, create one, add to chain */
  idp = make_node (IDENTIFIER_NODE);
  IDENTIFIER_LENGTH (idp) = len;
#ifdef GATHER_STATISTICS
  id_string_size += len;
#endif

  IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);

  TREE_CHAIN (idp) = hash_table[hi];
  hash_table[hi] = idp;
  return idp;			/* <-- return if created */
}

/* Enable warnings on similar identifiers (if requested).
   Done after the built-in identifiers are created.  */

void
start_identifier_warnings ()
{
  do_identifier_warnings = 1;
}

/* Record the size of an identifier node for the language in use.
   SIZE is the total size in bytes.
   This is called by the language-specific files.  This must be
   called before allocating any identifiers.  */

void
set_identifier_size (size)
     int size;
{
  tree_code_length[(int) IDENTIFIER_NODE]
    = (size - sizeof (struct tree_common)) / sizeof (tree);
}

/* Return a newly constructed INTEGER_CST node whose constant value
   is specified by the two ints LOW and HI.
   The TREE_TYPE is set to `int'. 

   This function should be used via the `build_int_2' macro.  */

tree
build_int_2_wide (low, hi)
     HOST_WIDE_INT low, hi;
{
  register tree t = make_node (INTEGER_CST);
  TREE_INT_CST_LOW (t) = low;
  TREE_INT_CST_HIGH (t) = hi;
  TREE_TYPE (t) = integer_type_node;
  return t;
}

/* Return a new REAL_CST node whose type is TYPE and value is D.  */

tree
build_real (type, d)
     tree type;
     REAL_VALUE_TYPE d;
{
  tree v;

  /* Check for valid float value for this type on this target machine;
     if not, can print error message and store a valid value in D.  */
#ifdef CHECK_FLOAT_VALUE
  CHECK_FLOAT_VALUE (TYPE_MODE (type), d);
#endif

  v = make_node (REAL_CST);
  TREE_TYPE (v) = type;
  TREE_REAL_CST (v) = d;
  return v;
}

/* Return a new REAL_CST node whose type is TYPE
   and whose value is the integer value of the INTEGER_CST node I.  */

#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)

REAL_VALUE_TYPE
real_value_from_int_cst (i)
     tree i;
{
  REAL_VALUE_TYPE d;
#ifdef REAL_ARITHMETIC
  REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i));
#else /* not REAL_ARITHMETIC */
  if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
    {
      d = (double) (~ TREE_INT_CST_HIGH (i));
      d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
	    * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
      d += (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
      d = (- d - 1.0);
    }
  else
    {
      d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
      d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
	    * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
      d += (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
    }
#endif /* not REAL_ARITHMETIC */
  return d;
}

/* This function can't be implemented if we can't do arithmetic
   on the float representation.  */

tree
build_real_from_int_cst (type, i)
     tree type;
     tree i;
{
  tree v;
  REAL_VALUE_TYPE d;

  v = make_node (REAL_CST);
  TREE_TYPE (v) = type;

  d = REAL_VALUE_TRUNCATE (TYPE_MODE (type), real_value_from_int_cst (i));
  /* Check for valid float value for this type on this target machine;
     if not, can print error message and store a valid value in D.  */
#ifdef CHECK_FLOAT_VALUE
  CHECK_FLOAT_VALUE (TYPE_MODE (type), d);
#endif

  TREE_REAL_CST (v) = d;
  return v;
}

#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */

/* Return a newly constructed STRING_CST node whose value is
   the LEN characters at STR.
   The TREE_TYPE is not initialized.  */

tree
build_string (len, str)
     int len;
     char *str;
{
  register tree s = make_node (STRING_CST);
  TREE_STRING_LENGTH (s) = len;
  TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
  return s;
}

/* Return a newly constructed COMPLEX_CST node whose value is
   specified by the real and imaginary parts REAL and IMAG.
   Both REAL and IMAG should be constant nodes.
   The TREE_TYPE is not initialized.  */

tree
build_complex (real, imag)
     tree real, imag;
{
  register tree t = make_node (COMPLEX_CST);
  TREE_REALPART (t) = real;
  TREE_IMAGPART (t) = imag;
  return t;
}

/* Build a newly constructed TREE_VEC node of length LEN.  */
tree
make_tree_vec (len)
     int len;
{
  register tree t;
  register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
  register struct obstack *obstack = current_obstack;
  register int i;

#ifdef GATHER_STATISTICS
  tree_node_counts[(int)vec_kind]++;
  tree_node_sizes[(int)vec_kind] += length;
#endif

  t = (tree) obstack_alloc (obstack, length);

  for (i = (length / sizeof (int)) - 1; i >= 0; i--)
    ((int *) t)[i] = 0;

  TREE_SET_CODE (t, TREE_VEC);
  TREE_VEC_LENGTH (t) = len;
  if (obstack == &permanent_obstack)
    TREE_PERMANENT (t) = 1;

  return t;
}

/* Return 1 if EXPR is the integer constant zero.  */

int
integer_zerop (expr)
     tree expr;
{
  STRIP_NOPS (expr);

  return (TREE_CODE (expr) == INTEGER_CST
	  && TREE_INT_CST_LOW (expr) == 0
	  && TREE_INT_CST_HIGH (expr) == 0);
}

/* Return 1 if EXPR is the integer constant one.  */

int
integer_onep (expr)
     tree expr;
{
  STRIP_NOPS (expr);

  return (TREE_CODE (expr) == INTEGER_CST
	  && TREE_INT_CST_LOW (expr) == 1
	  && TREE_INT_CST_HIGH (expr) == 0);
}

/* Return 1 if EXPR is an integer containing all 1's
   in as much precision as it contains.  */

int
integer_all_onesp (expr)
     tree expr;
{
  register int prec;
  register int uns;

  STRIP_NOPS (expr);

  if (TREE_CODE (expr) != INTEGER_CST)
    return 0;

  uns = TREE_UNSIGNED (TREE_TYPE (expr));
  if (!uns)
    return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;

  prec = TYPE_PRECISION (TREE_TYPE (expr));
  if (prec >= HOST_BITS_PER_WIDE_INT)
    {
      int high_value, shift_amount;

      shift_amount = prec - HOST_BITS_PER_WIDE_INT;

      if (shift_amount > HOST_BITS_PER_WIDE_INT)
	/* Can not handle precisions greater than twice the host int size.  */
	abort ();
      else if (shift_amount == HOST_BITS_PER_WIDE_INT)
	/* Shifting by the host word size is undefined according to the ANSI
	   standard, so we must handle this as a special case.  */
	high_value = -1;
      else
	high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;

      return TREE_INT_CST_LOW (expr) == -1
	&& TREE_INT_CST_HIGH (expr) == high_value;
    }
  else
    return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
}

/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
   one bit on).  */

int
integer_pow2p (expr)
     tree expr;
{
  HOST_WIDE_INT high, low;

  STRIP_NOPS (expr);

  if (TREE_CODE (expr) != INTEGER_CST)
    return 0;

  high = TREE_INT_CST_HIGH (expr);
  low = TREE_INT_CST_LOW (expr);

  if (high == 0 && low == 0)
    return 0;

  return ((high == 0 && (low & (low - 1)) == 0)
	  || (low == 0 && (high & (high - 1)) == 0));
}

/* Return 1 if EXPR is the real constant zero.  */

int
real_zerop (expr)
     tree expr;
{
  STRIP_NOPS (expr);

  return (TREE_CODE (expr) == REAL_CST
	  && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0));
}

/* Return 1 if EXPR is the real constant one.  */

int
real_onep (expr)
     tree expr;
{
  STRIP_NOPS (expr);

  return (TREE_CODE (expr) == REAL_CST
	  && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1));
}

/* Return 1 if EXPR is the real constant two.  */

int
real_twop (expr)
     tree expr;
{
  STRIP_NOPS (expr);

  return (TREE_CODE (expr) == REAL_CST
	  && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2));
}

/* Nonzero if EXP is a constant or a cast of a constant.  */
 
int
really_constant_p (exp)
     tree exp;
{
  /* This is not quite the same as STRIP_NOPS.  It does more.  */
  while (TREE_CODE (exp) == NOP_EXPR
	 || TREE_CODE (exp) == CONVERT_EXPR
	 || TREE_CODE (exp) == NON_LVALUE_EXPR)
    exp = TREE_OPERAND (exp, 0);
  return TREE_CONSTANT (exp);
}

/* Return first list element whose TREE_VALUE is ELEM.
   Return 0 if ELEM is not it LIST.  */

tree
value_member (elem, list)
     tree elem, list;
{
  while (list)
    {
      if (elem == TREE_VALUE (list))
	return list;
      list = TREE_CHAIN (list);
    }
  return NULL_TREE;
}

/* Return first list element whose TREE_PURPOSE is ELEM.
   Return 0 if ELEM is not it LIST.  */

tree
purpose_member (elem, list)
     tree elem, list;
{
  while (list)
    {
      if (elem == TREE_PURPOSE (list))
	return list;
      list = TREE_CHAIN (list);
    }
  return NULL_TREE;
}

/* Return first list element whose BINFO_TYPE is ELEM.
   Return 0 if ELEM is not it LIST.  */

tree
binfo_member (elem, list)
     tree elem, list;
{
  while (list)
    {
      if (elem == BINFO_TYPE (list))
	return list;
      list = TREE_CHAIN (list);
    }
  return NULL_TREE;
}

/* Return nonzero if ELEM is part of the chain CHAIN.  */

int
chain_member (elem, chain)
     tree elem, chain;
{
  while (chain)
    {
      if (elem == chain)
	return 1;
      chain = TREE_CHAIN (chain);
    }

  return 0;
}

/* Return the length of a chain of nodes chained through TREE_CHAIN.
   We expect a null pointer to mark the end of the chain.
   This is the Lisp primitive `length'.  */

int
list_length (t)
     tree t;
{
  register tree tail;
  register int len = 0;

  for (tail = t; tail; tail = TREE_CHAIN (tail))
    len++;

  return len;
}

/* Concatenate two chains of nodes (chained through TREE_CHAIN)
   by modifying the last node in chain 1 to point to chain 2.
   This is the Lisp primitive `nconc'.  */

tree
chainon (op1, op2)
     tree op1, op2;
{
  tree t;

  if (op1)
    {
      for (t = op1; TREE_CHAIN (t); t = TREE_CHAIN (t))
	if (t == op2) abort ();	/* Circularity being created */
      TREE_CHAIN (t) = op2;
      return op1;
    }
  else return op2;
}

/* Return the last node in a chain of nodes (chained through TREE_CHAIN).  */

tree
tree_last (chain)
     register tree chain;
{
  register tree next;
  if (chain)
    while (next = TREE_CHAIN (chain))
      chain = next;
  return chain;
}

/* Reverse the order of elements in the chain T,
   and return the new head of the chain (old last element).  */

tree
nreverse (t)
     tree t;
{
  register tree prev = 0, decl, next;
  for (decl = t; decl; decl = next)
    {
      next = TREE_CHAIN (decl);
      TREE_CHAIN (decl) = prev;
      prev = decl;
    }
  return prev;
}

/* Given a chain CHAIN of tree nodes,
   construct and return a list of those nodes.  */

tree
listify (chain)
     tree chain;
{
  tree result = NULL_TREE;
  tree in_tail = chain;
  tree out_tail = NULL_TREE;

  while (in_tail)
    {
      tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
      if (out_tail)
	TREE_CHAIN (out_tail) = next;
      else
	result = next;
      out_tail = next;
      in_tail = TREE_CHAIN (in_tail);
    }

  return result;
}

/* Return a newly created TREE_LIST node whose
   purpose and value fields are PARM and VALUE.  */

tree
build_tree_list (parm, value)
     tree parm, value;
{
  register tree t = make_node (TREE_LIST);
  TREE_PURPOSE (t) = parm;
  TREE_VALUE (t) = value;
  return t;
}

/* Similar, but build on the temp_decl_obstack.  */

tree
build_decl_list (parm, value)
     tree parm, value;
{
  register tree node;
  register struct obstack *ambient_obstack = current_obstack;
  current_obstack = &temp_decl_obstack;
  node = build_tree_list (parm, value);
  current_obstack = ambient_obstack;
  return node;
}

/* Return a newly created TREE_LIST node whose
   purpose and value fields are PARM and VALUE
   and whose TREE_CHAIN is CHAIN.  */

tree
tree_cons (purpose, value, chain)
     tree purpose, value, chain;
{
#if 0
  register tree node = make_node (TREE_LIST);
#else
  register int i;
  register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
#ifdef GATHER_STATISTICS
  tree_node_counts[(int)x_kind]++;
  tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
#endif

  for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
    ((int *) node)[i] = 0;

  TREE_SET_CODE (node, TREE_LIST);
  if (current_obstack == &permanent_obstack)
    TREE_PERMANENT (node) = 1;
#endif

  TREE_CHAIN (node) = chain;
  TREE_PURPOSE (node) = purpose;
  TREE_VALUE (node) = value;
  return node;
}

/* Similar, but build on the temp_decl_obstack.  */

tree
decl_tree_cons (purpose, value, chain)
     tree purpose, value, chain;
{
  register tree node;
  register struct obstack *ambient_obstack = current_obstack;
  current_obstack = &temp_decl_obstack;
  node = tree_cons (purpose, value, chain);
  current_obstack = ambient_obstack;
  return node;
}

/* Same as `tree_cons' but make a permanent object.  */

tree
perm_tree_cons (purpose, value, chain)
     tree purpose, value, chain;
{
  register tree node;
  register struct obstack *ambient_obstack = current_obstack;
  current_obstack = &permanent_obstack;

  node = tree_cons (purpose, value, chain);
  current_obstack = ambient_obstack;
  return node;
}

/* Same as `tree_cons', but make this node temporary, regardless.  */

tree
temp_tree_cons (purpose, value, chain)
     tree purpose, value, chain;
{
  register tree node;
  register struct obstack *ambient_obstack = current_obstack;
  current_obstack = &temporary_obstack;

  node = tree_cons (purpose, value, chain);
  current_obstack = ambient_obstack;
  return node;
}

/* Same as `tree_cons', but save this node if the function's RTL is saved.  */

tree
saveable_tree_cons (purpose, value, chain)
     tree purpose, value, chain;
{
  register tree node;
  register struct obstack *ambient_obstack = current_obstack;
  current_obstack = saveable_obstack;

  node = tree_cons (purpose, value, chain);
  current_obstack = ambient_obstack;
  return node;
}

/* Return the size nominally occupied by an object of type TYPE
   when it resides in memory.  The value is measured in units of bytes,
   and its data type is that normally used for type sizes
   (which is the first type created by make_signed_type or
   make_unsigned_type).  */

tree
size_in_bytes (type)
     tree type;
{
  if (type == error_mark_node)
    return integer_zero_node;
  type = TYPE_MAIN_VARIANT (type);
  if (TYPE_SIZE (type) == 0)
    {
      incomplete_type_error (NULL_TREE, type);
      return integer_zero_node;
    }
  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
		     size_int (BITS_PER_UNIT));
}

/* Return the size of TYPE (in bytes) as an integer,
   or return -1 if the size can vary.  */

int
int_size_in_bytes (type)
     tree type;
{
  int size;
  if (type == error_mark_node)
    return 0;
  type = TYPE_MAIN_VARIANT (type);
  if (TYPE_SIZE (type) == 0)
    return -1;
  if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
    return -1;
  size = TREE_INT_CST_LOW (TYPE_SIZE (type));
  return (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
}

/* Return, as an INTEGER_CST node, the number of elements for
   TYPE (which is an ARRAY_TYPE) minus one. 
   This counts only elements of the top array.  */

tree
array_type_nelts (type)
     tree type;
{
  tree index_type = TYPE_DOMAIN (type);
  return (tree_int_cst_equal (TYPE_MIN_VALUE (index_type), integer_zero_node)
	  ? TYPE_MAX_VALUE (index_type)
	  : fold (build (MINUS_EXPR, integer_type_node,
			 TYPE_MAX_VALUE (index_type),
			 TYPE_MIN_VALUE (index_type))));
}

/* Return nonzero if arg is static -- a reference to an object in
   static storage.  This is not the same as the C meaning of `static'.  */

int
staticp (arg)
     tree arg;
{
  switch (TREE_CODE (arg))
    {
    case VAR_DECL:
    case FUNCTION_DECL:
    case CONSTRUCTOR:
      return TREE_STATIC (arg) || DECL_EXTERNAL (arg);

    case STRING_CST:
      return 1;

    case COMPONENT_REF:
    case BIT_FIELD_REF:
      return staticp (TREE_OPERAND (arg, 0));

    case INDIRECT_REF:
      return TREE_CONSTANT (TREE_OPERAND (arg, 0));

    case ARRAY_REF:
      if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
	  && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
	return staticp (TREE_OPERAND (arg, 0));
    }

  return 0;
}

/* This should be applied to any node which may be used in more than one place,
   but must be evaluated only once.  Normally, the code generator would
   reevaluate the node each time; this forces it to compute it once and save
   the result.  This is done by encapsulating the node in a SAVE_EXPR.  */

tree
save_expr (expr)
     tree expr;
{
  register tree t = fold (expr);

  /* We don't care about whether this can be used as an lvalue in this
     context.  */
  while (TREE_CODE (t) == NON_LVALUE_EXPR)
    t = TREE_OPERAND (t, 0);

  /* If the tree evaluates to a constant, then we don't want to hide that
     fact (i.e. this allows further folding, and direct checks for constants).
     However, a read-only object that has side effects cannot be bypassed.
     Since it is no problem to reevaluate literals, we just return the 
     literal node. */

  if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
      || TREE_CODE (t) == SAVE_EXPR)
    return t;

  t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);

  /* This expression might be placed ahead of a jump to ensure that the
     value was computed on both sides of the jump.  So make sure it isn't
     eliminated as dead.  */
  TREE_SIDE_EFFECTS (t) = 1;
  return t;
}

/* Stabilize a reference so that we can use it any number of times
   without causing its operands to be evaluated more than once.
   Returns the stabilized reference.

   Also allows conversion expressions whose operands are references.
   Any other kind of expression is returned unchanged.  */

tree
stabilize_reference (ref)
     tree ref;
{
  register tree result;
  register enum tree_code code = TREE_CODE (ref);

  switch (code)
    {
    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
      /* No action is needed in this case.  */
      return ref;

    case NOP_EXPR:
    case CONVERT_EXPR:
    case FLOAT_EXPR:
    case FIX_TRUNC_EXPR:
    case FIX_FLOOR_EXPR:
    case FIX_ROUND_EXPR:
    case FIX_CEIL_EXPR:
      result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
      break;

    case INDIRECT_REF:
      result = build_nt (INDIRECT_REF,
			 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
      break;

    case COMPONENT_REF:
      result = build_nt (COMPONENT_REF,
			 stabilize_reference (TREE_OPERAND (ref, 0)),
			 TREE_OPERAND (ref, 1));
      break;

    case BIT_FIELD_REF:
      result = build_nt (BIT_FIELD_REF,
			 stabilize_reference (TREE_OPERAND (ref, 0)),
			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
			 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
      break;

    case ARRAY_REF:
      result = build_nt (ARRAY_REF,
			 stabilize_reference (TREE_OPERAND (ref, 0)),
			 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
      break;

      /* If arg isn't a kind of lvalue we recognize, make no change.
	 Caller should recognize the error for an invalid lvalue.  */
    default:
      return ref;

    case ERROR_MARK:
      return error_mark_node;
    }

  TREE_TYPE (result) = TREE_TYPE (ref);
  TREE_READONLY (result) = TREE_READONLY (ref);
  TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
  TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
  TREE_RAISES (result) = TREE_RAISES (ref);

  return result;
}

/* Subroutine of stabilize_reference; this is called for subtrees of
   references.  Any expression with side-effects must be put in a SAVE_EXPR
   to ensure that it is only evaluated once.

   We don't put SAVE_EXPR nodes around everything, because assigning very
   simple expressions to temporaries causes us to miss good opportunities
   for optimizations.  Among other things, the opportunity to fold in the
   addition of a constant into an addressing mode often gets lost, e.g.
   "y[i+1] += x;".  In general, we take the approach that we should not make
   an assignment unless we are forced into it - i.e., that any non-side effect
   operator should be allowed, and that cse should take care of coalescing
   multiple utterances of the same expression should that prove fruitful.  */

static tree
stabilize_reference_1 (e)
     tree e;
{
  register tree result;
  register int length;
  register enum tree_code code = TREE_CODE (e);

  /* We cannot ignore const expressions because it might be a reference
     to a const array but whose index contains side-effects.  But we can
     ignore things that are actual constant or that already have been
     handled by this function.  */

  if (TREE_CONSTANT (e) || code == SAVE_EXPR)
    return e;

  switch (TREE_CODE_CLASS (code))
    {
    case 'x':
    case 't':
    case 'd':
    case 'b':
    case '<':
    case 's':
    case 'e':
    case 'r':
      /* If the expression has side-effects, then encase it in a SAVE_EXPR
	 so that it will only be evaluated once.  */
      /* The reference (r) and comparison (<) classes could be handled as
	 below, but it is generally faster to only evaluate them once.  */
      if (TREE_SIDE_EFFECTS (e))
	return save_expr (e);
      return e;

    case 'c':
      /* Constants need no processing.  In fact, we should never reach
	 here.  */
      return e;
      
    case '2':
      /* Recursively stabilize each operand.  */
      result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
			 stabilize_reference_1 (TREE_OPERAND (e, 1)));
      break;

    case '1':
      /* Recursively stabilize each operand.  */
      result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
      break;
    }
  
  TREE_TYPE (result) = TREE_TYPE (e);
  TREE_READONLY (result) = TREE_READONLY (e);
  TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
  TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
  TREE_RAISES (result) = TREE_RAISES (e);

  return result;
}

/* Low-level constructors for expressions.  */

/* Build an expression of code CODE, data type TYPE,
   and operands as specified by the arguments ARG1 and following arguments.
   Expressions and reference nodes can be created this way.
   Constants, decls, types and misc nodes cannot be.  */

tree
build (va_alist)
     va_dcl
{
  va_list p;
  enum tree_code code;
  register tree t;
  register int length;
  register int i;

  va_start (p);

  code = va_arg (p, enum tree_code);
  t = make_node (code);
  length = tree_code_length[(int) code];
  TREE_TYPE (t) = va_arg (p, tree);

  if (length == 2)
    {
      /* This is equivalent to the loop below, but faster.  */
      register tree arg0 = va_arg (p, tree);
      register tree arg1 = va_arg (p, tree);
      TREE_OPERAND (t, 0) = arg0;
      TREE_OPERAND (t, 1) = arg1;
      if ((arg0 && TREE_SIDE_EFFECTS (arg0))
	  || (arg1 && TREE_SIDE_EFFECTS (arg1)))
	TREE_SIDE_EFFECTS (t) = 1;
      TREE_RAISES (t)
	= (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
    }
  else if (length == 1)
    {
      register tree arg0 = va_arg (p, tree);

      /* Call build1 for this!  */
      if (TREE_CODE_CLASS (code) != 's')
	abort ();
      TREE_OPERAND (t, 0) = arg0;
      if (arg0 && TREE_SIDE_EFFECTS (arg0))
	TREE_SIDE_EFFECTS (t) = 1;
      TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
    }
  else
    {
      for (i = 0; i < length; i++)
	{
	  register tree operand = va_arg (p, tree);
	  TREE_OPERAND (t, i) = operand;
	  if (operand)
	    {
	      if (TREE_SIDE_EFFECTS (operand))
		TREE_SIDE_EFFECTS (t) = 1;
	      if (TREE_RAISES (operand))
		TREE_RAISES (t) = 1;
	    }
	}
    }
  va_end (p);
  return t;
}

/* Same as above, but only builds for unary operators.
   Saves lions share of calls to `build'; cuts down use
   of varargs, which is expensive for RISC machines.  */
tree
build1 (code, type, node)
     enum tree_code code;
     tree type;
     tree node;
{
  register struct obstack *obstack = current_obstack;
  register int i, length;
  register tree_node_kind kind;
  register tree t;

#ifdef GATHER_STATISTICS
  if (TREE_CODE_CLASS (code) == 'r')
    kind = r_kind;
  else
    kind = e_kind;
#endif

  obstack = expression_obstack;
  length = sizeof (struct tree_exp);

  t = (tree) obstack_alloc (obstack, length);

#ifdef GATHER_STATISTICS
  tree_node_counts[(int)kind]++;
  tree_node_sizes[(int)kind] += length;
#endif

  for (i = (length / sizeof (int)) - 1; i >= 0; i--)
    ((int *) t)[i] = 0;

  TREE_TYPE (t) = type;
  TREE_SET_CODE (t, code);

  if (obstack == &permanent_obstack)
    TREE_PERMANENT (t) = 1;

  TREE_OPERAND (t, 0) = node;
  if (node)
    {
      if (TREE_SIDE_EFFECTS (node))
	TREE_SIDE_EFFECTS (t) = 1;
      if (TREE_RAISES (node))
	TREE_RAISES (t) = 1;
    }

  return t;
}

/* Similar except don't specify the TREE_TYPE
   and leave the TREE_SIDE_EFFECTS as 0.
   It is permissible for arguments to be null,
   or even garbage if their values do not matter.  */

tree
build_nt (va_alist)
     va_dcl
{
  va_list p;
  register enum tree_code code;
  register tree t;
  register int length;
  register int i;

  va_start (p);

  code = va_arg (p, enum tree_code);
  t = make_node (code);
  length = tree_code_length[(int) code];

  for (i = 0; i < length; i++)
    TREE_OPERAND (t, i) = va_arg (p, tree);

  va_end (p);
  return t;
}

/* Similar to `build_nt', except we build
   on the temp_decl_obstack, regardless.  */

tree
build_parse_node (va_alist)
     va_dcl
{
  register struct obstack *ambient_obstack = expression_obstack;
  va_list p;
  register enum tree_code code;
  register tree t;
  register int length;
  register int i;

  expression_obstack = &temp_decl_obstack;

  va_start (p);

  code = va_arg (p, enum tree_code);
  t = make_node (code);
  length = tree_code_length[(int) code];

  for (i = 0; i < length; i++)
    TREE_OPERAND (t, i) = va_arg (p, tree);

  va_end (p);
  expression_obstack = ambient_obstack;
  return t;
}

#if 0
/* Commented out because this wants to be done very
   differently.  See cp-lex.c.  */
tree
build_op_identifier (op1, op2)
     tree op1, op2;
{
  register tree t = make_node (OP_IDENTIFIER);
  TREE_PURPOSE (t) = op1;
  TREE_VALUE (t) = op2;
  return t;
}
#endif

/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
   We do NOT enter this node in any sort of symbol table.

   layout_decl is used to set up the decl's storage layout.
   Other slots are initialized to 0 or null pointers.  */

tree
build_decl (code, name, type)
     enum tree_code code;
     tree name, type;
{
  register tree t;

  t = make_node (code);

/*  if (type == error_mark_node)
    type = integer_type_node; */
/* That is not done, deliberately, so that having error_mark_node
   as the type can suppress useless errors in the use of this variable.  */

  DECL_NAME (t) = name;
  DECL_ASSEMBLER_NAME (t) = name;
  TREE_TYPE (t) = type;

  if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
    layout_decl (t, 0);
  else if (code == FUNCTION_DECL)
    DECL_MODE (t) = FUNCTION_MODE;

  return t;
}

/* BLOCK nodes are used to represent the structure of binding contours
   and declarations, once those contours have been exited and their contents
   compiled.  This information is used for outputting debugging info.
   A BLOCK may have a "controller" which is a BIND_EXPR node.
   Then the BLOCK is ignored unless the controller has the TREE_USED flag.  */

tree
build_block (vars, tags, subblocks, supercontext, chain)
     tree vars, tags, subblocks, supercontext, chain;
{
  register tree block = make_node (BLOCK);
  BLOCK_VARS (block) = vars;
  BLOCK_TYPE_TAGS (block) = tags;
  BLOCK_SUBBLOCKS (block) = subblocks;
  BLOCK_SUPERCONTEXT (block) = supercontext;
  BLOCK_CHAIN (block) = chain;
  return block;
}

/* Return a type like TYPE except that its TYPE_READONLY is CONSTP
   and its TYPE_VOLATILE is VOLATILEP.

   Such variant types already made are recorded so that duplicates
   are not made.

   A variant types should never be used as the type of an expression.
   Always copy the variant information into the TREE_READONLY
   and TREE_THIS_VOLATILE of the expression, and then give the expression
   as its type the "main variant", the variant whose TYPE_READONLY
   and TYPE_VOLATILE are zero.  Use TYPE_MAIN_VARIANT to find the
   main variant.  */

tree
build_type_variant (type, constp, volatilep)
     tree type;
     int constp, volatilep;
{
  register tree t, m = TYPE_MAIN_VARIANT (type);
  register struct obstack *ambient_obstack = current_obstack;

  /* Treat any nonzero argument as 1.  */
  constp = !!constp;
  volatilep = !!volatilep;

  /* If not generating auxiliary info, search the chain of variants to see
     if there is already one there just like the one we need to have.  If so,
     use that existing one.

     We don't do this in the case where we are generating aux info because
     in that case we want each typedef names to get it's own distinct type
     node, even if the type of this new typedef is the same as some other
     (existing) type.  */

  if (!flag_gen_aux_info)
    for (t = m; t; t = TYPE_NEXT_VARIANT (t))
      if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t))
        return t;

  /* We need a new one.  */
  current_obstack
    = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;

  t = copy_node (type);
  TYPE_READONLY (t) = constp;
  TYPE_VOLATILE (t) = volatilep;
  TYPE_POINTER_TO (t) = 0;
  TYPE_REFERENCE_TO (t) = 0;

  /* Add this type to the chain of variants of TYPE.  */
  TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
  TYPE_NEXT_VARIANT (m) = t;

  current_obstack = ambient_obstack;
  return t;
}

/* Create a new variant of TYPE, equivalent but distinct.
   This is so the caller can modify it.  */

tree
build_type_copy (type)
     tree type;
{
  register tree t, m = TYPE_MAIN_VARIANT (type);
  register struct obstack *ambient_obstack = current_obstack;

  current_obstack
    = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;

  t = copy_node (type);
  TYPE_POINTER_TO (t) = 0;
  TYPE_REFERENCE_TO (t) = 0;

  /* Add this type to the chain of variants of TYPE.  */
  TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
  TYPE_NEXT_VARIANT (m) = t;

  current_obstack = ambient_obstack;
  return t;
}

/* Hashing of types so that we don't make duplicates.
   The entry point is `type_hash_canon'.  */

/* Each hash table slot is a bucket containing a chain
   of these structures.  */

struct type_hash
{
  struct type_hash *next;	/* Next structure in the bucket.  */
  int hashcode;			/* Hash code of this type.  */
  tree type;			/* The type recorded here.  */
};

/* Now here is the hash table.  When recording a type, it is added
   to the slot whose index is the hash code mod the table size.
   Note that the hash table is used for several kinds of types
   (function types, array types and array index range types, for now).
   While all these live in the same table, they are completely independent,
   and the hash code is computed differently for each of these.  */

#define TYPE_HASH_SIZE 59
struct type_hash *type_hash_table[TYPE_HASH_SIZE];

/* Here is how primitive or already-canonicalized types' hash
   codes are made.  */
#define TYPE_HASH(TYPE) ((int) (TYPE) & 0777777)

/* Compute a hash code for a list of types (chain of TREE_LIST nodes
   with types in the TREE_VALUE slots), by adding the hash codes
   of the individual types.  */

int
type_hash_list (list)
     tree list;
{
  register int hashcode;
  register tree tail;
  for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
    hashcode += TYPE_HASH (TREE_VALUE (tail));
  return hashcode;
}

/* Look in the type hash table for a type isomorphic to TYPE.
   If one is found, return it.  Otherwise return 0.  */

tree
type_hash_lookup (hashcode, type)
     int hashcode;
     tree type;
{
  register struct type_hash *h;
  for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
    if (h->hashcode == hashcode
	&& TREE_CODE (h->type) == TREE_CODE (type)
	&& TREE_TYPE (h->type) == TREE_TYPE (type)
	&& (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
	    || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
				   TYPE_MAX_VALUE (type)))
	&& (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
	    || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
				   TYPE_MIN_VALUE (type)))
	&& (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
	    || (TYPE_DOMAIN (h->type)
		&& TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
		&& TYPE_DOMAIN (type)
		&& TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
		&& type_list_equal (TYPE_DOMAIN (h->type), TYPE_DOMAIN (type)))))
      return h->type;
  return 0;
}

/* Add an entry to the type-hash-table
   for a type TYPE whose hash code is HASHCODE.  */

void
type_hash_add (hashcode, type)
     int hashcode;
     tree type;
{
  register struct type_hash *h;

  h = (struct type_hash *) oballoc (sizeof (struct type_hash));
  h->hashcode = hashcode;
  h->type = type;
  h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
  type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
}

/* Given TYPE, and HASHCODE its hash code, return the canonical
   object for an identical type if one already exists.
   Otherwise, return TYPE, and record it as the canonical object
   if it is a permanent object.

   To use this function, first create a type of the sort you want.
   Then compute its hash code from the fields of the type that
   make it different from other similar types.
   Then call this function and use the value.
   This function frees the type you pass in if it is a duplicate.  */

/* Set to 1 to debug without canonicalization.  Never set by program.  */
int debug_no_type_hash = 0;

tree
type_hash_canon (hashcode, type)
     int hashcode;
     tree type;
{
  tree t1;

  if (debug_no_type_hash)
    return type;

  t1 = type_hash_lookup (hashcode, type);
  if (t1 != 0)
    {
      struct obstack *o
	= TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
      obstack_free (o, type);
#ifdef GATHER_STATISTICS
      tree_node_counts[(int)t_kind]--;
      tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
#endif
      return t1;
    }

  /* If this is a new type, record it for later reuse.  */
  if (current_obstack == &permanent_obstack)
    type_hash_add (hashcode, type);

  return type;
}

/* Given two lists of types
   (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
   return 1 if the lists contain the same types in the same order.
   Also, the TREE_PURPOSEs must match.  */

int
type_list_equal (l1, l2)
     tree l1, l2;
{
  register tree t1, t2;
  for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
    {
      if (TREE_VALUE (t1) != TREE_VALUE (t2))
	return 0;
      if (TREE_PURPOSE (t1) != TREE_PURPOSE (t2))
	{
	  int cmp = simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2));
	  if (cmp < 0)
	    abort ();
	  if (cmp == 0)
	    return 0;
	}
    }

  return t1 == t2;
}

/* Nonzero if integer constants T1 and T2
   represent the same constant value.  */

int
tree_int_cst_equal (t1, t2)
     tree t1, t2;
{
  if (t1 == t2)
    return 1;
  if (t1 == 0 || t2 == 0)
    return 0;
  if (TREE_CODE (t1) == INTEGER_CST
      && TREE_CODE (t2) == INTEGER_CST
      && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
      && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
    return 1;
  return 0;
}

/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
   The precise way of comparison depends on their data type.  */

int
tree_int_cst_lt (t1, t2)
     tree t1, t2;
{
  if (t1 == t2)
    return 0;

  if (!TREE_UNSIGNED (TREE_TYPE (t1)))
    return INT_CST_LT (t1, t2);
  return INT_CST_LT_UNSIGNED (t1, t2);
}

/* Compare two constructor-element-type constants.  */
int
simple_cst_list_equal (l1, l2)
     tree l1, l2;
{
  while (l1 != NULL_TREE && l2 != NULL_TREE)
    {
      int cmp = simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2));
      if (cmp < 0)
	abort ();
      if (cmp == 0)
	return 0;
      l1 = TREE_CHAIN (l1);
      l2 = TREE_CHAIN (l2);
    }
  return (l1 == l2);
}

/* Return truthvalue of whether T1 is the same tree structure as T2.
   Return 1 if they are the same.
   Return 0 if they are understandably different.
   Return -1 if either contains tree structure not understood by
   this function.  */

int
simple_cst_equal (t1, t2)
     tree t1, t2;
{
  register enum tree_code code1, code2;
  int cmp;

  if (t1 == t2)
    return 1;
  if (t1 == 0 || t2 == 0)
    return 0;

  code1 = TREE_CODE (t1);
  code2 = TREE_CODE (t2);

  if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
    if (code2 == NOP_EXPR || code2 == CONVERT_EXPR || code2 == NON_LVALUE_EXPR)
      return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
    else
      return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
  else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
	   || code2 == NON_LVALUE_EXPR)
    return simple_cst_equal (t1, TREE_OPERAND (t2, 0));

  if (code1 != code2)
    return 0;

  switch (code1)
    {
    case INTEGER_CST:
      return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
	&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);

    case REAL_CST:
      return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));

    case STRING_CST:
      return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
	&& !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
		  TREE_STRING_LENGTH (t1));

    case CONSTRUCTOR:
      abort ();

    case SAVE_EXPR:
      return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));

    case CALL_EXPR:
      cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
      if (cmp <= 0)
	return cmp;
      return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));

    case TARGET_EXPR:
      /* Special case: if either target is an unallocated VAR_DECL,
	 it means that it's going to be unified with whatever the
	 TARGET_EXPR is really supposed to initialize, so treat it
	 as being equivalent to anything.  */
      if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
	   && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
	   && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
	  || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
	      && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
	      && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
	cmp = 1;
      else
	cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
      if (cmp <= 0)
	return cmp;
      return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));

    case WITH_CLEANUP_EXPR:
      cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
      if (cmp <= 0)
	return cmp;
      return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));

    case COMPONENT_REF:
      if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
      return 0;

    case BIT_FIELD_REF:
      return (simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
	      && simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1))
	      && simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2)));

    case VAR_DECL:
    case PARM_DECL:
    case CONST_DECL:
    case FUNCTION_DECL:
      return 0;

    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case TRUNC_DIV_EXPR:
    case TRUNC_MOD_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
      cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
      if (cmp <= 0)
	return cmp;
      return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));

    case NEGATE_EXPR:
    case ADDR_EXPR:
    case REFERENCE_EXPR:
    case INDIRECT_REF:
      return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));

    default:
#if 0
      return lang_simple_cst_equal (t1, t2);
#else
      return -1;
#endif
    }
}

/* Constructors for pointer, array and function types.
   (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
   constructed by language-dependent code, not here.)  */

/* Construct, lay out and return the type of pointers to TO_TYPE.
   If such a type has already been constructed, reuse it.  */

tree
build_pointer_type (to_type)
     tree to_type;
{
  register tree t = TYPE_POINTER_TO (to_type);
  register struct obstack *ambient_obstack = current_obstack;
  register struct obstack *ambient_saveable_obstack = saveable_obstack;

  /* First, if we already have a type for pointers to TO_TYPE, use it.  */

  if (t)
    return t;

  /* We need a new one.  If TO_TYPE is permanent, make this permanent too.  */
  if (TREE_PERMANENT (to_type))
    {
      current_obstack = &permanent_obstack;
      saveable_obstack = &permanent_obstack;
    }

  t = make_node (POINTER_TYPE);
  TREE_TYPE (t) = to_type;

  /* Record this type as the pointer to TO_TYPE.  */
  TYPE_POINTER_TO (to_type) = t;

  /* Lay out the type.  This function has many callers that are concerned
     with expression-construction, and this simplifies them all.
     Also, it guarantees the TYPE_SIZE is permanent if the type is.  */
  layout_type (t);

  current_obstack = ambient_obstack;
  saveable_obstack = ambient_saveable_obstack;
  return t;
}

/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
   MAXVAL should be the maximum value in the domain
   (one less than the length of the array).  */

tree
build_index_type (maxval)
     tree maxval;
{
  register tree itype = make_node (INTEGER_TYPE);
  TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
  TYPE_MIN_VALUE (itype) = build_int_2 (0, 0);
  TREE_TYPE (TYPE_MIN_VALUE (itype)) = sizetype;
  TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
  TYPE_MODE (itype) = TYPE_MODE (sizetype);
  TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
  TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
  if (TREE_CODE (maxval) == INTEGER_CST)
    {
      HOST_WIDE_INT maxint = TREE_INT_CST_LOW (maxval);
      return type_hash_canon (maxint > 0 ? maxint : - maxint, itype);
    }
  else
    return itype;
}

/* Just like build_index_type, but takes lowval and highval instead
   of just highval (maxval). */

tree
build_index_2_type (lowval,highval)
     tree lowval, highval;
{
  register tree itype = make_node (INTEGER_TYPE);
  TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
  TYPE_MIN_VALUE (itype) = convert (sizetype, lowval);
  TYPE_MAX_VALUE (itype) = convert (sizetype, highval);
  TYPE_MODE (itype) = TYPE_MODE (sizetype);
  TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
  TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
  if ((TREE_CODE (lowval) == INTEGER_CST)
      && (TREE_CODE (highval) == INTEGER_CST))
    {
      HOST_WIDE_INT highint = TREE_INT_CST_LOW (highval);
      HOST_WIDE_INT lowint = TREE_INT_CST_LOW (lowval);
      HOST_WIDE_INT maxint = highint - lowint;
      return type_hash_canon (maxint > 0 ? maxint : - maxint, itype);
    }
  else
    return itype;
}

/* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
   Needed because when index types are not hashed, equal index types
   built at different times appear distinct, even though structurally,
   they are not.  */

int
index_type_equal (itype1, itype2)
     tree itype1, itype2;
{
  if (TREE_CODE (itype1) != TREE_CODE (itype2))
    return 0;
  if (TREE_CODE (itype1) == INTEGER_TYPE)
    {
      if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
	  || TYPE_MODE (itype1) != TYPE_MODE (itype2)
	  || ! simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2))
	  || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
	return 0;
      if (simple_cst_equal (TYPE_MIN_VALUE (itype1), TYPE_MIN_VALUE (itype2))
	  && simple_cst_equal (TYPE_MAX_VALUE (itype1), TYPE_MAX_VALUE (itype2)))
	return 1;
    }
  return 0;
}

/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
   and number of elements specified by the range of values of INDEX_TYPE.
   If such a type has already been constructed, reuse it.  */

tree
build_array_type (elt_type, index_type)
     tree elt_type, index_type;
{
  register tree t;
  int hashcode;

  if (TREE_CODE (elt_type) == FUNCTION_TYPE)
    {
      error ("arrays of functions are not meaningful");
      elt_type = integer_type_node;
    }

  /* Make sure TYPE_POINTER_TO (elt_type) is filled in.  */
  build_pointer_type (elt_type);

  /* Allocate the array after the pointer type,
     in case we free it in type_hash_canon.  */
  t = make_node (ARRAY_TYPE);
  TREE_TYPE (t) = elt_type;
  TYPE_DOMAIN (t) = index_type;

  if (index_type == 0)
    return t;

  hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
  t = type_hash_canon (hashcode, t);

  if (TYPE_SIZE (t) == 0)
    layout_type (t);
  return t;
}

/* Construct, lay out and return
   the type of functions returning type VALUE_TYPE
   given arguments of types ARG_TYPES.
   ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
   are data type nodes for the arguments of the function.
   If such a type has already been constructed, reuse it.  */

tree
build_function_type (value_type, arg_types)
     tree value_type, arg_types;
{
  register tree t;
  int hashcode;

  if (TREE_CODE (value_type) == FUNCTION_TYPE
      || TREE_CODE (value_type) == ARRAY_TYPE)
    {
      error ("function return type cannot be function or array");
      value_type = integer_type_node;
    }

  /* Make a node of the sort we want.  */
  t = make_node (FUNCTION_TYPE);
  TREE_TYPE (t) = value_type;
  TYPE_ARG_TYPES (t) = arg_types;

  /* If we already have such a type, use the old one and free this one.  */
  hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
  t = type_hash_canon (hashcode, t);

  if (TYPE_SIZE (t) == 0)
    layout_type (t);
  return t;
}

/* Build the node for the type of references-to-TO_TYPE.  */

tree
build_reference_type (to_type)
     tree to_type;
{
  register tree t = TYPE_REFERENCE_TO (to_type);
  register struct obstack *ambient_obstack = current_obstack;
  register struct obstack *ambient_saveable_obstack = saveable_obstack;

  /* First, if we already have a type for pointers to TO_TYPE, use it.  */

  if (t)
    return t;

  /* We need a new one.  If TO_TYPE is permanent, make this permanent too.  */
  if (TREE_PERMANENT (to_type))
    {
      current_obstack = &permanent_obstack;
      saveable_obstack = &permanent_obstack;
    }

  t = make_node (REFERENCE_TYPE);
  TREE_TYPE (t) = to_type;

  /* Record this type as the pointer to TO_TYPE.  */
  TYPE_REFERENCE_TO (to_type) = t;

  layout_type (t);

  current_obstack = ambient_obstack;
  saveable_obstack = ambient_saveable_obstack;
  return t;
}

/* Construct, lay out and return the type of methods belonging to class
   BASETYPE and whose arguments and values are described by TYPE.
   If that type exists already, reuse it.
   TYPE must be a FUNCTION_TYPE node.  */

tree
build_method_type (basetype, type)
     tree basetype, type;
{
  register tree t;
  int hashcode;

  /* Make a node of the sort we want.  */
  t = make_node (METHOD_TYPE);

  if (TREE_CODE (type) != FUNCTION_TYPE)
    abort ();

  TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
  TREE_TYPE (t) = TREE_TYPE (type);

  /* The actual arglist for this function includes a "hidden" argument
     which is "this".  Put it into the list of argument types.  */

  TYPE_ARG_TYPES (t)
    = tree_cons (NULL_TREE,
		 build_pointer_type (basetype), TYPE_ARG_TYPES (type));

  /* If we already have such a type, use the old one and free this one.  */
  hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
  t = type_hash_canon (hashcode, t);

  if (TYPE_SIZE (t) == 0)
    layout_type (t);

  return t;
}

/* Construct, lay out and return the type of methods belonging to class
   BASETYPE and whose arguments and values are described by TYPE.
   If that type exists already, reuse it.
   TYPE must be a FUNCTION_TYPE node.  */

tree
build_offset_type (basetype, type)
     tree basetype, type;
{
  register tree t;
  int hashcode;

  /* Make a node of the sort we want.  */
  t = make_node (OFFSET_TYPE);

  TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
  TREE_TYPE (t) = type;

  /* If we already have such a type, use the old one and free this one.  */
  hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
  t = type_hash_canon (hashcode, t);

  if (TYPE_SIZE (t) == 0)
    layout_type (t);

  return t;
}

/* Create a complex type whose components are COMPONENT_TYPE.  */

tree
build_complex_type (component_type)
     tree component_type;
{
  register tree t;
  int hashcode;

  /* Make a node of the sort we want.  */
  t = make_node (COMPLEX_TYPE);

  TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
  TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
  TYPE_READONLY (t) = TYPE_READONLY (component_type);

  /* If we already have such a type, use the old one and free this one.  */
  hashcode = TYPE_HASH (component_type);
  t = type_hash_canon (hashcode, t);

  if (TYPE_SIZE (t) == 0)
    layout_type (t);

  return t;
}

/* Return OP, stripped of any conversions to wider types as much as is safe.
   Converting the value back to OP's type makes a value equivalent to OP.

   If FOR_TYPE is nonzero, we return a value which, if converted to
   type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.

   If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
   narrowest type that can hold the value, even if they don't exactly fit.
   Otherwise, bit-field references are changed to a narrower type
   only if they can be fetched directly from memory in that type.

   OP must have integer, real or enumeral type.  Pointers are not allowed!

   There are some cases where the obvious value we could return
   would regenerate to OP if converted to OP's type, 
   but would not extend like OP to wider types.
   If FOR_TYPE indicates such extension is contemplated, we eschew such values.
   For example, if OP is (unsigned short)(signed char)-1,
   we avoid returning (signed char)-1 if FOR_TYPE is int,
   even though extending that to an unsigned short would regenerate OP,
   since the result of extending (signed char)-1 to (int)
   is different from (int) OP.  */

tree
get_unwidened (op, for_type)
     register tree op;
     tree for_type;
{
  /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension.  */
  /* TYPE_PRECISION is safe in place of type_precision since
     pointer types are not allowed.  */
  register tree type = TREE_TYPE (op);
  register unsigned final_prec
    = TYPE_PRECISION (for_type != 0 ? for_type : type);
  register int uns
    = (for_type != 0 && for_type != type
       && final_prec > TYPE_PRECISION (type)
       && TREE_UNSIGNED (type));
  register tree win = op;

  while (TREE_CODE (op) == NOP_EXPR)
    {
      register int bitschange
	= TYPE_PRECISION (TREE_TYPE (op))
	  - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));

      /* Truncations are many-one so cannot be removed.
	 Unless we are later going to truncate down even farther.  */
      if (bitschange < 0
	  && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
	break;

      /* See what's inside this conversion.  If we decide to strip it,
	 we will set WIN.  */
      op = TREE_OPERAND (op, 0);

      /* If we have not stripped any zero-extensions (uns is 0),
	 we can strip any kind of extension.
	 If we have previously stripped a zero-extension,
	 only zero-extensions can safely be stripped.
	 Any extension can be stripped if the bits it would produce
	 are all going to be discarded later by truncating to FOR_TYPE.  */

      if (bitschange > 0)
	{
	  if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
	    win = op;
	  /* TREE_UNSIGNED says whether this is a zero-extension.
	     Let's avoid computing it if it does not affect WIN
	     and if UNS will not be needed again.  */
	  if ((uns || TREE_CODE (op) == NOP_EXPR)
	      && TREE_UNSIGNED (TREE_TYPE (op)))
	    {
	      uns = 1;
	      win = op;
	    }
	}
    }

  if (TREE_CODE (op) == COMPONENT_REF
      /* Since type_for_size always gives an integer type.  */
      && TREE_CODE (type) != REAL_TYPE)
    {
      unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
      type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));

      /* We can get this structure field in the narrowest type it fits in.
	 If FOR_TYPE is 0, do this only for a field that matches the
	 narrower type exactly and is aligned for it
	 The resulting extension to its nominal type (a fullword type)
	 must fit the same conditions as for other extensions.  */

      if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
	  && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
	  && (! uns || final_prec <= innerprec
	      || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
	  && type != 0)
	{
	  win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
		       TREE_OPERAND (op, 1));
	  TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
	  TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
	  TREE_RAISES (win) = TREE_RAISES (op);
	}
    }
  return win;
}

/* Return OP or a simpler expression for a narrower value
   which can be sign-extended or zero-extended to give back OP.
   Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
   or 0 if the value should be sign-extended.  */

tree
get_narrower (op, unsignedp_ptr)
     register tree op;
     int *unsignedp_ptr;
{
  register int uns = 0;
  int first = 1;
  register tree win = op;

  while (TREE_CODE (op) == NOP_EXPR)
    {
      register int bitschange
	= TYPE_PRECISION (TREE_TYPE (op))
	  - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));

      /* Truncations are many-one so cannot be removed.  */
      if (bitschange < 0)
	break;

      /* See what's inside this conversion.  If we decide to strip it,
	 we will set WIN.  */
      op = TREE_OPERAND (op, 0);

      if (bitschange > 0)
	{
	  /* An extension: the outermost one can be stripped,
	     but remember whether it is zero or sign extension.  */
	  if (first)
	    uns = TREE_UNSIGNED (TREE_TYPE (op));
	  /* Otherwise, if a sign extension has been stripped,
	     only sign extensions can now be stripped;
	     if a zero extension has been stripped, only zero-extensions.  */
	  else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
	    break;
	  first = 0;
	}
      /* A change in nominal type can always be stripped.  */

      win = op;
    }

  if (TREE_CODE (op) == COMPONENT_REF
      /* Since type_for_size always gives an integer type.  */
      && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
    {
      unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
      tree type = type_for_size (innerprec, TREE_UNSIGNED (op));

      /* We can get this structure field in a narrower type that fits it,
	 but the resulting extension to its nominal type (a fullword type)
	 must satisfy the same conditions as for other extensions.

	 Do this only for fields that are aligned (not bit-fields),
	 because when bit-field insns will be used there is no
	 advantage in doing this.  */

      if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
	  && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
	  && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
	  && type != 0)
	{
	  if (first)
	    uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
	  win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
		       TREE_OPERAND (op, 1));
	  TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
	  TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
	  TREE_RAISES (win) = TREE_RAISES (op);
	}
    }
  *unsignedp_ptr = uns;
  return win;
}

/* Return the precision of a type, for arithmetic purposes.
   Supports all types on which arithmetic is possible
   (including pointer types).
   It's not clear yet what will be right for complex types.  */

int
type_precision (type)
     register tree type;
{
  return ((TREE_CODE (type) == INTEGER_TYPE
	   || TREE_CODE (type) == ENUMERAL_TYPE
	   || TREE_CODE (type) == REAL_TYPE)
	  ? TYPE_PRECISION (type) : POINTER_SIZE);
}

/* Nonzero if integer constant C has a value that is permissible
   for type TYPE (an INTEGER_TYPE).  */

int
int_fits_type_p (c, type)
     tree c, type;
{
  if (TREE_UNSIGNED (type))
    return (!INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
	    && !INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)));
  else
    return (!INT_CST_LT (TYPE_MAX_VALUE (type), c)
	    && !INT_CST_LT (c, TYPE_MIN_VALUE (type)));
}

/* Return the innermost context enclosing DECL that is
   a FUNCTION_DECL, or zero if none.  */

tree
decl_function_context (decl)
     tree decl;
{
  tree context;

  if (TREE_CODE (decl) == ERROR_MARK)
    return 0;

  if (TREE_CODE (decl) == SAVE_EXPR)
    context = SAVE_EXPR_CONTEXT (decl);
  else
    context = DECL_CONTEXT (decl);

  while (context && TREE_CODE (context) != FUNCTION_DECL)
    {
      if (TREE_CODE (context) == RECORD_TYPE
	  || TREE_CODE (context) == UNION_TYPE)
	context = TYPE_CONTEXT (context);
      else if (TREE_CODE (context) == TYPE_DECL)
	context = DECL_CONTEXT (context);
      else if (TREE_CODE (context) == BLOCK)
	context = BLOCK_SUPERCONTEXT (context);
      else
	/* Unhandled CONTEXT !?  */
	abort ();
    }

  return context;
}

/* Return the innermost context enclosing DECL that is
   a RECORD_TYPE or UNION_TYPE, or zero if none.
   TYPE_DECLs and FUNCTION_DECLs are transparent to this function.  */

tree
decl_type_context (decl)
     tree decl;
{
  tree context = DECL_CONTEXT (decl);

  while (context)
    {
      if (TREE_CODE (context) == RECORD_TYPE
	  || TREE_CODE (context) == UNION_TYPE)
	return context;
      if (TREE_CODE (context) == TYPE_DECL
	  || TREE_CODE (context) == FUNCTION_DECL)
	context = DECL_CONTEXT (context);
      else if (TREE_CODE (context) == BLOCK)
	context = BLOCK_SUPERCONTEXT (context);
      else
	/* Unhandled CONTEXT!?  */
	abort ();
    }
  return NULL_TREE;
}

void
print_obstack_statistics (str, o)
     char *str;
     struct obstack *o;
{
  struct _obstack_chunk *chunk = o->chunk;
  int n_chunks = 0;
  int n_alloc = 0;

  while (chunk)
    {
      n_chunks += 1;
      n_alloc += chunk->limit - &chunk->contents[0];
      chunk = chunk->prev;
    }
  fprintf (stderr, "obstack %s: %d bytes, %d chunks\n",
	   str, n_alloc, n_chunks);
}
void
dump_tree_statistics ()
{
  int i;
  int total_nodes, total_bytes;

  fprintf (stderr, "\n??? tree nodes created\n\n");
#ifdef GATHER_STATISTICS
  fprintf (stderr, "Kind                  Nodes     Bytes\n");
  fprintf (stderr, "-------------------------------------\n");
  total_nodes = total_bytes = 0;
  for (i = 0; i < (int) all_kinds; i++)
    {
      fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
	       tree_node_counts[i], tree_node_sizes[i]);
      total_nodes += tree_node_counts[i];
      total_bytes += tree_node_sizes[i];
    }
  fprintf (stderr, "%-20s        %9d\n", "identifier names", id_string_size);
  fprintf (stderr, "-------------------------------------\n");
  fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
  fprintf (stderr, "-------------------------------------\n");
#else
  fprintf (stderr, "(No per-node statistics)\n");
#endif
  print_lang_statistics ();
}