1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
|
/* Support routines for Value Range Propagation (VRP).
Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "flags.h"
#include "tree.h"
#include "basic-block.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-dump.h"
#include "timevar.h"
#include "diagnostic.h"
#include "toplev.h"
#include "intl.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-propagate.h"
#include "tree-chrec.h"
/* Set of SSA names found live during the RPO traversal of the function
for still active basic-blocks. */
static sbitmap *live;
/* Return true if the SSA name NAME is live on the edge E. */
static bool
live_on_edge (edge e, tree name)
{
return (live[e->dest->index]
&& TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
}
/* Local functions. */
static int compare_values (tree val1, tree val2);
static int compare_values_warnv (tree val1, tree val2, bool *);
static void vrp_meet (value_range_t *, value_range_t *);
static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
tree, tree, bool, bool *,
bool *);
/* Location information for ASSERT_EXPRs. Each instance of this
structure describes an ASSERT_EXPR for an SSA name. Since a single
SSA name may have more than one assertion associated with it, these
locations are kept in a linked list attached to the corresponding
SSA name. */
struct assert_locus_d
{
/* Basic block where the assertion would be inserted. */
basic_block bb;
/* Some assertions need to be inserted on an edge (e.g., assertions
generated by COND_EXPRs). In those cases, BB will be NULL. */
edge e;
/* Pointer to the statement that generated this assertion. */
gimple_stmt_iterator si;
/* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
enum tree_code comp_code;
/* Value being compared against. */
tree val;
/* Expression to compare. */
tree expr;
/* Next node in the linked list. */
struct assert_locus_d *next;
};
typedef struct assert_locus_d *assert_locus_t;
/* If bit I is present, it means that SSA name N_i has a list of
assertions that should be inserted in the IL. */
static bitmap need_assert_for;
/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
holds a list of ASSERT_LOCUS_T nodes that describe where
ASSERT_EXPRs for SSA name N_I should be inserted. */
static assert_locus_t *asserts_for;
/* Value range array. After propagation, VR_VALUE[I] holds the range
of values that SSA name N_I may take. */
static value_range_t **vr_value;
/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
number of executable edges we saw the last time we visited the
node. */
static int *vr_phi_edge_counts;
typedef struct {
gimple stmt;
tree vec;
} switch_update;
static VEC (edge, heap) *to_remove_edges;
DEF_VEC_O(switch_update);
DEF_VEC_ALLOC_O(switch_update, heap);
static VEC (switch_update, heap) *to_update_switch_stmts;
/* Return the maximum value for TYPEs base type. */
static inline tree
vrp_val_max (const_tree type)
{
if (!INTEGRAL_TYPE_P (type))
return NULL_TREE;
/* For integer sub-types the values for the base type are relevant. */
if (TREE_TYPE (type))
type = TREE_TYPE (type);
return TYPE_MAX_VALUE (type);
}
/* Return the minimum value for TYPEs base type. */
static inline tree
vrp_val_min (const_tree type)
{
if (!INTEGRAL_TYPE_P (type))
return NULL_TREE;
/* For integer sub-types the values for the base type are relevant. */
if (TREE_TYPE (type))
type = TREE_TYPE (type);
return TYPE_MIN_VALUE (type);
}
/* Return whether VAL is equal to the maximum value of its type. This
will be true for a positive overflow infinity. We can't do a
simple equality comparison with TYPE_MAX_VALUE because C typedefs
and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
to the integer constant with the same value in the type. */
static inline bool
vrp_val_is_max (const_tree val)
{
tree type_max = vrp_val_max (TREE_TYPE (val));
return (val == type_max
|| (type_max != NULL_TREE
&& operand_equal_p (val, type_max, 0)));
}
/* Return whether VAL is equal to the minimum value of its type. This
will be true for a negative overflow infinity. */
static inline bool
vrp_val_is_min (const_tree val)
{
tree type_min = vrp_val_min (TREE_TYPE (val));
return (val == type_min
|| (type_min != NULL_TREE
&& operand_equal_p (val, type_min, 0)));
}
/* Return whether TYPE should use an overflow infinity distinct from
TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
represent a signed overflow during VRP computations. An infinity
is distinct from a half-range, which will go from some number to
TYPE_{MIN,MAX}_VALUE. */
static inline bool
needs_overflow_infinity (const_tree type)
{
return (INTEGRAL_TYPE_P (type)
&& !TYPE_OVERFLOW_WRAPS (type)
/* Integer sub-types never overflow as they are never
operands of arithmetic operators. */
&& !(TREE_TYPE (type) && TREE_TYPE (type) != type));
}
/* Return whether TYPE can support our overflow infinity
representation: we use the TREE_OVERFLOW flag, which only exists
for constants. If TYPE doesn't support this, we don't optimize
cases which would require signed overflow--we drop them to
VARYING. */
static inline bool
supports_overflow_infinity (const_tree type)
{
tree min = vrp_val_min (type), max = vrp_val_max (type);
#ifdef ENABLE_CHECKING
gcc_assert (needs_overflow_infinity (type));
#endif
return (min != NULL_TREE
&& CONSTANT_CLASS_P (min)
&& max != NULL_TREE
&& CONSTANT_CLASS_P (max));
}
/* VAL is the maximum or minimum value of a type. Return a
corresponding overflow infinity. */
static inline tree
make_overflow_infinity (tree val)
{
#ifdef ENABLE_CHECKING
gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
#endif
val = copy_node (val);
TREE_OVERFLOW (val) = 1;
return val;
}
/* Return a negative overflow infinity for TYPE. */
static inline tree
negative_overflow_infinity (tree type)
{
#ifdef ENABLE_CHECKING
gcc_assert (supports_overflow_infinity (type));
#endif
return make_overflow_infinity (vrp_val_min (type));
}
/* Return a positive overflow infinity for TYPE. */
static inline tree
positive_overflow_infinity (tree type)
{
#ifdef ENABLE_CHECKING
gcc_assert (supports_overflow_infinity (type));
#endif
return make_overflow_infinity (vrp_val_max (type));
}
/* Return whether VAL is a negative overflow infinity. */
static inline bool
is_negative_overflow_infinity (const_tree val)
{
return (needs_overflow_infinity (TREE_TYPE (val))
&& CONSTANT_CLASS_P (val)
&& TREE_OVERFLOW (val)
&& vrp_val_is_min (val));
}
/* Return whether VAL is a positive overflow infinity. */
static inline bool
is_positive_overflow_infinity (const_tree val)
{
return (needs_overflow_infinity (TREE_TYPE (val))
&& CONSTANT_CLASS_P (val)
&& TREE_OVERFLOW (val)
&& vrp_val_is_max (val));
}
/* Return whether VAL is a positive or negative overflow infinity. */
static inline bool
is_overflow_infinity (const_tree val)
{
return (needs_overflow_infinity (TREE_TYPE (val))
&& CONSTANT_CLASS_P (val)
&& TREE_OVERFLOW (val)
&& (vrp_val_is_min (val) || vrp_val_is_max (val)));
}
/* Return whether STMT has a constant rhs that is_overflow_infinity. */
static inline bool
stmt_overflow_infinity (gimple stmt)
{
if (is_gimple_assign (stmt)
&& get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
GIMPLE_SINGLE_RHS)
return is_overflow_infinity (gimple_assign_rhs1 (stmt));
return false;
}
/* If VAL is now an overflow infinity, return VAL. Otherwise, return
the same value with TREE_OVERFLOW clear. This can be used to avoid
confusing a regular value with an overflow value. */
static inline tree
avoid_overflow_infinity (tree val)
{
if (!is_overflow_infinity (val))
return val;
if (vrp_val_is_max (val))
return vrp_val_max (TREE_TYPE (val));
else
{
#ifdef ENABLE_CHECKING
gcc_assert (vrp_val_is_min (val));
#endif
return vrp_val_min (TREE_TYPE (val));
}
}
/* Return true if ARG is marked with the nonnull attribute in the
current function signature. */
static bool
nonnull_arg_p (const_tree arg)
{
tree t, attrs, fntype;
unsigned HOST_WIDE_INT arg_num;
gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
/* The static chain decl is always non null. */
if (arg == cfun->static_chain_decl)
return true;
fntype = TREE_TYPE (current_function_decl);
attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
/* If "nonnull" wasn't specified, we know nothing about the argument. */
if (attrs == NULL_TREE)
return false;
/* If "nonnull" applies to all the arguments, then ARG is non-null. */
if (TREE_VALUE (attrs) == NULL_TREE)
return true;
/* Get the position number for ARG in the function signature. */
for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
t;
t = TREE_CHAIN (t), arg_num++)
{
if (t == arg)
break;
}
gcc_assert (t == arg);
/* Now see if ARG_NUM is mentioned in the nonnull list. */
for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
{
if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
return true;
}
return false;
}
/* Set value range VR to VR_VARYING. */
static inline void
set_value_range_to_varying (value_range_t *vr)
{
vr->type = VR_VARYING;
vr->min = vr->max = NULL_TREE;
if (vr->equiv)
bitmap_clear (vr->equiv);
}
/* Set value range VR to {T, MIN, MAX, EQUIV}. */
static void
set_value_range (value_range_t *vr, enum value_range_type t, tree min,
tree max, bitmap equiv)
{
#if defined ENABLE_CHECKING
/* Check the validity of the range. */
if (t == VR_RANGE || t == VR_ANTI_RANGE)
{
int cmp;
gcc_assert (min && max);
if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
cmp = compare_values (min, max);
gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
if (needs_overflow_infinity (TREE_TYPE (min)))
gcc_assert (!is_overflow_infinity (min)
|| !is_overflow_infinity (max));
}
if (t == VR_UNDEFINED || t == VR_VARYING)
gcc_assert (min == NULL_TREE && max == NULL_TREE);
if (t == VR_UNDEFINED || t == VR_VARYING)
gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
#endif
vr->type = t;
vr->min = min;
vr->max = max;
/* Since updating the equivalence set involves deep copying the
bitmaps, only do it if absolutely necessary. */
if (vr->equiv == NULL
&& equiv != NULL)
vr->equiv = BITMAP_ALLOC (NULL);
if (equiv != vr->equiv)
{
if (equiv && !bitmap_empty_p (equiv))
bitmap_copy (vr->equiv, equiv);
else
bitmap_clear (vr->equiv);
}
}
/* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
This means adjusting T, MIN and MAX representing the case of a
wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
In corner cases where MAX+1 or MIN-1 wraps this will fall back
to varying.
This routine exists to ease canonicalization in the case where we
extract ranges from var + CST op limit. */
static void
set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
tree min, tree max, bitmap equiv)
{
/* Nothing to canonicalize for symbolic or unknown or varying ranges. */
if ((t != VR_RANGE
&& t != VR_ANTI_RANGE)
|| TREE_CODE (min) != INTEGER_CST
|| TREE_CODE (max) != INTEGER_CST)
{
set_value_range (vr, t, min, max, equiv);
return;
}
/* Wrong order for min and max, to swap them and the VR type we need
to adjust them. */
if (tree_int_cst_lt (max, min))
{
tree one = build_int_cst (TREE_TYPE (min), 1);
tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
max = int_const_binop (MINUS_EXPR, min, one, 0);
min = tmp;
/* There's one corner case, if we had [C+1, C] before we now have
that again. But this represents an empty value range, so drop
to varying in this case. */
if (tree_int_cst_lt (max, min))
{
set_value_range_to_varying (vr);
return;
}
t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
}
/* Anti-ranges that can be represented as ranges should be so. */
if (t == VR_ANTI_RANGE)
{
bool is_min = vrp_val_is_min (min);
bool is_max = vrp_val_is_max (max);
if (is_min && is_max)
{
/* We cannot deal with empty ranges, drop to varying. */
set_value_range_to_varying (vr);
return;
}
else if (is_min
/* As a special exception preserve non-null ranges. */
&& !(TYPE_UNSIGNED (TREE_TYPE (min))
&& integer_zerop (max)))
{
tree one = build_int_cst (TREE_TYPE (max), 1);
min = int_const_binop (PLUS_EXPR, max, one, 0);
max = vrp_val_max (TREE_TYPE (max));
t = VR_RANGE;
}
else if (is_max)
{
tree one = build_int_cst (TREE_TYPE (min), 1);
max = int_const_binop (MINUS_EXPR, min, one, 0);
min = vrp_val_min (TREE_TYPE (min));
t = VR_RANGE;
}
}
set_value_range (vr, t, min, max, equiv);
}
/* Copy value range FROM into value range TO. */
static inline void
copy_value_range (value_range_t *to, value_range_t *from)
{
set_value_range (to, from->type, from->min, from->max, from->equiv);
}
/* Set value range VR to a single value. This function is only called
with values we get from statements, and exists to clear the
TREE_OVERFLOW flag so that we don't think we have an overflow
infinity when we shouldn't. */
static inline void
set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
{
gcc_assert (is_gimple_min_invariant (val));
val = avoid_overflow_infinity (val);
set_value_range (vr, VR_RANGE, val, val, equiv);
}
/* Set value range VR to a non-negative range of type TYPE.
OVERFLOW_INFINITY indicates whether to use an overflow infinity
rather than TYPE_MAX_VALUE; this should be true if we determine
that the range is nonnegative based on the assumption that signed
overflow does not occur. */
static inline void
set_value_range_to_nonnegative (value_range_t *vr, tree type,
bool overflow_infinity)
{
tree zero;
if (overflow_infinity && !supports_overflow_infinity (type))
{
set_value_range_to_varying (vr);
return;
}
zero = build_int_cst (type, 0);
set_value_range (vr, VR_RANGE, zero,
(overflow_infinity
? positive_overflow_infinity (type)
: TYPE_MAX_VALUE (type)),
vr->equiv);
}
/* Set value range VR to a non-NULL range of type TYPE. */
static inline void
set_value_range_to_nonnull (value_range_t *vr, tree type)
{
tree zero = build_int_cst (type, 0);
set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
}
/* Set value range VR to a NULL range of type TYPE. */
static inline void
set_value_range_to_null (value_range_t *vr, tree type)
{
set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
}
/* Set value range VR to a range of a truthvalue of type TYPE. */
static inline void
set_value_range_to_truthvalue (value_range_t *vr, tree type)
{
if (TYPE_PRECISION (type) == 1)
set_value_range_to_varying (vr);
else
set_value_range (vr, VR_RANGE,
build_int_cst (type, 0), build_int_cst (type, 1),
vr->equiv);
}
/* Set value range VR to VR_UNDEFINED. */
static inline void
set_value_range_to_undefined (value_range_t *vr)
{
vr->type = VR_UNDEFINED;
vr->min = vr->max = NULL_TREE;
if (vr->equiv)
bitmap_clear (vr->equiv);
}
/* If abs (min) < abs (max), set VR to [-max, max], if
abs (min) >= abs (max), set VR to [-min, min]. */
static void
abs_extent_range (value_range_t *vr, tree min, tree max)
{
int cmp;
gcc_assert (TREE_CODE (min) == INTEGER_CST);
gcc_assert (TREE_CODE (max) == INTEGER_CST);
gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
{
set_value_range_to_varying (vr);
return;
}
cmp = compare_values (min, max);
if (cmp == -1)
min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
else if (cmp == 0 || cmp == 1)
{
max = min;
min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
}
else
{
set_value_range_to_varying (vr);
return;
}
set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
}
/* Return value range information for VAR.
If we have no values ranges recorded (ie, VRP is not running), then
return NULL. Otherwise create an empty range if none existed for VAR. */
static value_range_t *
get_value_range (const_tree var)
{
value_range_t *vr;
tree sym;
unsigned ver = SSA_NAME_VERSION (var);
/* If we have no recorded ranges, then return NULL. */
if (! vr_value)
return NULL;
vr = vr_value[ver];
if (vr)
return vr;
/* Create a default value range. */
vr_value[ver] = vr = XCNEW (value_range_t);
/* Defer allocating the equivalence set. */
vr->equiv = NULL;
/* If VAR is a default definition, the variable can take any value
in VAR's type. */
sym = SSA_NAME_VAR (var);
if (SSA_NAME_IS_DEFAULT_DEF (var))
{
/* Try to use the "nonnull" attribute to create ~[0, 0]
anti-ranges for pointers. Note that this is only valid with
default definitions of PARM_DECLs. */
if (TREE_CODE (sym) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (sym))
&& nonnull_arg_p (sym))
set_value_range_to_nonnull (vr, TREE_TYPE (sym));
else
set_value_range_to_varying (vr);
}
return vr;
}
/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
static inline bool
vrp_operand_equal_p (const_tree val1, const_tree val2)
{
if (val1 == val2)
return true;
if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
return false;
if (is_overflow_infinity (val1))
return is_overflow_infinity (val2);
return true;
}
/* Return true, if the bitmaps B1 and B2 are equal. */
static inline bool
vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
{
return (b1 == b2
|| (b1 && b2
&& bitmap_equal_p (b1, b2)));
}
/* Update the value range and equivalence set for variable VAR to
NEW_VR. Return true if NEW_VR is different from VAR's previous
value.
NOTE: This function assumes that NEW_VR is a temporary value range
object created for the sole purpose of updating VAR's range. The
storage used by the equivalence set from NEW_VR will be freed by
this function. Do not call update_value_range when NEW_VR
is the range object associated with another SSA name. */
static inline bool
update_value_range (const_tree var, value_range_t *new_vr)
{
value_range_t *old_vr;
bool is_new;
/* Update the value range, if necessary. */
old_vr = get_value_range (var);
is_new = old_vr->type != new_vr->type
|| !vrp_operand_equal_p (old_vr->min, new_vr->min)
|| !vrp_operand_equal_p (old_vr->max, new_vr->max)
|| !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
if (is_new)
set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
new_vr->equiv);
BITMAP_FREE (new_vr->equiv);
return is_new;
}
/* Add VAR and VAR's equivalence set to EQUIV. This is the central
point where equivalence processing can be turned on/off. */
static void
add_equivalence (bitmap *equiv, const_tree var)
{
unsigned ver = SSA_NAME_VERSION (var);
value_range_t *vr = vr_value[ver];
if (*equiv == NULL)
*equiv = BITMAP_ALLOC (NULL);
bitmap_set_bit (*equiv, ver);
if (vr && vr->equiv)
bitmap_ior_into (*equiv, vr->equiv);
}
/* Return true if VR is ~[0, 0]. */
static inline bool
range_is_nonnull (value_range_t *vr)
{
return vr->type == VR_ANTI_RANGE
&& integer_zerop (vr->min)
&& integer_zerop (vr->max);
}
/* Return true if VR is [0, 0]. */
static inline bool
range_is_null (value_range_t *vr)
{
return vr->type == VR_RANGE
&& integer_zerop (vr->min)
&& integer_zerop (vr->max);
}
/* Return true if value range VR involves at least one symbol. */
static inline bool
symbolic_range_p (value_range_t *vr)
{
return (!is_gimple_min_invariant (vr->min)
|| !is_gimple_min_invariant (vr->max));
}
/* Return true if value range VR uses an overflow infinity. */
static inline bool
overflow_infinity_range_p (value_range_t *vr)
{
return (vr->type == VR_RANGE
&& (is_overflow_infinity (vr->min)
|| is_overflow_infinity (vr->max)));
}
/* Return false if we can not make a valid comparison based on VR;
this will be the case if it uses an overflow infinity and overflow
is not undefined (i.e., -fno-strict-overflow is in effect).
Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
uses an overflow infinity. */
static bool
usable_range_p (value_range_t *vr, bool *strict_overflow_p)
{
gcc_assert (vr->type == VR_RANGE);
if (is_overflow_infinity (vr->min))
{
*strict_overflow_p = true;
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
return false;
}
if (is_overflow_infinity (vr->max))
{
*strict_overflow_p = true;
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
return false;
}
return true;
}
/* Like tree_expr_nonnegative_warnv_p, but this function uses value
ranges obtained so far. */
static bool
vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
{
return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
|| (TREE_CODE (expr) == SSA_NAME
&& ssa_name_nonnegative_p (expr)));
}
/* Return true if the result of assignment STMT is know to be non-negative.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P.*/
static bool
gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
{
enum tree_code code = gimple_assign_rhs_code (stmt);
switch (get_gimple_rhs_class (code))
{
case GIMPLE_UNARY_RHS:
return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
gimple_expr_type (stmt),
gimple_assign_rhs1 (stmt),
strict_overflow_p);
case GIMPLE_BINARY_RHS:
return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
gimple_expr_type (stmt),
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt),
strict_overflow_p);
case GIMPLE_SINGLE_RHS:
return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
strict_overflow_p);
case GIMPLE_INVALID_RHS:
gcc_unreachable ();
default:
gcc_unreachable ();
}
}
/* Return true if return value of call STMT is know to be non-negative.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P.*/
static bool
gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
{
tree arg0 = gimple_call_num_args (stmt) > 0 ?
gimple_call_arg (stmt, 0) : NULL_TREE;
tree arg1 = gimple_call_num_args (stmt) > 1 ?
gimple_call_arg (stmt, 1) : NULL_TREE;
return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
gimple_call_fndecl (stmt),
arg0,
arg1,
strict_overflow_p);
}
/* Return true if STMT is know to to compute a non-negative value.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P.*/
static bool
gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
{
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
case GIMPLE_CALL:
return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
default:
gcc_unreachable ();
}
}
/* Return true if the result of assignment STMT is know to be non-zero.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P.*/
static bool
gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
{
enum tree_code code = gimple_assign_rhs_code (stmt);
switch (get_gimple_rhs_class (code))
{
case GIMPLE_UNARY_RHS:
return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
gimple_expr_type (stmt),
gimple_assign_rhs1 (stmt),
strict_overflow_p);
case GIMPLE_BINARY_RHS:
return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
gimple_expr_type (stmt),
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt),
strict_overflow_p);
case GIMPLE_SINGLE_RHS:
return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
strict_overflow_p);
case GIMPLE_INVALID_RHS:
gcc_unreachable ();
default:
gcc_unreachable ();
}
}
/* Return true if STMT is know to to compute a non-zero value.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P.*/
static bool
gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
{
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
case GIMPLE_CALL:
return gimple_alloca_call_p (stmt);
default:
gcc_unreachable ();
}
}
/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
obtained so far. */
static bool
vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
{
if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
return true;
/* If we have an expression of the form &X->a, then the expression
is nonnull if X is nonnull. */
if (is_gimple_assign (stmt)
&& gimple_assign_rhs_code (stmt) == ADDR_EXPR)
{
tree expr = gimple_assign_rhs1 (stmt);
tree base = get_base_address (TREE_OPERAND (expr, 0));
if (base != NULL_TREE
&& TREE_CODE (base) == INDIRECT_REF
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
{
value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
if (range_is_nonnull (vr))
return true;
}
}
return false;
}
/* Returns true if EXPR is a valid value (as expected by compare_values) --
a gimple invariant, or SSA_NAME +- CST. */
static bool
valid_value_p (tree expr)
{
if (TREE_CODE (expr) == SSA_NAME)
return true;
if (TREE_CODE (expr) == PLUS_EXPR
|| TREE_CODE (expr) == MINUS_EXPR)
return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
&& TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
return is_gimple_min_invariant (expr);
}
/* Return
1 if VAL < VAL2
0 if !(VAL < VAL2)
-2 if those are incomparable. */
static inline int
operand_less_p (tree val, tree val2)
{
/* LT is folded faster than GE and others. Inline the common case. */
if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
{
if (TYPE_UNSIGNED (TREE_TYPE (val)))
return INT_CST_LT_UNSIGNED (val, val2);
else
{
if (INT_CST_LT (val, val2))
return 1;
}
}
else
{
tree tcmp;
fold_defer_overflow_warnings ();
tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
fold_undefer_and_ignore_overflow_warnings ();
if (!tcmp
|| TREE_CODE (tcmp) != INTEGER_CST)
return -2;
if (!integer_zerop (tcmp))
return 1;
}
/* val >= val2, not considering overflow infinity. */
if (is_negative_overflow_infinity (val))
return is_negative_overflow_infinity (val2) ? 0 : 1;
else if (is_positive_overflow_infinity (val2))
return is_positive_overflow_infinity (val) ? 0 : 1;
return 0;
}
/* Compare two values VAL1 and VAL2. Return
-2 if VAL1 and VAL2 cannot be compared at compile-time,
-1 if VAL1 < VAL2,
0 if VAL1 == VAL2,
+1 if VAL1 > VAL2, and
+2 if VAL1 != VAL2
This is similar to tree_int_cst_compare but supports pointer values
and values that cannot be compared at compile time.
If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
true if the return value is only valid if we assume that signed
overflow is undefined. */
static int
compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
{
if (val1 == val2)
return 0;
/* Below we rely on the fact that VAL1 and VAL2 are both pointers or
both integers. */
gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
== POINTER_TYPE_P (TREE_TYPE (val2)));
/* Convert the two values into the same type. This is needed because
sizetype causes sign extension even for unsigned types. */
val2 = fold_convert (TREE_TYPE (val1), val2);
STRIP_USELESS_TYPE_CONVERSION (val2);
if ((TREE_CODE (val1) == SSA_NAME
|| TREE_CODE (val1) == PLUS_EXPR
|| TREE_CODE (val1) == MINUS_EXPR)
&& (TREE_CODE (val2) == SSA_NAME
|| TREE_CODE (val2) == PLUS_EXPR
|| TREE_CODE (val2) == MINUS_EXPR))
{
tree n1, c1, n2, c2;
enum tree_code code1, code2;
/* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
same name, return -2. */
if (TREE_CODE (val1) == SSA_NAME)
{
code1 = SSA_NAME;
n1 = val1;
c1 = NULL_TREE;
}
else
{
code1 = TREE_CODE (val1);
n1 = TREE_OPERAND (val1, 0);
c1 = TREE_OPERAND (val1, 1);
if (tree_int_cst_sgn (c1) == -1)
{
if (is_negative_overflow_infinity (c1))
return -2;
c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
if (!c1)
return -2;
code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
}
}
if (TREE_CODE (val2) == SSA_NAME)
{
code2 = SSA_NAME;
n2 = val2;
c2 = NULL_TREE;
}
else
{
code2 = TREE_CODE (val2);
n2 = TREE_OPERAND (val2, 0);
c2 = TREE_OPERAND (val2, 1);
if (tree_int_cst_sgn (c2) == -1)
{
if (is_negative_overflow_infinity (c2))
return -2;
c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
if (!c2)
return -2;
code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
}
}
/* Both values must use the same name. */
if (n1 != n2)
return -2;
if (code1 == SSA_NAME
&& code2 == SSA_NAME)
/* NAME == NAME */
return 0;
/* If overflow is defined we cannot simplify more. */
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
return -2;
if (strict_overflow_p != NULL
&& (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
&& (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
*strict_overflow_p = true;
if (code1 == SSA_NAME)
{
if (code2 == PLUS_EXPR)
/* NAME < NAME + CST */
return -1;
else if (code2 == MINUS_EXPR)
/* NAME > NAME - CST */
return 1;
}
else if (code1 == PLUS_EXPR)
{
if (code2 == SSA_NAME)
/* NAME + CST > NAME */
return 1;
else if (code2 == PLUS_EXPR)
/* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
return compare_values_warnv (c1, c2, strict_overflow_p);
else if (code2 == MINUS_EXPR)
/* NAME + CST1 > NAME - CST2 */
return 1;
}
else if (code1 == MINUS_EXPR)
{
if (code2 == SSA_NAME)
/* NAME - CST < NAME */
return -1;
else if (code2 == PLUS_EXPR)
/* NAME - CST1 < NAME + CST2 */
return -1;
else if (code2 == MINUS_EXPR)
/* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
C1 and C2 are swapped in the call to compare_values. */
return compare_values_warnv (c2, c1, strict_overflow_p);
}
gcc_unreachable ();
}
/* We cannot compare non-constants. */
if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
return -2;
if (!POINTER_TYPE_P (TREE_TYPE (val1)))
{
/* We cannot compare overflowed values, except for overflow
infinities. */
if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
{
if (strict_overflow_p != NULL)
*strict_overflow_p = true;
if (is_negative_overflow_infinity (val1))
return is_negative_overflow_infinity (val2) ? 0 : -1;
else if (is_negative_overflow_infinity (val2))
return 1;
else if (is_positive_overflow_infinity (val1))
return is_positive_overflow_infinity (val2) ? 0 : 1;
else if (is_positive_overflow_infinity (val2))
return -1;
return -2;
}
return tree_int_cst_compare (val1, val2);
}
else
{
tree t;
/* First see if VAL1 and VAL2 are not the same. */
if (val1 == val2 || operand_equal_p (val1, val2, 0))
return 0;
/* If VAL1 is a lower address than VAL2, return -1. */
if (operand_less_p (val1, val2) == 1)
return -1;
/* If VAL1 is a higher address than VAL2, return +1. */
if (operand_less_p (val2, val1) == 1)
return 1;
/* If VAL1 is different than VAL2, return +2.
For integer constants we either have already returned -1 or 1
or they are equivalent. We still might succeed in proving
something about non-trivial operands. */
if (TREE_CODE (val1) != INTEGER_CST
|| TREE_CODE (val2) != INTEGER_CST)
{
t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
if (t && integer_onep (t))
return 2;
}
return -2;
}
}
/* Compare values like compare_values_warnv, but treat comparisons of
nonconstants which rely on undefined overflow as incomparable. */
static int
compare_values (tree val1, tree val2)
{
bool sop;
int ret;
sop = false;
ret = compare_values_warnv (val1, val2, &sop);
if (sop
&& (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
ret = -2;
return ret;
}
/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
0 if VAL is not inside VR,
-2 if we cannot tell either way.
FIXME, the current semantics of this functions are a bit quirky
when taken in the context of VRP. In here we do not care
about VR's type. If VR is the anti-range ~[3, 5] the call
value_inside_range (4, VR) will return 1.
This is counter-intuitive in a strict sense, but the callers
currently expect this. They are calling the function
merely to determine whether VR->MIN <= VAL <= VR->MAX. The
callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
themselves.
This also applies to value_ranges_intersect_p and
range_includes_zero_p. The semantics of VR_RANGE and
VR_ANTI_RANGE should be encoded here, but that also means
adapting the users of these functions to the new semantics.
Benchmark compile/20001226-1.c compilation time after changing this
function. */
static inline int
value_inside_range (tree val, value_range_t * vr)
{
int cmp1, cmp2;
cmp1 = operand_less_p (val, vr->min);
if (cmp1 == -2)
return -2;
if (cmp1 == 1)
return 0;
cmp2 = operand_less_p (vr->max, val);
if (cmp2 == -2)
return -2;
return !cmp2;
}
/* Return true if value ranges VR0 and VR1 have a non-empty
intersection.
Benchmark compile/20001226-1.c compilation time after changing this
function.
*/
static inline bool
value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
{
/* The value ranges do not intersect if the maximum of the first range is
less than the minimum of the second range or vice versa.
When those relations are unknown, we can't do any better. */
if (operand_less_p (vr0->max, vr1->min) != 0)
return false;
if (operand_less_p (vr1->max, vr0->min) != 0)
return false;
return true;
}
/* Return true if VR includes the value zero, false otherwise. FIXME,
currently this will return false for an anti-range like ~[-4, 3].
This will be wrong when the semantics of value_inside_range are
modified (currently the users of this function expect these
semantics). */
static inline bool
range_includes_zero_p (value_range_t *vr)
{
tree zero;
gcc_assert (vr->type != VR_UNDEFINED
&& vr->type != VR_VARYING
&& !symbolic_range_p (vr));
zero = build_int_cst (TREE_TYPE (vr->min), 0);
return (value_inside_range (zero, vr) == 1);
}
/* Return true if T, an SSA_NAME, is known to be nonnegative. Return
false otherwise or if no value range information is available. */
bool
ssa_name_nonnegative_p (const_tree t)
{
value_range_t *vr = get_value_range (t);
if (!vr)
return false;
/* Testing for VR_ANTI_RANGE is not useful here as any anti-range
which would return a useful value should be encoded as a VR_RANGE. */
if (vr->type == VR_RANGE)
{
int result = compare_values (vr->min, integer_zero_node);
return (result == 0 || result == 1);
}
return false;
}
/* Return true if T, an SSA_NAME, is known to be nonzero. Return
false otherwise or if no value range information is available. */
bool
ssa_name_nonzero_p (const_tree t)
{
value_range_t *vr = get_value_range (t);
if (!vr)
return false;
/* A VR_RANGE which does not include zero is a nonzero value. */
if (vr->type == VR_RANGE && !symbolic_range_p (vr))
return ! range_includes_zero_p (vr);
/* A VR_ANTI_RANGE which does include zero is a nonzero value. */
if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
return range_includes_zero_p (vr);
return false;
}
/* If OP has a value range with a single constant value return that,
otherwise return NULL_TREE. This returns OP itself if OP is a
constant. */
static tree
op_with_constant_singleton_value_range (tree op)
{
value_range_t *vr;
if (is_gimple_min_invariant (op))
return op;
if (TREE_CODE (op) != SSA_NAME)
return NULL_TREE;
vr = get_value_range (op);
if (vr->type == VR_RANGE
&& operand_equal_p (vr->min, vr->max, 0)
&& is_gimple_min_invariant (vr->min))
return vr->min;
return NULL_TREE;
}
/* Extract value range information from an ASSERT_EXPR EXPR and store
it in *VR_P. */
static void
extract_range_from_assert (value_range_t *vr_p, tree expr)
{
tree var, cond, limit, min, max, type;
value_range_t *var_vr, *limit_vr;
enum tree_code cond_code;
var = ASSERT_EXPR_VAR (expr);
cond = ASSERT_EXPR_COND (expr);
gcc_assert (COMPARISON_CLASS_P (cond));
/* Find VAR in the ASSERT_EXPR conditional. */
if (var == TREE_OPERAND (cond, 0)
|| TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
|| TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
{
/* If the predicate is of the form VAR COMP LIMIT, then we just
take LIMIT from the RHS and use the same comparison code. */
cond_code = TREE_CODE (cond);
limit = TREE_OPERAND (cond, 1);
cond = TREE_OPERAND (cond, 0);
}
else
{
/* If the predicate is of the form LIMIT COMP VAR, then we need
to flip around the comparison code to create the proper range
for VAR. */
cond_code = swap_tree_comparison (TREE_CODE (cond));
limit = TREE_OPERAND (cond, 0);
cond = TREE_OPERAND (cond, 1);
}
limit = avoid_overflow_infinity (limit);
type = TREE_TYPE (limit);
gcc_assert (limit != var);
/* For pointer arithmetic, we only keep track of pointer equality
and inequality. */
if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
{
set_value_range_to_varying (vr_p);
return;
}
/* If LIMIT is another SSA name and LIMIT has a range of its own,
try to use LIMIT's range to avoid creating symbolic ranges
unnecessarily. */
limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
/* LIMIT's range is only interesting if it has any useful information. */
if (limit_vr
&& (limit_vr->type == VR_UNDEFINED
|| limit_vr->type == VR_VARYING
|| symbolic_range_p (limit_vr)))
limit_vr = NULL;
/* Initially, the new range has the same set of equivalences of
VAR's range. This will be revised before returning the final
value. Since assertions may be chained via mutually exclusive
predicates, we will need to trim the set of equivalences before
we are done. */
gcc_assert (vr_p->equiv == NULL);
add_equivalence (&vr_p->equiv, var);
/* Extract a new range based on the asserted comparison for VAR and
LIMIT's value range. Notice that if LIMIT has an anti-range, we
will only use it for equality comparisons (EQ_EXPR). For any
other kind of assertion, we cannot derive a range from LIMIT's
anti-range that can be used to describe the new range. For
instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
no single range for x_2 that could describe LE_EXPR, so we might
as well build the range [b_4, +INF] for it.
One special case we handle is extracting a range from a
range test encoded as (unsigned)var + CST <= limit. */
if (TREE_CODE (cond) == NOP_EXPR
|| TREE_CODE (cond) == PLUS_EXPR)
{
if (TREE_CODE (cond) == PLUS_EXPR)
{
min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
TREE_OPERAND (cond, 1));
max = int_const_binop (PLUS_EXPR, limit, min, 0);
cond = TREE_OPERAND (cond, 0);
}
else
{
min = build_int_cst (TREE_TYPE (var), 0);
max = limit;
}
/* Make sure to not set TREE_OVERFLOW on the final type
conversion. We are willingly interpreting large positive
unsigned values as negative singed values here. */
min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
TREE_INT_CST_HIGH (min), 0, false);
max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
TREE_INT_CST_HIGH (max), 0, false);
/* We can transform a max, min range to an anti-range or
vice-versa. Use set_and_canonicalize_value_range which does
this for us. */
if (cond_code == LE_EXPR)
set_and_canonicalize_value_range (vr_p, VR_RANGE,
min, max, vr_p->equiv);
else if (cond_code == GT_EXPR)
set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
min, max, vr_p->equiv);
else
gcc_unreachable ();
}
else if (cond_code == EQ_EXPR)
{
enum value_range_type range_type;
if (limit_vr)
{
range_type = limit_vr->type;
min = limit_vr->min;
max = limit_vr->max;
}
else
{
range_type = VR_RANGE;
min = limit;
max = limit;
}
set_value_range (vr_p, range_type, min, max, vr_p->equiv);
/* When asserting the equality VAR == LIMIT and LIMIT is another
SSA name, the new range will also inherit the equivalence set
from LIMIT. */
if (TREE_CODE (limit) == SSA_NAME)
add_equivalence (&vr_p->equiv, limit);
}
else if (cond_code == NE_EXPR)
{
/* As described above, when LIMIT's range is an anti-range and
this assertion is an inequality (NE_EXPR), then we cannot
derive anything from the anti-range. For instance, if
LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
not imply that VAR's range is [0, 0]. So, in the case of
anti-ranges, we just assert the inequality using LIMIT and
not its anti-range.
If LIMIT_VR is a range, we can only use it to build a new
anti-range if LIMIT_VR is a single-valued range. For
instance, if LIMIT_VR is [0, 1], the predicate
VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
Rather, it means that for value 0 VAR should be ~[0, 0]
and for value 1, VAR should be ~[1, 1]. We cannot
represent these ranges.
The only situation in which we can build a valid
anti-range is when LIMIT_VR is a single-valued range
(i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
if (limit_vr
&& limit_vr->type == VR_RANGE
&& compare_values (limit_vr->min, limit_vr->max) == 0)
{
min = limit_vr->min;
max = limit_vr->max;
}
else
{
/* In any other case, we cannot use LIMIT's range to build a
valid anti-range. */
min = max = limit;
}
/* If MIN and MAX cover the whole range for their type, then
just use the original LIMIT. */
if (INTEGRAL_TYPE_P (type)
&& vrp_val_is_min (min)
&& vrp_val_is_max (max))
min = max = limit;
set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
}
else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
{
min = TYPE_MIN_VALUE (type);
if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
max = limit;
else
{
/* If LIMIT_VR is of the form [N1, N2], we need to build the
range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
LT_EXPR. */
max = limit_vr->max;
}
/* If the maximum value forces us to be out of bounds, simply punt.
It would be pointless to try and do anything more since this
all should be optimized away above us. */
if ((cond_code == LT_EXPR
&& compare_values (max, min) == 0)
|| (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
set_value_range_to_varying (vr_p);
else
{
/* For LT_EXPR, we create the range [MIN, MAX - 1]. */
if (cond_code == LT_EXPR)
{
tree one = build_int_cst (type, 1);
max = fold_build2 (MINUS_EXPR, type, max, one);
if (EXPR_P (max))
TREE_NO_WARNING (max) = 1;
}
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
}
}
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
{
max = TYPE_MAX_VALUE (type);
if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
min = limit;
else
{
/* If LIMIT_VR is of the form [N1, N2], we need to build the
range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
GT_EXPR. */
min = limit_vr->min;
}
/* If the minimum value forces us to be out of bounds, simply punt.
It would be pointless to try and do anything more since this
all should be optimized away above us. */
if ((cond_code == GT_EXPR
&& compare_values (min, max) == 0)
|| (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
set_value_range_to_varying (vr_p);
else
{
/* For GT_EXPR, we create the range [MIN + 1, MAX]. */
if (cond_code == GT_EXPR)
{
tree one = build_int_cst (type, 1);
min = fold_build2 (PLUS_EXPR, type, min, one);
if (EXPR_P (min))
TREE_NO_WARNING (min) = 1;
}
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
}
}
else
gcc_unreachable ();
/* If VAR already had a known range, it may happen that the new
range we have computed and VAR's range are not compatible. For
instance,
if (p_5 == NULL)
p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
x_7 = p_6->fld;
p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
While the above comes from a faulty program, it will cause an ICE
later because p_8 and p_6 will have incompatible ranges and at
the same time will be considered equivalent. A similar situation
would arise from
if (i_5 > 10)
i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
if (i_5 < 5)
i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
Again i_6 and i_7 will have incompatible ranges. It would be
pointless to try and do anything with i_7's range because
anything dominated by 'if (i_5 < 5)' will be optimized away.
Note, due to the wa in which simulation proceeds, the statement
i_7 = ASSERT_EXPR <...> we would never be visited because the
conditional 'if (i_5 < 5)' always evaluates to false. However,
this extra check does not hurt and may protect against future
changes to VRP that may get into a situation similar to the
NULL pointer dereference example.
Note that these compatibility tests are only needed when dealing
with ranges or a mix of range and anti-range. If VAR_VR and VR_P
are both anti-ranges, they will always be compatible, because two
anti-ranges will always have a non-empty intersection. */
var_vr = get_value_range (var);
/* We may need to make adjustments when VR_P and VAR_VR are numeric
ranges or anti-ranges. */
if (vr_p->type == VR_VARYING
|| vr_p->type == VR_UNDEFINED
|| var_vr->type == VR_VARYING
|| var_vr->type == VR_UNDEFINED
|| symbolic_range_p (vr_p)
|| symbolic_range_p (var_vr))
return;
if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
{
/* If the two ranges have a non-empty intersection, we can
refine the resulting range. Since the assert expression
creates an equivalency and at the same time it asserts a
predicate, we can take the intersection of the two ranges to
get better precision. */
if (value_ranges_intersect_p (var_vr, vr_p))
{
/* Use the larger of the two minimums. */
if (compare_values (vr_p->min, var_vr->min) == -1)
min = var_vr->min;
else
min = vr_p->min;
/* Use the smaller of the two maximums. */
if (compare_values (vr_p->max, var_vr->max) == 1)
max = var_vr->max;
else
max = vr_p->max;
set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
}
else
{
/* The two ranges do not intersect, set the new range to
VARYING, because we will not be able to do anything
meaningful with it. */
set_value_range_to_varying (vr_p);
}
}
else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
|| (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
{
/* A range and an anti-range will cancel each other only if
their ends are the same. For instance, in the example above,
p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
so VR_P should be set to VR_VARYING. */
if (compare_values (var_vr->min, vr_p->min) == 0
&& compare_values (var_vr->max, vr_p->max) == 0)
set_value_range_to_varying (vr_p);
else
{
tree min, max, anti_min, anti_max, real_min, real_max;
int cmp;
/* We want to compute the logical AND of the two ranges;
there are three cases to consider.
1. The VR_ANTI_RANGE range is completely within the
VR_RANGE and the endpoints of the ranges are
different. In that case the resulting range
should be whichever range is more precise.
Typically that will be the VR_RANGE.
2. The VR_ANTI_RANGE is completely disjoint from
the VR_RANGE. In this case the resulting range
should be the VR_RANGE.
3. There is some overlap between the VR_ANTI_RANGE
and the VR_RANGE.
3a. If the high limit of the VR_ANTI_RANGE resides
within the VR_RANGE, then the result is a new
VR_RANGE starting at the high limit of the
VR_ANTI_RANGE + 1 and extending to the
high limit of the original VR_RANGE.
3b. If the low limit of the VR_ANTI_RANGE resides
within the VR_RANGE, then the result is a new
VR_RANGE starting at the low limit of the original
VR_RANGE and extending to the low limit of the
VR_ANTI_RANGE - 1. */
if (vr_p->type == VR_ANTI_RANGE)
{
anti_min = vr_p->min;
anti_max = vr_p->max;
real_min = var_vr->min;
real_max = var_vr->max;
}
else
{
anti_min = var_vr->min;
anti_max = var_vr->max;
real_min = vr_p->min;
real_max = vr_p->max;
}
/* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
not including any endpoints. */
if (compare_values (anti_max, real_max) == -1
&& compare_values (anti_min, real_min) == 1)
{
/* If the range is covering the whole valid range of
the type keep the anti-range. */
if (!vrp_val_is_min (real_min)
|| !vrp_val_is_max (real_max))
set_value_range (vr_p, VR_RANGE, real_min,
real_max, vr_p->equiv);
}
/* Case 2, VR_ANTI_RANGE completely disjoint from
VR_RANGE. */
else if (compare_values (anti_min, real_max) == 1
|| compare_values (anti_max, real_min) == -1)
{
set_value_range (vr_p, VR_RANGE, real_min,
real_max, vr_p->equiv);
}
/* Case 3a, the anti-range extends into the low
part of the real range. Thus creating a new
low for the real range. */
else if (((cmp = compare_values (anti_max, real_min)) == 1
|| cmp == 0)
&& compare_values (anti_max, real_max) == -1)
{
gcc_assert (!is_positive_overflow_infinity (anti_max));
if (needs_overflow_infinity (TREE_TYPE (anti_max))
&& vrp_val_is_max (anti_max))
{
if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
{
set_value_range_to_varying (vr_p);
return;
}
min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
}
else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
anti_max,
build_int_cst (TREE_TYPE (var_vr->min), 1));
else
min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
anti_max, size_int (1));
max = real_max;
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
}
/* Case 3b, the anti-range extends into the high
part of the real range. Thus creating a new
higher for the real range. */
else if (compare_values (anti_min, real_min) == 1
&& ((cmp = compare_values (anti_min, real_max)) == -1
|| cmp == 0))
{
gcc_assert (!is_negative_overflow_infinity (anti_min));
if (needs_overflow_infinity (TREE_TYPE (anti_min))
&& vrp_val_is_min (anti_min))
{
if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
{
set_value_range_to_varying (vr_p);
return;
}
max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
}
else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
anti_min,
build_int_cst (TREE_TYPE (var_vr->min), 1));
else
max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
anti_min,
size_int (-1));
min = real_min;
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
}
}
}
}
/* Extract range information from SSA name VAR and store it in VR. If
VAR has an interesting range, use it. Otherwise, create the
range [VAR, VAR] and return it. This is useful in situations where
we may have conditionals testing values of VARYING names. For
instance,
x_3 = y_5;
if (x_3 > y_5)
...
Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
always false. */
static void
extract_range_from_ssa_name (value_range_t *vr, tree var)
{
value_range_t *var_vr = get_value_range (var);
if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
copy_value_range (vr, var_vr);
else
set_value_range (vr, VR_RANGE, var, var, NULL);
add_equivalence (&vr->equiv, var);
}
/* Wrapper around int_const_binop. If the operation overflows and we
are not using wrapping arithmetic, then adjust the result to be
-INF or +INF depending on CODE, VAL1 and VAL2. This can return
NULL_TREE if we need to use an overflow infinity representation but
the type does not support it. */
static tree
vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
{
tree res;
res = int_const_binop (code, val1, val2, 0);
/* If we are not using wrapping arithmetic, operate symbolically
on -INF and +INF. */
if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
{
int checkz = compare_values (res, val1);
bool overflow = false;
/* Ensure that res = val1 [+*] val2 >= val1
or that res = val1 - val2 <= val1. */
if ((code == PLUS_EXPR
&& !(checkz == 1 || checkz == 0))
|| (code == MINUS_EXPR
&& !(checkz == 0 || checkz == -1)))
{
overflow = true;
}
/* Checking for multiplication overflow is done by dividing the
output of the multiplication by the first input of the
multiplication. If the result of that division operation is
not equal to the second input of the multiplication, then the
multiplication overflowed. */
else if (code == MULT_EXPR && !integer_zerop (val1))
{
tree tmp = int_const_binop (TRUNC_DIV_EXPR,
res,
val1, 0);
int check = compare_values (tmp, val2);
if (check != 0)
overflow = true;
}
if (overflow)
{
res = copy_node (res);
TREE_OVERFLOW (res) = 1;
}
}
else if ((TREE_OVERFLOW (res)
&& !TREE_OVERFLOW (val1)
&& !TREE_OVERFLOW (val2))
|| is_overflow_infinity (val1)
|| is_overflow_infinity (val2))
{
/* If the operation overflowed but neither VAL1 nor VAL2 are
overflown, return -INF or +INF depending on the operation
and the combination of signs of the operands. */
int sgn1 = tree_int_cst_sgn (val1);
int sgn2 = tree_int_cst_sgn (val2);
if (needs_overflow_infinity (TREE_TYPE (res))
&& !supports_overflow_infinity (TREE_TYPE (res)))
return NULL_TREE;
/* We have to punt on adding infinities of different signs,
since we can't tell what the sign of the result should be.
Likewise for subtracting infinities of the same sign. */
if (((code == PLUS_EXPR && sgn1 != sgn2)
|| (code == MINUS_EXPR && sgn1 == sgn2))
&& is_overflow_infinity (val1)
&& is_overflow_infinity (val2))
return NULL_TREE;
/* Don't try to handle division or shifting of infinities. */
if ((code == TRUNC_DIV_EXPR
|| code == FLOOR_DIV_EXPR
|| code == CEIL_DIV_EXPR
|| code == EXACT_DIV_EXPR
|| code == ROUND_DIV_EXPR
|| code == RSHIFT_EXPR)
&& (is_overflow_infinity (val1)
|| is_overflow_infinity (val2)))
return NULL_TREE;
/* Notice that we only need to handle the restricted set of
operations handled by extract_range_from_binary_expr.
Among them, only multiplication, addition and subtraction
can yield overflow without overflown operands because we
are working with integral types only... except in the
case VAL1 = -INF and VAL2 = -1 which overflows to +INF
for division too. */
/* For multiplication, the sign of the overflow is given
by the comparison of the signs of the operands. */
if ((code == MULT_EXPR && sgn1 == sgn2)
/* For addition, the operands must be of the same sign
to yield an overflow. Its sign is therefore that
of one of the operands, for example the first. For
infinite operands X + -INF is negative, not positive. */
|| (code == PLUS_EXPR
&& (sgn1 >= 0
? !is_negative_overflow_infinity (val2)
: is_positive_overflow_infinity (val2)))
/* For subtraction, non-infinite operands must be of
different signs to yield an overflow. Its sign is
therefore that of the first operand or the opposite of
that of the second operand. A first operand of 0 counts
as positive here, for the corner case 0 - (-INF), which
overflows, but must yield +INF. For infinite operands 0
- INF is negative, not positive. */
|| (code == MINUS_EXPR
&& (sgn1 >= 0
? !is_positive_overflow_infinity (val2)
: is_negative_overflow_infinity (val2)))
/* We only get in here with positive shift count, so the
overflow direction is the same as the sign of val1.
Actually rshift does not overflow at all, but we only
handle the case of shifting overflowed -INF and +INF. */
|| (code == RSHIFT_EXPR
&& sgn1 >= 0)
/* For division, the only case is -INF / -1 = +INF. */
|| code == TRUNC_DIV_EXPR
|| code == FLOOR_DIV_EXPR
|| code == CEIL_DIV_EXPR
|| code == EXACT_DIV_EXPR
|| code == ROUND_DIV_EXPR)
return (needs_overflow_infinity (TREE_TYPE (res))
? positive_overflow_infinity (TREE_TYPE (res))
: TYPE_MAX_VALUE (TREE_TYPE (res)));
else
return (needs_overflow_infinity (TREE_TYPE (res))
? negative_overflow_infinity (TREE_TYPE (res))
: TYPE_MIN_VALUE (TREE_TYPE (res)));
}
return res;
}
/* Extract range information from a binary expression EXPR based on
the ranges of each of its operands and the expression code. */
static void
extract_range_from_binary_expr (value_range_t *vr,
enum tree_code code,
tree expr_type, tree op0, tree op1)
{
enum value_range_type type;
tree min, max;
int cmp;
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
/* Not all binary expressions can be applied to ranges in a
meaningful way. Handle only arithmetic operations. */
if (code != PLUS_EXPR
&& code != MINUS_EXPR
&& code != POINTER_PLUS_EXPR
&& code != MULT_EXPR
&& code != TRUNC_DIV_EXPR
&& code != FLOOR_DIV_EXPR
&& code != CEIL_DIV_EXPR
&& code != EXACT_DIV_EXPR
&& code != ROUND_DIV_EXPR
&& code != RSHIFT_EXPR
&& code != MIN_EXPR
&& code != MAX_EXPR
&& code != BIT_AND_EXPR
&& code != BIT_IOR_EXPR
&& code != TRUTH_AND_EXPR
&& code != TRUTH_OR_EXPR)
{
/* We can still do constant propagation here. */
tree const_op0 = op_with_constant_singleton_value_range (op0);
tree const_op1 = op_with_constant_singleton_value_range (op1);
if (const_op0 || const_op1)
{
tree tem = fold_binary (code, expr_type,
const_op0 ? const_op0 : op0,
const_op1 ? const_op1 : op1);
if (tem
&& is_gimple_min_invariant (tem)
&& !is_overflow_infinity (tem))
{
set_value_range (vr, VR_RANGE, tem, tem, NULL);
return;
}
}
set_value_range_to_varying (vr);
return;
}
/* Get value ranges for each operand. For constant operands, create
a new value range with the operand to simplify processing. */
if (TREE_CODE (op0) == SSA_NAME)
vr0 = *(get_value_range (op0));
else if (is_gimple_min_invariant (op0))
set_value_range_to_value (&vr0, op0, NULL);
else
set_value_range_to_varying (&vr0);
if (TREE_CODE (op1) == SSA_NAME)
vr1 = *(get_value_range (op1));
else if (is_gimple_min_invariant (op1))
set_value_range_to_value (&vr1, op1, NULL);
else
set_value_range_to_varying (&vr1);
/* If either range is UNDEFINED, so is the result. */
if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
{
set_value_range_to_undefined (vr);
return;
}
/* The type of the resulting value range defaults to VR0.TYPE. */
type = vr0.type;
/* Refuse to operate on VARYING ranges, ranges of different kinds
and symbolic ranges. As an exception, we allow BIT_AND_EXPR
because we may be able to derive a useful range even if one of
the operands is VR_VARYING or symbolic range. Similarly for
divisions. TODO, we may be able to derive anti-ranges in
some cases. */
if (code != BIT_AND_EXPR
&& code != TRUTH_AND_EXPR
&& code != TRUTH_OR_EXPR
&& code != TRUNC_DIV_EXPR
&& code != FLOOR_DIV_EXPR
&& code != CEIL_DIV_EXPR
&& code != EXACT_DIV_EXPR
&& code != ROUND_DIV_EXPR
&& (vr0.type == VR_VARYING
|| vr1.type == VR_VARYING
|| vr0.type != vr1.type
|| symbolic_range_p (&vr0)
|| symbolic_range_p (&vr1)))
{
set_value_range_to_varying (vr);
return;
}
/* Now evaluate the expression to determine the new range. */
if (POINTER_TYPE_P (expr_type)
|| POINTER_TYPE_P (TREE_TYPE (op0))
|| POINTER_TYPE_P (TREE_TYPE (op1)))
{
if (code == MIN_EXPR || code == MAX_EXPR)
{
/* For MIN/MAX expressions with pointers, we only care about
nullness, if both are non null, then the result is nonnull.
If both are null, then the result is null. Otherwise they
are varying. */
if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
set_value_range_to_nonnull (vr, expr_type);
else if (range_is_null (&vr0) && range_is_null (&vr1))
set_value_range_to_null (vr, expr_type);
else
set_value_range_to_varying (vr);
return;
}
gcc_assert (code == POINTER_PLUS_EXPR);
/* For pointer types, we are really only interested in asserting
whether the expression evaluates to non-NULL. */
if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
set_value_range_to_nonnull (vr, expr_type);
else if (range_is_null (&vr0) && range_is_null (&vr1))
set_value_range_to_null (vr, expr_type);
else
set_value_range_to_varying (vr);
return;
}
/* For integer ranges, apply the operation to each end of the
range and see what we end up with. */
if (code == TRUTH_AND_EXPR
|| code == TRUTH_OR_EXPR)
{
/* If one of the operands is zero, we know that the whole
expression evaluates zero. */
if (code == TRUTH_AND_EXPR
&& ((vr0.type == VR_RANGE
&& integer_zerop (vr0.min)
&& integer_zerop (vr0.max))
|| (vr1.type == VR_RANGE
&& integer_zerop (vr1.min)
&& integer_zerop (vr1.max))))
{
type = VR_RANGE;
min = max = build_int_cst (expr_type, 0);
}
/* If one of the operands is one, we know that the whole
expression evaluates one. */
else if (code == TRUTH_OR_EXPR
&& ((vr0.type == VR_RANGE
&& integer_onep (vr0.min)
&& integer_onep (vr0.max))
|| (vr1.type == VR_RANGE
&& integer_onep (vr1.min)
&& integer_onep (vr1.max))))
{
type = VR_RANGE;
min = max = build_int_cst (expr_type, 1);
}
else if (vr0.type != VR_VARYING
&& vr1.type != VR_VARYING
&& vr0.type == vr1.type
&& !symbolic_range_p (&vr0)
&& !overflow_infinity_range_p (&vr0)
&& !symbolic_range_p (&vr1)
&& !overflow_infinity_range_p (&vr1))
{
/* Boolean expressions cannot be folded with int_const_binop. */
min = fold_binary (code, expr_type, vr0.min, vr1.min);
max = fold_binary (code, expr_type, vr0.max, vr1.max);
}
else
{
/* The result of a TRUTH_*_EXPR is always true or false. */
set_value_range_to_truthvalue (vr, expr_type);
return;
}
}
else if (code == PLUS_EXPR
|| code == MIN_EXPR
|| code == MAX_EXPR)
{
/* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
VR_VARYING. It would take more effort to compute a precise
range for such a case. For example, if we have op0 == 1 and
op1 == -1 with their ranges both being ~[0,0], we would have
op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
Note that we are guaranteed to have vr0.type == vr1.type at
this point. */
if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
{
set_value_range_to_varying (vr);
return;
}
/* For operations that make the resulting range directly
proportional to the original ranges, apply the operation to
the same end of each range. */
min = vrp_int_const_binop (code, vr0.min, vr1.min);
max = vrp_int_const_binop (code, vr0.max, vr1.max);
}
else if (code == MULT_EXPR
|| code == TRUNC_DIV_EXPR
|| code == FLOOR_DIV_EXPR
|| code == CEIL_DIV_EXPR
|| code == EXACT_DIV_EXPR
|| code == ROUND_DIV_EXPR
|| code == RSHIFT_EXPR)
{
tree val[4];
size_t i;
bool sop;
/* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
drop to VR_VARYING. It would take more effort to compute a
precise range for such a case. For example, if we have
op0 == 65536 and op1 == 65536 with their ranges both being
~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
we cannot claim that the product is in ~[0,0]. Note that we
are guaranteed to have vr0.type == vr1.type at this
point. */
if (code == MULT_EXPR
&& vr0.type == VR_ANTI_RANGE
&& !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
{
set_value_range_to_varying (vr);
return;
}
/* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
then drop to VR_VARYING. Outside of this range we get undefined
behavior from the shift operation. We cannot even trust
SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
shifts, and the operation at the tree level may be widened. */
if (code == RSHIFT_EXPR)
{
if (vr1.type == VR_ANTI_RANGE
|| !vrp_expr_computes_nonnegative (op1, &sop)
|| (operand_less_p
(build_int_cst (TREE_TYPE (vr1.max),
TYPE_PRECISION (expr_type) - 1),
vr1.max) != 0))
{
set_value_range_to_varying (vr);
return;
}
}
else if ((code == TRUNC_DIV_EXPR
|| code == FLOOR_DIV_EXPR
|| code == CEIL_DIV_EXPR
|| code == EXACT_DIV_EXPR
|| code == ROUND_DIV_EXPR)
&& (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
{
/* For division, if op1 has VR_RANGE but op0 does not, something
can be deduced just from that range. Say [min, max] / [4, max]
gives [min / 4, max / 4] range. */
if (vr1.type == VR_RANGE
&& !symbolic_range_p (&vr1)
&& !range_includes_zero_p (&vr1))
{
vr0.type = type = VR_RANGE;
vr0.min = vrp_val_min (TREE_TYPE (op0));
vr0.max = vrp_val_max (TREE_TYPE (op1));
}
else
{
set_value_range_to_varying (vr);
return;
}
}
/* For divisions, if op0 is VR_RANGE, we can deduce a range
even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
include 0. */
if ((code == TRUNC_DIV_EXPR
|| code == FLOOR_DIV_EXPR
|| code == CEIL_DIV_EXPR
|| code == EXACT_DIV_EXPR
|| code == ROUND_DIV_EXPR)
&& vr0.type == VR_RANGE
&& (vr1.type != VR_RANGE
|| symbolic_range_p (&vr1)
|| range_includes_zero_p (&vr1)))
{
tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
int cmp;
sop = false;
min = NULL_TREE;
max = NULL_TREE;
if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
{
/* For unsigned division or when divisor is known
to be non-negative, the range has to cover
all numbers from 0 to max for positive max
and all numbers from min to 0 for negative min. */
cmp = compare_values (vr0.max, zero);
if (cmp == -1)
max = zero;
else if (cmp == 0 || cmp == 1)
max = vr0.max;
else
type = VR_VARYING;
cmp = compare_values (vr0.min, zero);
if (cmp == 1)
min = zero;
else if (cmp == 0 || cmp == -1)
min = vr0.min;
else
type = VR_VARYING;
}
else
{
/* Otherwise the range is -max .. max or min .. -min
depending on which bound is bigger in absolute value,
as the division can change the sign. */
abs_extent_range (vr, vr0.min, vr0.max);
return;
}
if (type == VR_VARYING)
{
set_value_range_to_varying (vr);
return;
}
}
/* Multiplications and divisions are a bit tricky to handle,
depending on the mix of signs we have in the two ranges, we
need to operate on different values to get the minimum and
maximum values for the new range. One approach is to figure
out all the variations of range combinations and do the
operations.
However, this involves several calls to compare_values and it
is pretty convoluted. It's simpler to do the 4 operations
(MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
MAX1) and then figure the smallest and largest values to form
the new range. */
else
{
gcc_assert ((vr0.type == VR_RANGE
|| (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
&& vr0.type == vr1.type);
/* Compute the 4 cross operations. */
sop = false;
val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
if (val[0] == NULL_TREE)
sop = true;
if (vr1.max == vr1.min)
val[1] = NULL_TREE;
else
{
val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
if (val[1] == NULL_TREE)
sop = true;
}
if (vr0.max == vr0.min)
val[2] = NULL_TREE;
else
{
val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
if (val[2] == NULL_TREE)
sop = true;
}
if (vr0.min == vr0.max || vr1.min == vr1.max)
val[3] = NULL_TREE;
else
{
val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
if (val[3] == NULL_TREE)
sop = true;
}
if (sop)
{
set_value_range_to_varying (vr);
return;
}
/* Set MIN to the minimum of VAL[i] and MAX to the maximum
of VAL[i]. */
min = val[0];
max = val[0];
for (i = 1; i < 4; i++)
{
if (!is_gimple_min_invariant (min)
|| (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
|| !is_gimple_min_invariant (max)
|| (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
break;
if (val[i])
{
if (!is_gimple_min_invariant (val[i])
|| (TREE_OVERFLOW (val[i])
&& !is_overflow_infinity (val[i])))
{
/* If we found an overflowed value, set MIN and MAX
to it so that we set the resulting range to
VARYING. */
min = max = val[i];
break;
}
if (compare_values (val[i], min) == -1)
min = val[i];
if (compare_values (val[i], max) == 1)
max = val[i];
}
}
}
}
else if (code == MINUS_EXPR)
{
/* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
VR_VARYING. It would take more effort to compute a precise
range for such a case. For example, if we have op0 == 1 and
op1 == 1 with their ranges both being ~[0,0], we would have
op0 - op1 == 0, so we cannot claim that the difference is in
~[0,0]. Note that we are guaranteed to have
vr0.type == vr1.type at this point. */
if (vr0.type == VR_ANTI_RANGE)
{
set_value_range_to_varying (vr);
return;
}
/* For MINUS_EXPR, apply the operation to the opposite ends of
each range. */
min = vrp_int_const_binop (code, vr0.min, vr1.max);
max = vrp_int_const_binop (code, vr0.max, vr1.min);
}
else if (code == BIT_AND_EXPR)
{
if (vr0.type == VR_RANGE
&& vr0.min == vr0.max
&& TREE_CODE (vr0.max) == INTEGER_CST
&& !TREE_OVERFLOW (vr0.max)
&& tree_int_cst_sgn (vr0.max) >= 0)
{
min = build_int_cst (expr_type, 0);
max = vr0.max;
}
else if (vr1.type == VR_RANGE
&& vr1.min == vr1.max
&& TREE_CODE (vr1.max) == INTEGER_CST
&& !TREE_OVERFLOW (vr1.max)
&& tree_int_cst_sgn (vr1.max) >= 0)
{
type = VR_RANGE;
min = build_int_cst (expr_type, 0);
max = vr1.max;
}
else
{
set_value_range_to_varying (vr);
return;
}
}
else if (code == BIT_IOR_EXPR)
{
if (vr0.type == VR_RANGE
&& vr1.type == VR_RANGE
&& TREE_CODE (vr0.min) == INTEGER_CST
&& TREE_CODE (vr1.min) == INTEGER_CST
&& TREE_CODE (vr0.max) == INTEGER_CST
&& TREE_CODE (vr1.max) == INTEGER_CST
&& tree_int_cst_sgn (vr0.min) >= 0
&& tree_int_cst_sgn (vr1.min) >= 0)
{
double_int vr0_max = tree_to_double_int (vr0.max);
double_int vr1_max = tree_to_double_int (vr1.max);
double_int ior_max;
/* Set all bits to the right of the most significant one to 1.
For example, [0, 4] | [4, 4] = [4, 7]. */
ior_max.low = vr0_max.low | vr1_max.low;
ior_max.high = vr0_max.high | vr1_max.high;
if (ior_max.high != 0)
{
ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
ior_max.high |= ((HOST_WIDE_INT) 1
<< floor_log2 (ior_max.high)) - 1;
}
else if (ior_max.low != 0)
ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
<< floor_log2 (ior_max.low)) - 1;
/* Both of these endpoints are conservative. */
min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
max = double_int_to_tree (expr_type, ior_max);
}
else
{
set_value_range_to_varying (vr);
return;
}
}
else
gcc_unreachable ();
/* If either MIN or MAX overflowed, then set the resulting range to
VARYING. But we do accept an overflow infinity
representation. */
if (min == NULL_TREE
|| !is_gimple_min_invariant (min)
|| (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
|| max == NULL_TREE
|| !is_gimple_min_invariant (max)
|| (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
{
set_value_range_to_varying (vr);
return;
}
/* We punt if:
1) [-INF, +INF]
2) [-INF, +-INF(OVF)]
3) [+-INF(OVF), +INF]
4) [+-INF(OVF), +-INF(OVF)]
We learn nothing when we have INF and INF(OVF) on both sides.
Note that we do accept [-INF, -INF] and [+INF, +INF] without
overflow. */
if ((vrp_val_is_min (min) || is_overflow_infinity (min))
&& (vrp_val_is_max (max) || is_overflow_infinity (max)))
{
set_value_range_to_varying (vr);
return;
}
cmp = compare_values (min, max);
if (cmp == -2 || cmp == 1)
{
/* If the new range has its limits swapped around (MIN > MAX),
then the operation caused one of them to wrap around, mark
the new range VARYING. */
set_value_range_to_varying (vr);
}
else
set_value_range (vr, type, min, max, NULL);
}
/* Extract range information from a unary expression EXPR based on
the range of its operand and the expression code. */
static void
extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
tree type, tree op0)
{
tree min, max;
int cmp;
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
/* Refuse to operate on certain unary expressions for which we
cannot easily determine a resulting range. */
if (code == FIX_TRUNC_EXPR
|| code == FLOAT_EXPR
|| code == BIT_NOT_EXPR
|| code == CONJ_EXPR)
{
/* We can still do constant propagation here. */
if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
{
tree tem = fold_unary (code, type, op0);
if (tem
&& is_gimple_min_invariant (tem)
&& !is_overflow_infinity (tem))
{
set_value_range (vr, VR_RANGE, tem, tem, NULL);
return;
}
}
set_value_range_to_varying (vr);
return;
}
/* Get value ranges for the operand. For constant operands, create
a new value range with the operand to simplify processing. */
if (TREE_CODE (op0) == SSA_NAME)
vr0 = *(get_value_range (op0));
else if (is_gimple_min_invariant (op0))
set_value_range_to_value (&vr0, op0, NULL);
else
set_value_range_to_varying (&vr0);
/* If VR0 is UNDEFINED, so is the result. */
if (vr0.type == VR_UNDEFINED)
{
set_value_range_to_undefined (vr);
return;
}
/* Refuse to operate on symbolic ranges, or if neither operand is
a pointer or integral type. */
if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
|| (vr0.type != VR_VARYING
&& symbolic_range_p (&vr0)))
{
set_value_range_to_varying (vr);
return;
}
/* If the expression involves pointers, we are only interested in
determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
{
bool sop;
sop = false;
if (range_is_nonnull (&vr0)
|| (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
&& !sop))
set_value_range_to_nonnull (vr, type);
else if (range_is_null (&vr0))
set_value_range_to_null (vr, type);
else
set_value_range_to_varying (vr);
return;
}
/* Handle unary expressions on integer ranges. */
if (CONVERT_EXPR_CODE_P (code)
&& INTEGRAL_TYPE_P (type)
&& INTEGRAL_TYPE_P (TREE_TYPE (op0)))
{
tree inner_type = TREE_TYPE (op0);
tree outer_type = type;
/* Always use base-types here. This is important for the
correct signedness. */
if (TREE_TYPE (inner_type))
inner_type = TREE_TYPE (inner_type);
if (TREE_TYPE (outer_type))
outer_type = TREE_TYPE (outer_type);
/* If VR0 is varying and we increase the type precision, assume
a full range for the following transformation. */
if (vr0.type == VR_VARYING
&& TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
{
vr0.type = VR_RANGE;
vr0.min = TYPE_MIN_VALUE (inner_type);
vr0.max = TYPE_MAX_VALUE (inner_type);
}
/* If VR0 is a constant range or anti-range and the conversion is
not truncating we can convert the min and max values and
canonicalize the resulting range. Otherwise we can do the
conversion if the size of the range is less than what the
precision of the target type can represent and the range is
not an anti-range. */
if ((vr0.type == VR_RANGE
|| vr0.type == VR_ANTI_RANGE)
&& TREE_CODE (vr0.min) == INTEGER_CST
&& TREE_CODE (vr0.max) == INTEGER_CST
&& !is_overflow_infinity (vr0.min)
&& !is_overflow_infinity (vr0.max)
&& (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
|| (vr0.type == VR_RANGE
&& integer_zerop (int_const_binop (RSHIFT_EXPR,
int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
size_int (TYPE_PRECISION (outer_type)), 0)))))
{
tree new_min, new_max;
new_min = force_fit_type_double (outer_type,
TREE_INT_CST_LOW (vr0.min),
TREE_INT_CST_HIGH (vr0.min), 0, 0);
new_max = force_fit_type_double (outer_type,
TREE_INT_CST_LOW (vr0.max),
TREE_INT_CST_HIGH (vr0.max), 0, 0);
set_and_canonicalize_value_range (vr, vr0.type,
new_min, new_max, NULL);
return;
}
set_value_range_to_varying (vr);
return;
}
/* Conversion of a VR_VARYING value to a wider type can result
in a usable range. So wait until after we've handled conversions
before dropping the result to VR_VARYING if we had a source
operand that is VR_VARYING. */
if (vr0.type == VR_VARYING)
{
set_value_range_to_varying (vr);
return;
}
/* Apply the operation to each end of the range and see what we end
up with. */
if (code == NEGATE_EXPR
&& !TYPE_UNSIGNED (type))
{
/* NEGATE_EXPR flips the range around. We need to treat
TYPE_MIN_VALUE specially. */
if (is_positive_overflow_infinity (vr0.max))
min = negative_overflow_infinity (type);
else if (is_negative_overflow_infinity (vr0.max))
min = positive_overflow_infinity (type);
else if (!vrp_val_is_min (vr0.max))
min = fold_unary_to_constant (code, type, vr0.max);
else if (needs_overflow_infinity (type))
{
if (supports_overflow_infinity (type)
&& !is_overflow_infinity (vr0.min)
&& !vrp_val_is_min (vr0.min))
min = positive_overflow_infinity (type);
else
{
set_value_range_to_varying (vr);
return;
}
}
else
min = TYPE_MIN_VALUE (type);
if (is_positive_overflow_infinity (vr0.min))
max = negative_overflow_infinity (type);
else if (is_negative_overflow_infinity (vr0.min))
max = positive_overflow_infinity (type);
else if (!vrp_val_is_min (vr0.min))
max = fold_unary_to_constant (code, type, vr0.min);
else if (needs_overflow_infinity (type))
{
if (supports_overflow_infinity (type))
max = positive_overflow_infinity (type);
else
{
set_value_range_to_varying (vr);
return;
}
}
else
max = TYPE_MIN_VALUE (type);
}
else if (code == NEGATE_EXPR
&& TYPE_UNSIGNED (type))
{
if (!range_includes_zero_p (&vr0))
{
max = fold_unary_to_constant (code, type, vr0.min);
min = fold_unary_to_constant (code, type, vr0.max);
}
else
{
if (range_is_null (&vr0))
set_value_range_to_null (vr, type);
else
set_value_range_to_varying (vr);
return;
}
}
else if (code == ABS_EXPR
&& !TYPE_UNSIGNED (type))
{
/* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
useful range. */
if (!TYPE_OVERFLOW_UNDEFINED (type)
&& ((vr0.type == VR_RANGE
&& vrp_val_is_min (vr0.min))
|| (vr0.type == VR_ANTI_RANGE
&& !vrp_val_is_min (vr0.min)
&& !range_includes_zero_p (&vr0))))
{
set_value_range_to_varying (vr);
return;
}
/* ABS_EXPR may flip the range around, if the original range
included negative values. */
if (is_overflow_infinity (vr0.min))
min = positive_overflow_infinity (type);
else if (!vrp_val_is_min (vr0.min))
min = fold_unary_to_constant (code, type, vr0.min);
else if (!needs_overflow_infinity (type))
min = TYPE_MAX_VALUE (type);
else if (supports_overflow_infinity (type))
min = positive_overflow_infinity (type);
else
{
set_value_range_to_varying (vr);
return;
}
if (is_overflow_infinity (vr0.max))
max = positive_overflow_infinity (type);
else if (!vrp_val_is_min (vr0.max))
max = fold_unary_to_constant (code, type, vr0.max);
else if (!needs_overflow_infinity (type))
max = TYPE_MAX_VALUE (type);
else if (supports_overflow_infinity (type)
/* We shouldn't generate [+INF, +INF] as set_value_range
doesn't like this and ICEs. */
&& !is_positive_overflow_infinity (min))
max = positive_overflow_infinity (type);
else
{
set_value_range_to_varying (vr);
return;
}
cmp = compare_values (min, max);
/* If a VR_ANTI_RANGEs contains zero, then we have
~[-INF, min(MIN, MAX)]. */
if (vr0.type == VR_ANTI_RANGE)
{
if (range_includes_zero_p (&vr0))
{
/* Take the lower of the two values. */
if (cmp != 1)
max = min;
/* Create ~[-INF, min (abs(MIN), abs(MAX))]
or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
flag_wrapv is set and the original anti-range doesn't include
TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
if (TYPE_OVERFLOW_WRAPS (type))
{
tree type_min_value = TYPE_MIN_VALUE (type);
min = (vr0.min != type_min_value
? int_const_binop (PLUS_EXPR, type_min_value,
integer_one_node, 0)
: type_min_value);
}
else
{
if (overflow_infinity_range_p (&vr0))
min = negative_overflow_infinity (type);
else
min = TYPE_MIN_VALUE (type);
}
}
else
{
/* All else has failed, so create the range [0, INF], even for
flag_wrapv since TYPE_MIN_VALUE is in the original
anti-range. */
vr0.type = VR_RANGE;
min = build_int_cst (type, 0);
if (needs_overflow_infinity (type))
{
if (supports_overflow_infinity (type))
max = positive_overflow_infinity (type);
else
{
set_value_range_to_varying (vr);
return;
}
}
else
max = TYPE_MAX_VALUE (type);
}
}
/* If the range contains zero then we know that the minimum value in the
range will be zero. */
else if (range_includes_zero_p (&vr0))
{
if (cmp == 1)
max = min;
min = build_int_cst (type, 0);
}
else
{
/* If the range was reversed, swap MIN and MAX. */
if (cmp == 1)
{
tree t = min;
min = max;
max = t;
}
}
}
else
{
/* Otherwise, operate on each end of the range. */
min = fold_unary_to_constant (code, type, vr0.min);
max = fold_unary_to_constant (code, type, vr0.max);
if (needs_overflow_infinity (type))
{
gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
/* If both sides have overflowed, we don't know
anything. */
if ((is_overflow_infinity (vr0.min)
|| TREE_OVERFLOW (min))
&& (is_overflow_infinity (vr0.max)
|| TREE_OVERFLOW (max)))
{
set_value_range_to_varying (vr);
return;
}
if (is_overflow_infinity (vr0.min))
min = vr0.min;
else if (TREE_OVERFLOW (min))
{
if (supports_overflow_infinity (type))
min = (tree_int_cst_sgn (min) >= 0
? positive_overflow_infinity (TREE_TYPE (min))
: negative_overflow_infinity (TREE_TYPE (min)));
else
{
set_value_range_to_varying (vr);
return;
}
}
if (is_overflow_infinity (vr0.max))
max = vr0.max;
else if (TREE_OVERFLOW (max))
{
if (supports_overflow_infinity (type))
max = (tree_int_cst_sgn (max) >= 0
? positive_overflow_infinity (TREE_TYPE (max))
: negative_overflow_infinity (TREE_TYPE (max)));
else
{
set_value_range_to_varying (vr);
return;
}
}
}
}
cmp = compare_values (min, max);
if (cmp == -2 || cmp == 1)
{
/* If the new range has its limits swapped around (MIN > MAX),
then the operation caused one of them to wrap around, mark
the new range VARYING. */
set_value_range_to_varying (vr);
}
else
set_value_range (vr, vr0.type, min, max, NULL);
}
/* Extract range information from a conditional expression EXPR based on
the ranges of each of its operands and the expression code. */
static void
extract_range_from_cond_expr (value_range_t *vr, tree expr)
{
tree op0, op1;
value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
/* Get value ranges for each operand. For constant operands, create
a new value range with the operand to simplify processing. */
op0 = COND_EXPR_THEN (expr);
if (TREE_CODE (op0) == SSA_NAME)
vr0 = *(get_value_range (op0));
else if (is_gimple_min_invariant (op0))
set_value_range_to_value (&vr0, op0, NULL);
else
set_value_range_to_varying (&vr0);
op1 = COND_EXPR_ELSE (expr);
if (TREE_CODE (op1) == SSA_NAME)
vr1 = *(get_value_range (op1));
else if (is_gimple_min_invariant (op1))
set_value_range_to_value (&vr1, op1, NULL);
else
set_value_range_to_varying (&vr1);
/* The resulting value range is the union of the operand ranges */
vrp_meet (&vr0, &vr1);
copy_value_range (vr, &vr0);
}
/* Extract range information from a comparison expression EXPR based
on the range of its operand and the expression code. */
static void
extract_range_from_comparison (value_range_t *vr, enum tree_code code,
tree type, tree op0, tree op1)
{
bool sop = false;
tree val;
val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
NULL);
/* A disadvantage of using a special infinity as an overflow
representation is that we lose the ability to record overflow
when we don't have an infinity. So we have to ignore a result
which relies on overflow. */
if (val && !is_overflow_infinity (val) && !sop)
{
/* Since this expression was found on the RHS of an assignment,
its type may be different from _Bool. Convert VAL to EXPR's
type. */
val = fold_convert (type, val);
if (is_gimple_min_invariant (val))
set_value_range_to_value (vr, val, vr->equiv);
else
set_value_range (vr, VR_RANGE, val, val, vr->equiv);
}
else
/* The result of a comparison is always true or false. */
set_value_range_to_truthvalue (vr, type);
}
/* Try to derive a nonnegative or nonzero range out of STMT relying
primarily on generic routines in fold in conjunction with range data.
Store the result in *VR */
static void
extract_range_basic (value_range_t *vr, gimple stmt)
{
bool sop = false;
tree type = gimple_expr_type (stmt);
if (INTEGRAL_TYPE_P (type)
&& gimple_stmt_nonnegative_warnv_p (stmt, &sop))
set_value_range_to_nonnegative (vr, type,
sop || stmt_overflow_infinity (stmt));
else if (vrp_stmt_computes_nonzero (stmt, &sop)
&& !sop)
set_value_range_to_nonnull (vr, type);
else
set_value_range_to_varying (vr);
}
/* Try to compute a useful range out of assignment STMT and store it
in *VR. */
static void
extract_range_from_assignment (value_range_t *vr, gimple stmt)
{
enum tree_code code = gimple_assign_rhs_code (stmt);
if (code == ASSERT_EXPR)
extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
else if (code == SSA_NAME)
extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
else if (TREE_CODE_CLASS (code) == tcc_binary
|| code == TRUTH_AND_EXPR
|| code == TRUTH_OR_EXPR
|| code == TRUTH_XOR_EXPR)
extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
gimple_expr_type (stmt),
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt));
else if (TREE_CODE_CLASS (code) == tcc_unary)
extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
gimple_expr_type (stmt),
gimple_assign_rhs1 (stmt));
else if (code == COND_EXPR)
extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
else if (TREE_CODE_CLASS (code) == tcc_comparison)
extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
gimple_expr_type (stmt),
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt));
else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
&& is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
else
set_value_range_to_varying (vr);
if (vr->type == VR_VARYING)
extract_range_basic (vr, stmt);
}
/* Given a range VR, a LOOP and a variable VAR, determine whether it
would be profitable to adjust VR using scalar evolution information
for VAR. If so, update VR with the new limits. */
static void
adjust_range_with_scev (value_range_t *vr, struct loop *loop,
gimple stmt, tree var)
{
tree init, step, chrec, tmin, tmax, min, max, type;
enum ev_direction dir;
/* TODO. Don't adjust anti-ranges. An anti-range may provide
better opportunities than a regular range, but I'm not sure. */
if (vr->type == VR_ANTI_RANGE)
return;
chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
/* Like in PR19590, scev can return a constant function. */
if (is_gimple_min_invariant (chrec))
{
set_value_range_to_value (vr, chrec, vr->equiv);
return;
}
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
return;
init = initial_condition_in_loop_num (chrec, loop->num);
step = evolution_part_in_loop_num (chrec, loop->num);
/* If STEP is symbolic, we can't know whether INIT will be the
minimum or maximum value in the range. Also, unless INIT is
a simple expression, compare_values and possibly other functions
in tree-vrp won't be able to handle it. */
if (step == NULL_TREE
|| !is_gimple_min_invariant (step)
|| !valid_value_p (init))
return;
dir = scev_direction (chrec);
if (/* Do not adjust ranges if we do not know whether the iv increases
or decreases, ... */
dir == EV_DIR_UNKNOWN
/* ... or if it may wrap. */
|| scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
true))
return;
/* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
negative_overflow_infinity and positive_overflow_infinity,
because we have concluded that the loop probably does not
wrap. */
type = TREE_TYPE (var);
if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
tmin = lower_bound_in_type (type, type);
else
tmin = TYPE_MIN_VALUE (type);
if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
tmax = upper_bound_in_type (type, type);
else
tmax = TYPE_MAX_VALUE (type);
if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
{
min = tmin;
max = tmax;
/* For VARYING or UNDEFINED ranges, just about anything we get
from scalar evolutions should be better. */
if (dir == EV_DIR_DECREASES)
max = init;
else
min = init;
/* If we would create an invalid range, then just assume we
know absolutely nothing. This may be over-conservative,
but it's clearly safe, and should happen only in unreachable
parts of code, or for invalid programs. */
if (compare_values (min, max) == 1)
return;
set_value_range (vr, VR_RANGE, min, max, vr->equiv);
}
else if (vr->type == VR_RANGE)
{
min = vr->min;
max = vr->max;
if (dir == EV_DIR_DECREASES)
{
/* INIT is the maximum value. If INIT is lower than VR->MAX
but no smaller than VR->MIN, set VR->MAX to INIT. */
if (compare_values (init, max) == -1)
{
max = init;
/* If we just created an invalid range with the minimum
greater than the maximum, we fail conservatively.
This should happen only in unreachable
parts of code, or for invalid programs. */
if (compare_values (min, max) == 1)
return;
}
/* According to the loop information, the variable does not
overflow. If we think it does, probably because of an
overflow due to arithmetic on a different INF value,
reset now. */
if (is_negative_overflow_infinity (min))
min = tmin;
}
else
{
/* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
if (compare_values (init, min) == 1)
{
min = init;
/* Again, avoid creating invalid range by failing. */
if (compare_values (min, max) == 1)
return;
}
if (is_positive_overflow_infinity (max))
max = tmax;
}
set_value_range (vr, VR_RANGE, min, max, vr->equiv);
}
}
/* Return true if VAR may overflow at STMT. This checks any available
loop information to see if we can determine that VAR does not
overflow. */
static bool
vrp_var_may_overflow (tree var, gimple stmt)
{
struct loop *l;
tree chrec, init, step;
if (current_loops == NULL)
return true;
l = loop_containing_stmt (stmt);
if (l == NULL)
return true;
chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
return true;
init = initial_condition_in_loop_num (chrec, l->num);
step = evolution_part_in_loop_num (chrec, l->num);
if (step == NULL_TREE
|| !is_gimple_min_invariant (step)
|| !valid_value_p (init))
return true;
/* If we get here, we know something useful about VAR based on the
loop information. If it wraps, it may overflow. */
if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
true))
return true;
if (dump_file && (dump_flags & TDF_DETAILS) != 0)
{
print_generic_expr (dump_file, var, 0);
fprintf (dump_file, ": loop information indicates does not overflow\n");
}
return false;
}
/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
- Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
all the values in the ranges.
- Return BOOLEAN_FALSE_NODE if the comparison always returns false.
- Return NULL_TREE if it is not always possible to determine the
value of the comparison.
Also set *STRICT_OVERFLOW_P to indicate whether a range with an
overflow infinity was used in the test. */
static tree
compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
bool *strict_overflow_p)
{
/* VARYING or UNDEFINED ranges cannot be compared. */
if (vr0->type == VR_VARYING
|| vr0->type == VR_UNDEFINED
|| vr1->type == VR_VARYING
|| vr1->type == VR_UNDEFINED)
return NULL_TREE;
/* Anti-ranges need to be handled separately. */
if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
{
/* If both are anti-ranges, then we cannot compute any
comparison. */
if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
return NULL_TREE;
/* These comparisons are never statically computable. */
if (comp == GT_EXPR
|| comp == GE_EXPR
|| comp == LT_EXPR
|| comp == LE_EXPR)
return NULL_TREE;
/* Equality can be computed only between a range and an
anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
if (vr0->type == VR_RANGE)
{
/* To simplify processing, make VR0 the anti-range. */
value_range_t *tmp = vr0;
vr0 = vr1;
vr1 = tmp;
}
gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
&& compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
return NULL_TREE;
}
if (!usable_range_p (vr0, strict_overflow_p)
|| !usable_range_p (vr1, strict_overflow_p))
return NULL_TREE;
/* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
operands around and change the comparison code. */
if (comp == GT_EXPR || comp == GE_EXPR)
{
value_range_t *tmp;
comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
tmp = vr0;
vr0 = vr1;
vr1 = tmp;
}
if (comp == EQ_EXPR)
{
/* Equality may only be computed if both ranges represent
exactly one value. */
if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
&& compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
{
int cmp_min = compare_values_warnv (vr0->min, vr1->min,
strict_overflow_p);
int cmp_max = compare_values_warnv (vr0->max, vr1->max,
strict_overflow_p);
if (cmp_min == 0 && cmp_max == 0)
return boolean_true_node;
else if (cmp_min != -2 && cmp_max != -2)
return boolean_false_node;
}
/* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
else if (compare_values_warnv (vr0->min, vr1->max,
strict_overflow_p) == 1
|| compare_values_warnv (vr1->min, vr0->max,
strict_overflow_p) == 1)
return boolean_false_node;
return NULL_TREE;
}
else if (comp == NE_EXPR)
{
int cmp1, cmp2;
/* If VR0 is completely to the left or completely to the right
of VR1, they are always different. Notice that we need to
make sure that both comparisons yield similar results to
avoid comparing values that cannot be compared at
compile-time. */
cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
return boolean_true_node;
/* If VR0 and VR1 represent a single value and are identical,
return false. */
else if (compare_values_warnv (vr0->min, vr0->max,
strict_overflow_p) == 0
&& compare_values_warnv (vr1->min, vr1->max,
strict_overflow_p) == 0
&& compare_values_warnv (vr0->min, vr1->min,
strict_overflow_p) == 0
&& compare_values_warnv (vr0->max, vr1->max,
strict_overflow_p) == 0)
return boolean_false_node;
/* Otherwise, they may or may not be different. */
else
return NULL_TREE;
}
else if (comp == LT_EXPR || comp == LE_EXPR)
{
int tst;
/* If VR0 is to the left of VR1, return true. */
tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
if ((comp == LT_EXPR && tst == -1)
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
{
if (overflow_infinity_range_p (vr0)
|| overflow_infinity_range_p (vr1))
*strict_overflow_p = true;
return boolean_true_node;
}
/* If VR0 is to the right of VR1, return false. */
tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|| (comp == LE_EXPR && tst == 1))
{
if (overflow_infinity_range_p (vr0)
|| overflow_infinity_range_p (vr1))
*strict_overflow_p = true;
return boolean_false_node;
}
/* Otherwise, we don't know. */
return NULL_TREE;
}
gcc_unreachable ();
}
/* Given a value range VR, a value VAL and a comparison code COMP, return
BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
values in VR. Return BOOLEAN_FALSE_NODE if the comparison
always returns false. Return NULL_TREE if it is not always
possible to determine the value of the comparison. Also set
*STRICT_OVERFLOW_P to indicate whether a range with an overflow
infinity was used in the test. */
static tree
compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
bool *strict_overflow_p)
{
if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
return NULL_TREE;
/* Anti-ranges need to be handled separately. */
if (vr->type == VR_ANTI_RANGE)
{
/* For anti-ranges, the only predicates that we can compute at
compile time are equality and inequality. */
if (comp == GT_EXPR
|| comp == GE_EXPR
|| comp == LT_EXPR
|| comp == LE_EXPR)
return NULL_TREE;
/* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
if (value_inside_range (val, vr) == 1)
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
return NULL_TREE;
}
if (!usable_range_p (vr, strict_overflow_p))
return NULL_TREE;
if (comp == EQ_EXPR)
{
/* EQ_EXPR may only be computed if VR represents exactly
one value. */
if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
{
int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
if (cmp == 0)
return boolean_true_node;
else if (cmp == -1 || cmp == 1 || cmp == 2)
return boolean_false_node;
}
else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
|| compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
return boolean_false_node;
return NULL_TREE;
}
else if (comp == NE_EXPR)
{
/* If VAL is not inside VR, then they are always different. */
if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
|| compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
return boolean_true_node;
/* If VR represents exactly one value equal to VAL, then return
false. */
if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
&& compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
return boolean_false_node;
/* Otherwise, they may or may not be different. */
return NULL_TREE;
}
else if (comp == LT_EXPR || comp == LE_EXPR)
{
int tst;
/* If VR is to the left of VAL, return true. */
tst = compare_values_warnv (vr->max, val, strict_overflow_p);
if ((comp == LT_EXPR && tst == -1)
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
{
if (overflow_infinity_range_p (vr))
*strict_overflow_p = true;
return boolean_true_node;
}
/* If VR is to the right of VAL, return false. */
tst = compare_values_warnv (vr->min, val, strict_overflow_p);
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|| (comp == LE_EXPR && tst == 1))
{
if (overflow_infinity_range_p (vr))
*strict_overflow_p = true;
return boolean_false_node;
}
/* Otherwise, we don't know. */
return NULL_TREE;
}
else if (comp == GT_EXPR || comp == GE_EXPR)
{
int tst;
/* If VR is to the right of VAL, return true. */
tst = compare_values_warnv (vr->min, val, strict_overflow_p);
if ((comp == GT_EXPR && tst == 1)
|| (comp == GE_EXPR && (tst == 0 || tst == 1)))
{
if (overflow_infinity_range_p (vr))
*strict_overflow_p = true;
return boolean_true_node;
}
/* If VR is to the left of VAL, return false. */
tst = compare_values_warnv (vr->max, val, strict_overflow_p);
if ((comp == GT_EXPR && (tst == -1 || tst == 0))
|| (comp == GE_EXPR && tst == -1))
{
if (overflow_infinity_range_p (vr))
*strict_overflow_p = true;
return boolean_false_node;
}
/* Otherwise, we don't know. */
return NULL_TREE;
}
gcc_unreachable ();
}
/* Debugging dumps. */
void dump_value_range (FILE *, value_range_t *);
void debug_value_range (value_range_t *);
void dump_all_value_ranges (FILE *);
void debug_all_value_ranges (void);
void dump_vr_equiv (FILE *, bitmap);
void debug_vr_equiv (bitmap);
/* Dump value range VR to FILE. */
void
dump_value_range (FILE *file, value_range_t *vr)
{
if (vr == NULL)
fprintf (file, "[]");
else if (vr->type == VR_UNDEFINED)
fprintf (file, "UNDEFINED");
else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
{
tree type = TREE_TYPE (vr->min);
fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
if (is_negative_overflow_infinity (vr->min))
fprintf (file, "-INF(OVF)");
else if (INTEGRAL_TYPE_P (type)
&& !TYPE_UNSIGNED (type)
&& vrp_val_is_min (vr->min))
fprintf (file, "-INF");
else
print_generic_expr (file, vr->min, 0);
fprintf (file, ", ");
if (is_positive_overflow_infinity (vr->max))
fprintf (file, "+INF(OVF)");
else if (INTEGRAL_TYPE_P (type)
&& vrp_val_is_max (vr->max))
fprintf (file, "+INF");
else
print_generic_expr (file, vr->max, 0);
fprintf (file, "]");
if (vr->equiv)
{
bitmap_iterator bi;
unsigned i, c = 0;
fprintf (file, " EQUIVALENCES: { ");
EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
{
print_generic_expr (file, ssa_name (i), 0);
fprintf (file, " ");
c++;
}
fprintf (file, "} (%u elements)", c);
}
}
else if (vr->type == VR_VARYING)
fprintf (file, "VARYING");
else
fprintf (file, "INVALID RANGE");
}
/* Dump value range VR to stderr. */
void
debug_value_range (value_range_t *vr)
{
dump_value_range (stderr, vr);
fprintf (stderr, "\n");
}
/* Dump value ranges of all SSA_NAMEs to FILE. */
void
dump_all_value_ranges (FILE *file)
{
size_t i;
for (i = 0; i < num_ssa_names; i++)
{
if (vr_value[i])
{
print_generic_expr (file, ssa_name (i), 0);
fprintf (file, ": ");
dump_value_range (file, vr_value[i]);
fprintf (file, "\n");
}
}
fprintf (file, "\n");
}
/* Dump all value ranges to stderr. */
void
debug_all_value_ranges (void)
{
dump_all_value_ranges (stderr);
}
/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
create a new SSA name N and return the assertion assignment
'V = ASSERT_EXPR <V, V OP W>'. */
static gimple
build_assert_expr_for (tree cond, tree v)
{
tree n;
gimple assertion;
gcc_assert (TREE_CODE (v) == SSA_NAME);
n = duplicate_ssa_name (v, NULL);
if (COMPARISON_CLASS_P (cond))
{
tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
assertion = gimple_build_assign (n, a);
}
else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
{
/* Given !V, build the assignment N = false. */
tree op0 = TREE_OPERAND (cond, 0);
gcc_assert (op0 == v);
assertion = gimple_build_assign (n, boolean_false_node);
}
else if (TREE_CODE (cond) == SSA_NAME)
{
/* Given V, build the assignment N = true. */
gcc_assert (v == cond);
assertion = gimple_build_assign (n, boolean_true_node);
}
else
gcc_unreachable ();
SSA_NAME_DEF_STMT (n) = assertion;
/* The new ASSERT_EXPR, creates a new SSA name that replaces the
operand of the ASSERT_EXPR. Register the new name and the old one
in the replacement table so that we can fix the SSA web after
adding all the ASSERT_EXPRs. */
register_new_name_mapping (n, v);
return assertion;
}
/* Return false if EXPR is a predicate expression involving floating
point values. */
static inline bool
fp_predicate (gimple stmt)
{
GIMPLE_CHECK (stmt, GIMPLE_COND);
return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
}
/* If the range of values taken by OP can be inferred after STMT executes,
return the comparison code (COMP_CODE_P) and value (VAL_P) that
describes the inferred range. Return true if a range could be
inferred. */
static bool
infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
{
*val_p = NULL_TREE;
*comp_code_p = ERROR_MARK;
/* Do not attempt to infer anything in names that flow through
abnormal edges. */
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
return false;
/* Similarly, don't infer anything from statements that may throw
exceptions. */
if (stmt_could_throw_p (stmt))
return false;
/* If STMT is the last statement of a basic block with no
successors, there is no point inferring anything about any of its
operands. We would not be able to find a proper insertion point
for the assertion, anyway. */
if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
return false;
/* We can only assume that a pointer dereference will yield
non-NULL if -fdelete-null-pointer-checks is enabled. */
if (flag_delete_null_pointer_checks
&& POINTER_TYPE_P (TREE_TYPE (op))
&& gimple_code (stmt) != GIMPLE_ASM)
{
unsigned num_uses, num_loads, num_stores;
count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
if (num_loads + num_stores > 0)
{
*val_p = build_int_cst (TREE_TYPE (op), 0);
*comp_code_p = NE_EXPR;
return true;
}
}
return false;
}
void dump_asserts_for (FILE *, tree);
void debug_asserts_for (tree);
void dump_all_asserts (FILE *);
void debug_all_asserts (void);
/* Dump all the registered assertions for NAME to FILE. */
void
dump_asserts_for (FILE *file, tree name)
{
assert_locus_t loc;
fprintf (file, "Assertions to be inserted for ");
print_generic_expr (file, name, 0);
fprintf (file, "\n");
loc = asserts_for[SSA_NAME_VERSION (name)];
while (loc)
{
fprintf (file, "\t");
print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
fprintf (file, "\n\tBB #%d", loc->bb->index);
if (loc->e)
{
fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
loc->e->dest->index);
dump_edge_info (file, loc->e, 0);
}
fprintf (file, "\n\tPREDICATE: ");
print_generic_expr (file, name, 0);
fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
print_generic_expr (file, loc->val, 0);
fprintf (file, "\n\n");
loc = loc->next;
}
fprintf (file, "\n");
}
/* Dump all the registered assertions for NAME to stderr. */
void
debug_asserts_for (tree name)
{
dump_asserts_for (stderr, name);
}
/* Dump all the registered assertions for all the names to FILE. */
void
dump_all_asserts (FILE *file)
{
unsigned i;
bitmap_iterator bi;
fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
dump_asserts_for (file, ssa_name (i));
fprintf (file, "\n");
}
/* Dump all the registered assertions for all the names to stderr. */
void
debug_all_asserts (void)
{
dump_all_asserts (stderr);
}
/* If NAME doesn't have an ASSERT_EXPR registered for asserting
'EXPR COMP_CODE VAL' at a location that dominates block BB or
E->DEST, then register this location as a possible insertion point
for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
BB, E and SI provide the exact insertion point for the new
ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
must not be NULL. */
static void
register_new_assert_for (tree name, tree expr,
enum tree_code comp_code,
tree val,
basic_block bb,
edge e,
gimple_stmt_iterator si)
{
assert_locus_t n, loc, last_loc;
bool found;
basic_block dest_bb;
#if defined ENABLE_CHECKING
gcc_assert (bb == NULL || e == NULL);
if (e == NULL)
gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
&& gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
#endif
/* Never build an assert comparing against an integer constant with
TREE_OVERFLOW set. This confuses our undefined overflow warning
machinery. */
if (TREE_CODE (val) == INTEGER_CST
&& TREE_OVERFLOW (val))
val = build_int_cst_wide (TREE_TYPE (val),
TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
/* The new assertion A will be inserted at BB or E. We need to
determine if the new location is dominated by a previously
registered location for A. If we are doing an edge insertion,
assume that A will be inserted at E->DEST. Note that this is not
necessarily true.
If E is a critical edge, it will be split. But even if E is
split, the new block will dominate the same set of blocks that
E->DEST dominates.
The reverse, however, is not true, blocks dominated by E->DEST
will not be dominated by the new block created to split E. So,
if the insertion location is on a critical edge, we will not use
the new location to move another assertion previously registered
at a block dominated by E->DEST. */
dest_bb = (bb) ? bb : e->dest;
/* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
VAL at a block dominating DEST_BB, then we don't need to insert a new
one. Similarly, if the same assertion already exists at a block
dominated by DEST_BB and the new location is not on a critical
edge, then update the existing location for the assertion (i.e.,
move the assertion up in the dominance tree).
Note, this is implemented as a simple linked list because there
should not be more than a handful of assertions registered per
name. If this becomes a performance problem, a table hashed by
COMP_CODE and VAL could be implemented. */
loc = asserts_for[SSA_NAME_VERSION (name)];
last_loc = loc;
found = false;
while (loc)
{
if (loc->comp_code == comp_code
&& (loc->val == val
|| operand_equal_p (loc->val, val, 0))
&& (loc->expr == expr
|| operand_equal_p (loc->expr, expr, 0)))
{
/* If the assertion NAME COMP_CODE VAL has already been
registered at a basic block that dominates DEST_BB, then
we don't need to insert the same assertion again. Note
that we don't check strict dominance here to avoid
replicating the same assertion inside the same basic
block more than once (e.g., when a pointer is
dereferenced several times inside a block).
An exception to this rule are edge insertions. If the
new assertion is to be inserted on edge E, then it will
dominate all the other insertions that we may want to
insert in DEST_BB. So, if we are doing an edge
insertion, don't do this dominance check. */
if (e == NULL
&& dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
return;
/* Otherwise, if E is not a critical edge and DEST_BB
dominates the existing location for the assertion, move
the assertion up in the dominance tree by updating its
location information. */
if ((e == NULL || !EDGE_CRITICAL_P (e))
&& dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
{
loc->bb = dest_bb;
loc->e = e;
loc->si = si;
return;
}
}
/* Update the last node of the list and move to the next one. */
last_loc = loc;
loc = loc->next;
}
/* If we didn't find an assertion already registered for
NAME COMP_CODE VAL, add a new one at the end of the list of
assertions associated with NAME. */
n = XNEW (struct assert_locus_d);
n->bb = dest_bb;
n->e = e;
n->si = si;
n->comp_code = comp_code;
n->val = val;
n->expr = expr;
n->next = NULL;
if (last_loc)
last_loc->next = n;
else
asserts_for[SSA_NAME_VERSION (name)] = n;
bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
}
/* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
Extract a suitable test code and value and store them into *CODE_P and
*VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
If no extraction was possible, return FALSE, otherwise return TRUE.
If INVERT is true, then we invert the result stored into *CODE_P. */
static bool
extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
tree cond_op0, tree cond_op1,
bool invert, enum tree_code *code_p,
tree *val_p)
{
enum tree_code comp_code;
tree val;
/* Otherwise, we have a comparison of the form NAME COMP VAL
or VAL COMP NAME. */
if (name == cond_op1)
{
/* If the predicate is of the form VAL COMP NAME, flip
COMP around because we need to register NAME as the
first operand in the predicate. */
comp_code = swap_tree_comparison (cond_code);
val = cond_op0;
}
else
{
/* The comparison is of the form NAME COMP VAL, so the
comparison code remains unchanged. */
comp_code = cond_code;
val = cond_op1;
}
/* Invert the comparison code as necessary. */
if (invert)
comp_code = invert_tree_comparison (comp_code, 0);
/* VRP does not handle float types. */
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
return false;
/* Do not register always-false predicates.
FIXME: this works around a limitation in fold() when dealing with
enumerations. Given 'enum { N1, N2 } x;', fold will not
fold 'if (x > N2)' to 'if (0)'. */
if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
&& INTEGRAL_TYPE_P (TREE_TYPE (val)))
{
tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
if (comp_code == GT_EXPR
&& (!max
|| compare_values (val, max) == 0))
return false;
if (comp_code == LT_EXPR
&& (!min
|| compare_values (val, min) == 0))
return false;
}
*code_p = comp_code;
*val_p = val;
return true;
}
/* Try to register an edge assertion for SSA name NAME on edge E for
the condition COND contributing to the conditional jump pointed to by BSI.
Invert the condition COND if INVERT is true.
Return true if an assertion for NAME could be registered. */
static bool
register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
enum tree_code cond_code,
tree cond_op0, tree cond_op1, bool invert)
{
tree val;
enum tree_code comp_code;
bool retval = false;
if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
cond_op0,
cond_op1,
invert, &comp_code, &val))
return false;
/* Only register an ASSERT_EXPR if NAME was found in the sub-graph
reachable from E. */
if (live_on_edge (e, name)
&& !has_single_use (name))
{
register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
retval = true;
}
/* In the case of NAME <= CST and NAME being defined as
NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
and NAME2 <= CST - CST2. We can do the same for NAME > CST.
This catches range and anti-range tests. */
if ((comp_code == LE_EXPR
|| comp_code == GT_EXPR)
&& TREE_CODE (val) == INTEGER_CST
&& TYPE_UNSIGNED (TREE_TYPE (val)))
{
gimple def_stmt = SSA_NAME_DEF_STMT (name);
tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
/* Extract CST2 from the (optional) addition. */
if (is_gimple_assign (def_stmt)
&& gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
{
name2 = gimple_assign_rhs1 (def_stmt);
cst2 = gimple_assign_rhs2 (def_stmt);
if (TREE_CODE (name2) == SSA_NAME
&& TREE_CODE (cst2) == INTEGER_CST)
def_stmt = SSA_NAME_DEF_STMT (name2);
}
/* Extract NAME2 from the (optional) sign-changing cast. */
if (gimple_assign_cast_p (def_stmt))
{
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
&& ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
&& (TYPE_PRECISION (gimple_expr_type (def_stmt))
== TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
name3 = gimple_assign_rhs1 (def_stmt);
}
/* If name3 is used later, create an ASSERT_EXPR for it. */
if (name3 != NULL_TREE
&& TREE_CODE (name3) == SSA_NAME
&& (cst2 == NULL_TREE
|| TREE_CODE (cst2) == INTEGER_CST)
&& INTEGRAL_TYPE_P (TREE_TYPE (name3))
&& live_on_edge (e, name3)
&& !has_single_use (name3))
{
tree tmp;
/* Build an expression for the range test. */
tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
if (cst2 != NULL_TREE)
tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
if (dump_file)
{
fprintf (dump_file, "Adding assert for ");
print_generic_expr (dump_file, name3, 0);
fprintf (dump_file, " from ");
print_generic_expr (dump_file, tmp, 0);
fprintf (dump_file, "\n");
}
register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
retval = true;
}
/* If name2 is used later, create an ASSERT_EXPR for it. */
if (name2 != NULL_TREE
&& TREE_CODE (name2) == SSA_NAME
&& TREE_CODE (cst2) == INTEGER_CST
&& INTEGRAL_TYPE_P (TREE_TYPE (name2))
&& live_on_edge (e, name2)
&& !has_single_use (name2))
{
tree tmp;
/* Build an expression for the range test. */
tmp = name2;
if (TREE_TYPE (name) != TREE_TYPE (name2))
tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
if (cst2 != NULL_TREE)
tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
if (dump_file)
{
fprintf (dump_file, "Adding assert for ");
print_generic_expr (dump_file, name2, 0);
fprintf (dump_file, " from ");
print_generic_expr (dump_file, tmp, 0);
fprintf (dump_file, "\n");
}
register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
retval = true;
}
}
return retval;
}
/* OP is an operand of a truth value expression which is known to have
a particular value. Register any asserts for OP and for any
operands in OP's defining statement.
If CODE is EQ_EXPR, then we want to register OP is zero (false),
if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
static bool
register_edge_assert_for_1 (tree op, enum tree_code code,
edge e, gimple_stmt_iterator bsi)
{
bool retval = false;
gimple op_def;
tree val;
enum tree_code rhs_code;
/* We only care about SSA_NAMEs. */
if (TREE_CODE (op) != SSA_NAME)
return false;
/* We know that OP will have a zero or nonzero value. If OP is used
more than once go ahead and register an assert for OP.
The FOUND_IN_SUBGRAPH support is not helpful in this situation as
it will always be set for OP (because OP is used in a COND_EXPR in
the subgraph). */
if (!has_single_use (op))
{
val = build_int_cst (TREE_TYPE (op), 0);
register_new_assert_for (op, op, code, val, NULL, e, bsi);
retval = true;
}
/* Now look at how OP is set. If it's set from a comparison,
a truth operation or some bit operations, then we may be able
to register information about the operands of that assignment. */
op_def = SSA_NAME_DEF_STMT (op);
if (gimple_code (op_def) != GIMPLE_ASSIGN)
return retval;
rhs_code = gimple_assign_rhs_code (op_def);
if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
{
bool invert = (code == EQ_EXPR ? true : false);
tree op0 = gimple_assign_rhs1 (op_def);
tree op1 = gimple_assign_rhs2 (op_def);
if (TREE_CODE (op0) == SSA_NAME)
retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
invert);
if (TREE_CODE (op1) == SSA_NAME)
retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
invert);
}
else if ((code == NE_EXPR
&& (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
|| gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
|| (code == EQ_EXPR
&& (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
|| gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
{
/* Recurse on each operand. */
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
code, e, bsi);
retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
code, e, bsi);
}
else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
{
/* Recurse, flipping CODE. */
code = invert_tree_comparison (code, false);
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
code, e, bsi);
}
else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
{
/* Recurse through the copy. */
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
code, e, bsi);
}
else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
{
/* Recurse through the type conversion. */
retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
code, e, bsi);
}
return retval;
}
/* Try to register an edge assertion for SSA name NAME on edge E for
the condition COND contributing to the conditional jump pointed to by SI.
Return true if an assertion for NAME could be registered. */
static bool
register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
enum tree_code cond_code, tree cond_op0,
tree cond_op1)
{
tree val;
enum tree_code comp_code;
bool retval = false;
bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
/* Do not attempt to infer anything in names that flow through
abnormal edges. */
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
return false;
if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
cond_op0, cond_op1,
is_else_edge,
&comp_code, &val))
return false;
/* Register ASSERT_EXPRs for name. */
retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
cond_op1, is_else_edge);
/* If COND is effectively an equality test of an SSA_NAME against
the value zero or one, then we may be able to assert values
for SSA_NAMEs which flow into COND. */
/* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
statement of NAME we can assert both operands of the TRUTH_AND_EXPR
have nonzero value. */
if (((comp_code == EQ_EXPR && integer_onep (val))
|| (comp_code == NE_EXPR && integer_zerop (val))))
{
gimple def_stmt = SSA_NAME_DEF_STMT (name);
if (is_gimple_assign (def_stmt)
&& (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
|| gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
{
tree op0 = gimple_assign_rhs1 (def_stmt);
tree op1 = gimple_assign_rhs2 (def_stmt);
retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
}
}
/* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
statement of NAME we can assert both operands of the TRUTH_OR_EXPR
have zero value. */
if (((comp_code == EQ_EXPR && integer_zerop (val))
|| (comp_code == NE_EXPR && integer_onep (val))))
{
gimple def_stmt = SSA_NAME_DEF_STMT (name);
if (is_gimple_assign (def_stmt)
&& (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
/* For BIT_IOR_EXPR only if NAME == 0 both operands have
necessarily zero value. */
|| (comp_code == EQ_EXPR
&& (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
{
tree op0 = gimple_assign_rhs1 (def_stmt);
tree op1 = gimple_assign_rhs2 (def_stmt);
retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
}
}
return retval;
}
/* Determine whether the outgoing edges of BB should receive an
ASSERT_EXPR for each of the operands of BB's LAST statement.
The last statement of BB must be a COND_EXPR.
If any of the sub-graphs rooted at BB have an interesting use of
the predicate operands, an assert location node is added to the
list of assertions for the corresponding operands. */
static bool
find_conditional_asserts (basic_block bb, gimple last)
{
bool need_assert;
gimple_stmt_iterator bsi;
tree op;
edge_iterator ei;
edge e;
ssa_op_iter iter;
need_assert = false;
bsi = gsi_for_stmt (last);
/* Look for uses of the operands in each of the sub-graphs
rooted at BB. We need to check each of the outgoing edges
separately, so that we know what kind of ASSERT_EXPR to
insert. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest == bb)
continue;
/* Register the necessary assertions for each operand in the
conditional predicate. */
FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
{
need_assert |= register_edge_assert_for (op, e, bsi,
gimple_cond_code (last),
gimple_cond_lhs (last),
gimple_cond_rhs (last));
}
}
return need_assert;
}
/* Compare two case labels sorting first by the destination label uid
and then by the case value. */
static int
compare_case_labels (const void *p1, const void *p2)
{
const_tree const case1 = *(const_tree const*)p1;
const_tree const case2 = *(const_tree const*)p2;
unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
if (uid1 < uid2)
return -1;
else if (uid1 == uid2)
{
/* Make sure the default label is first in a group. */
if (!CASE_LOW (case1))
return -1;
else if (!CASE_LOW (case2))
return 1;
else
return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
}
else
return 1;
}
/* Determine whether the outgoing edges of BB should receive an
ASSERT_EXPR for each of the operands of BB's LAST statement.
The last statement of BB must be a SWITCH_EXPR.
If any of the sub-graphs rooted at BB have an interesting use of
the predicate operands, an assert location node is added to the
list of assertions for the corresponding operands. */
static bool
find_switch_asserts (basic_block bb, gimple last)
{
bool need_assert;
gimple_stmt_iterator bsi;
tree op;
edge e;
tree vec2;
size_t n = gimple_switch_num_labels(last);
#if GCC_VERSION >= 4000
unsigned int idx;
#else
/* Work around GCC 3.4 bug (PR 37086). */
volatile unsigned int idx;
#endif
need_assert = false;
bsi = gsi_for_stmt (last);
op = gimple_switch_index (last);
if (TREE_CODE (op) != SSA_NAME)
return false;
/* Build a vector of case labels sorted by destination label. */
vec2 = make_tree_vec (n);
for (idx = 0; idx < n; ++idx)
TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
for (idx = 0; idx < n; ++idx)
{
tree min, max;
tree cl = TREE_VEC_ELT (vec2, idx);
min = CASE_LOW (cl);
max = CASE_HIGH (cl);
/* If there are multiple case labels with the same destination
we need to combine them to a single value range for the edge. */
if (idx + 1 < n
&& CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
{
/* Skip labels until the last of the group. */
do {
++idx;
} while (idx < n
&& CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
--idx;
/* Pick up the maximum of the case label range. */
if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
else
max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
}
/* Nothing to do if the range includes the default label until we
can register anti-ranges. */
if (min == NULL_TREE)
continue;
/* Find the edge to register the assert expr on. */
e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
/* Register the necessary assertions for the operand in the
SWITCH_EXPR. */
need_assert |= register_edge_assert_for (op, e, bsi,
max ? GE_EXPR : EQ_EXPR,
op,
fold_convert (TREE_TYPE (op),
min));
if (max)
{
need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
op,
fold_convert (TREE_TYPE (op),
max));
}
}
return need_assert;
}
/* Traverse all the statements in block BB looking for statements that
may generate useful assertions for the SSA names in their operand.
If a statement produces a useful assertion A for name N_i, then the
list of assertions already generated for N_i is scanned to
determine if A is actually needed.
If N_i already had the assertion A at a location dominating the
current location, then nothing needs to be done. Otherwise, the
new location for A is recorded instead.
1- For every statement S in BB, all the variables used by S are
added to bitmap FOUND_IN_SUBGRAPH.
2- If statement S uses an operand N in a way that exposes a known
value range for N, then if N was not already generated by an
ASSERT_EXPR, create a new assert location for N. For instance,
if N is a pointer and the statement dereferences it, we can
assume that N is not NULL.
3- COND_EXPRs are a special case of #2. We can derive range
information from the predicate but need to insert different
ASSERT_EXPRs for each of the sub-graphs rooted at the
conditional block. If the last statement of BB is a conditional
expression of the form 'X op Y', then
a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
b) If the conditional is the only entry point to the sub-graph
corresponding to the THEN_CLAUSE, recurse into it. On
return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
an ASSERT_EXPR is added for the corresponding variable.
c) Repeat step (b) on the ELSE_CLAUSE.
d) Mark X and Y in FOUND_IN_SUBGRAPH.
For instance,
if (a == 9)
b = a;
else
b = c + 1;
In this case, an assertion on the THEN clause is useful to
determine that 'a' is always 9 on that edge. However, an assertion
on the ELSE clause would be unnecessary.
4- If BB does not end in a conditional expression, then we recurse
into BB's dominator children.
At the end of the recursive traversal, every SSA name will have a
list of locations where ASSERT_EXPRs should be added. When a new
location for name N is found, it is registered by calling
register_new_assert_for. That function keeps track of all the
registered assertions to prevent adding unnecessary assertions.
For instance, if a pointer P_4 is dereferenced more than once in a
dominator tree, only the location dominating all the dereference of
P_4 will receive an ASSERT_EXPR.
If this function returns true, then it means that there are names
for which we need to generate ASSERT_EXPRs. Those assertions are
inserted by process_assert_insertions. */
static bool
find_assert_locations_1 (basic_block bb, sbitmap live)
{
gimple_stmt_iterator si;
gimple last;
gimple phi;
bool need_assert;
need_assert = false;
last = last_stmt (bb);
/* If BB's last statement is a conditional statement involving integer
operands, determine if we need to add ASSERT_EXPRs. */
if (last
&& gimple_code (last) == GIMPLE_COND
&& !fp_predicate (last)
&& !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
need_assert |= find_conditional_asserts (bb, last);
/* If BB's last statement is a switch statement involving integer
operands, determine if we need to add ASSERT_EXPRs. */
if (last
&& gimple_code (last) == GIMPLE_SWITCH
&& !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
need_assert |= find_switch_asserts (bb, last);
/* Traverse all the statements in BB marking used names and looking
for statements that may infer assertions for their used operands. */
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt;
tree op;
ssa_op_iter i;
stmt = gsi_stmt (si);
/* See if we can derive an assertion for any of STMT's operands. */
FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
{
tree value;
enum tree_code comp_code;
/* Mark OP in our live bitmap. */
SET_BIT (live, SSA_NAME_VERSION (op));
/* If OP is used in such a way that we can infer a value
range for it, and we don't find a previous assertion for
it, create a new assertion location node for OP. */
if (infer_value_range (stmt, op, &comp_code, &value))
{
/* If we are able to infer a nonzero value range for OP,
then walk backwards through the use-def chain to see if OP
was set via a typecast.
If so, then we can also infer a nonzero value range
for the operand of the NOP_EXPR. */
if (comp_code == NE_EXPR && integer_zerop (value))
{
tree t = op;
gimple def_stmt = SSA_NAME_DEF_STMT (t);
while (is_gimple_assign (def_stmt)
&& gimple_assign_rhs_code (def_stmt) == NOP_EXPR
&& TREE_CODE
(gimple_assign_rhs1 (def_stmt)) == SSA_NAME
&& POINTER_TYPE_P
(TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
{
t = gimple_assign_rhs1 (def_stmt);
def_stmt = SSA_NAME_DEF_STMT (t);
/* Note we want to register the assert for the
operand of the NOP_EXPR after SI, not after the
conversion. */
if (! has_single_use (t))
{
register_new_assert_for (t, t, comp_code, value,
bb, NULL, si);
need_assert = true;
}
}
}
/* If OP is used only once, namely in this STMT, don't
bother creating an ASSERT_EXPR for it. Such an
ASSERT_EXPR would do nothing but increase compile time. */
if (!has_single_use (op))
{
register_new_assert_for (op, op, comp_code, value,
bb, NULL, si);
need_assert = true;
}
}
}
}
/* Traverse all PHI nodes in BB marking used operands. */
for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
{
use_operand_p arg_p;
ssa_op_iter i;
phi = gsi_stmt (si);
FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
{
tree arg = USE_FROM_PTR (arg_p);
if (TREE_CODE (arg) == SSA_NAME)
SET_BIT (live, SSA_NAME_VERSION (arg));
}
}
return need_assert;
}
/* Do an RPO walk over the function computing SSA name liveness
on-the-fly and deciding on assert expressions to insert.
Returns true if there are assert expressions to be inserted. */
static bool
find_assert_locations (void)
{
int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
int rpo_cnt, i;
bool need_asserts;
live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
for (i = 0; i < rpo_cnt; ++i)
bb_rpo[rpo[i]] = i;
need_asserts = false;
for (i = rpo_cnt-1; i >= 0; --i)
{
basic_block bb = BASIC_BLOCK (rpo[i]);
edge e;
edge_iterator ei;
if (!live[rpo[i]])
{
live[rpo[i]] = sbitmap_alloc (num_ssa_names);
sbitmap_zero (live[rpo[i]]);
}
/* Process BB and update the live information with uses in
this block. */
need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
/* Merge liveness into the predecessor blocks and free it. */
if (!sbitmap_empty_p (live[rpo[i]]))
{
int pred_rpo = i;
FOR_EACH_EDGE (e, ei, bb->preds)
{
int pred = e->src->index;
if (e->flags & EDGE_DFS_BACK)
continue;
if (!live[pred])
{
live[pred] = sbitmap_alloc (num_ssa_names);
sbitmap_zero (live[pred]);
}
sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
if (bb_rpo[pred] < pred_rpo)
pred_rpo = bb_rpo[pred];
}
/* Record the RPO number of the last visited block that needs
live information from this block. */
last_rpo[rpo[i]] = pred_rpo;
}
else
{
sbitmap_free (live[rpo[i]]);
live[rpo[i]] = NULL;
}
/* We can free all successors live bitmaps if all their
predecessors have been visited already. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (last_rpo[e->dest->index] == i
&& live[e->dest->index])
{
sbitmap_free (live[e->dest->index]);
live[e->dest->index] = NULL;
}
}
XDELETEVEC (rpo);
XDELETEVEC (bb_rpo);
XDELETEVEC (last_rpo);
for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
if (live[i])
sbitmap_free (live[i]);
XDELETEVEC (live);
return need_asserts;
}
/* Create an ASSERT_EXPR for NAME and insert it in the location
indicated by LOC. Return true if we made any edge insertions. */
static bool
process_assert_insertions_for (tree name, assert_locus_t loc)
{
/* Build the comparison expression NAME_i COMP_CODE VAL. */
gimple stmt;
tree cond;
gimple assert_stmt;
edge_iterator ei;
edge e;
cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
assert_stmt = build_assert_expr_for (cond, name);
if (loc->e)
{
/* We have been asked to insert the assertion on an edge. This
is used only by COND_EXPR and SWITCH_EXPR assertions. */
#if defined ENABLE_CHECKING
gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
|| gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
#endif
gsi_insert_on_edge (loc->e, assert_stmt);
return true;
}
/* Otherwise, we can insert right after LOC->SI iff the
statement must not be the last statement in the block. */
stmt = gsi_stmt (loc->si);
if (!stmt_ends_bb_p (stmt))
{
gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
return false;
}
/* If STMT must be the last statement in BB, we can only insert new
assertions on the non-abnormal edge out of BB. Note that since
STMT is not control flow, there may only be one non-abnormal edge
out of BB. */
FOR_EACH_EDGE (e, ei, loc->bb->succs)
if (!(e->flags & EDGE_ABNORMAL))
{
gsi_insert_on_edge (e, assert_stmt);
return true;
}
gcc_unreachable ();
}
/* Process all the insertions registered for every name N_i registered
in NEED_ASSERT_FOR. The list of assertions to be inserted are
found in ASSERTS_FOR[i]. */
static void
process_assert_insertions (void)
{
unsigned i;
bitmap_iterator bi;
bool update_edges_p = false;
int num_asserts = 0;
if (dump_file && (dump_flags & TDF_DETAILS))
dump_all_asserts (dump_file);
EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
{
assert_locus_t loc = asserts_for[i];
gcc_assert (loc);
while (loc)
{
assert_locus_t next = loc->next;
update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
free (loc);
loc = next;
num_asserts++;
}
}
if (update_edges_p)
gsi_commit_edge_inserts ();
statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
num_asserts);
}
/* Traverse the flowgraph looking for conditional jumps to insert range
expressions. These range expressions are meant to provide information
to optimizations that need to reason in terms of value ranges. They
will not be expanded into RTL. For instance, given:
x = ...
y = ...
if (x < y)
y = x - 2;
else
x = y + 3;
this pass will transform the code into:
x = ...
y = ...
if (x < y)
{
x = ASSERT_EXPR <x, x < y>
y = x - 2
}
else
{
y = ASSERT_EXPR <y, x <= y>
x = y + 3
}
The idea is that once copy and constant propagation have run, other
optimizations will be able to determine what ranges of values can 'x'
take in different paths of the code, simply by checking the reaching
definition of 'x'. */
static void
insert_range_assertions (void)
{
need_assert_for = BITMAP_ALLOC (NULL);
asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
calculate_dominance_info (CDI_DOMINATORS);
if (find_assert_locations ())
{
process_assert_insertions ();
update_ssa (TODO_update_ssa_no_phi);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
dump_function_to_file (current_function_decl, dump_file, dump_flags);
}
free (asserts_for);
BITMAP_FREE (need_assert_for);
}
/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
and "struct" hacks. If VRP can determine that the
array subscript is a constant, check if it is outside valid
range. If the array subscript is a RANGE, warn if it is
non-overlapping with valid range.
IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
static void
check_array_ref (tree ref, const location_t *location, bool ignore_off_by_one)
{
value_range_t* vr = NULL;
tree low_sub, up_sub;
tree low_bound, up_bound = array_ref_up_bound (ref);
low_sub = up_sub = TREE_OPERAND (ref, 1);
if (!up_bound || TREE_NO_WARNING (ref)
|| TREE_CODE (up_bound) != INTEGER_CST
/* Can not check flexible arrays. */
|| (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
&& TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
&& TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
/* Accesses after the end of arrays of size 0 (gcc
extension) and 1 are likely intentional ("struct
hack"). */
|| compare_tree_int (up_bound, 1) <= 0)
return;
low_bound = array_ref_low_bound (ref);
if (TREE_CODE (low_sub) == SSA_NAME)
{
vr = get_value_range (low_sub);
if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
{
low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
}
}
if (vr && vr->type == VR_ANTI_RANGE)
{
if (TREE_CODE (up_sub) == INTEGER_CST
&& tree_int_cst_lt (up_bound, up_sub)
&& TREE_CODE (low_sub) == INTEGER_CST
&& tree_int_cst_lt (low_sub, low_bound))
{
warning (OPT_Warray_bounds,
"%Harray subscript is outside array bounds", location);
TREE_NO_WARNING (ref) = 1;
}
}
else if (TREE_CODE (up_sub) == INTEGER_CST
&& tree_int_cst_lt (up_bound, up_sub)
&& !tree_int_cst_equal (up_bound, up_sub)
&& (!ignore_off_by_one
|| !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
up_bound,
integer_one_node,
0),
up_sub)))
{
warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
location);
TREE_NO_WARNING (ref) = 1;
}
else if (TREE_CODE (low_sub) == INTEGER_CST
&& tree_int_cst_lt (low_sub, low_bound))
{
warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
location);
TREE_NO_WARNING (ref) = 1;
}
}
/* Searches if the expr T, located at LOCATION computes
address of an ARRAY_REF, and call check_array_ref on it. */
static void
search_for_addr_array (tree t, const location_t *location)
{
while (TREE_CODE (t) == SSA_NAME)
{
gimple g = SSA_NAME_DEF_STMT (t);
if (gimple_code (g) != GIMPLE_ASSIGN)
return;
if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
!= GIMPLE_SINGLE_RHS)
return;
t = gimple_assign_rhs1 (g);
}
/* We are only interested in addresses of ARRAY_REF's. */
if (TREE_CODE (t) != ADDR_EXPR)
return;
/* Check each ARRAY_REFs in the reference chain. */
do
{
if (TREE_CODE (t) == ARRAY_REF)
check_array_ref (t, location, true /*ignore_off_by_one*/);
t = TREE_OPERAND (t, 0);
}
while (handled_component_p (t));
}
/* walk_tree() callback that checks if *TP is
an ARRAY_REF inside an ADDR_EXPR (in which an array
subscript one outside the valid range is allowed). Call
check_array_ref for each ARRAY_REF found. The location is
passed in DATA. */
static tree
check_array_bounds (tree *tp, int *walk_subtree, void *data)
{
tree t = *tp;
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
const location_t *location = (const location_t *) wi->info;
*walk_subtree = TRUE;
if (TREE_CODE (t) == ARRAY_REF)
check_array_ref (t, location, false /*ignore_off_by_one*/);
if (TREE_CODE (t) == INDIRECT_REF
|| (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
search_for_addr_array (TREE_OPERAND (t, 0), location);
if (TREE_CODE (t) == ADDR_EXPR)
*walk_subtree = FALSE;
return NULL_TREE;
}
/* Walk over all statements of all reachable BBs and call check_array_bounds
on them. */
static void
check_all_array_refs (void)
{
basic_block bb;
gimple_stmt_iterator si;
FOR_EACH_BB (bb)
{
/* Skip bb's that are clearly unreachable. */
if (single_pred_p (bb))
{
basic_block pred_bb = EDGE_PRED (bb, 0)->src;
gimple ls = NULL;
if (!gsi_end_p (gsi_last_bb (pred_bb)))
ls = gsi_stmt (gsi_last_bb (pred_bb));
if (ls && gimple_code (ls) == GIMPLE_COND
&& ((gimple_cond_false_p (ls)
&& (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
|| (gimple_cond_true_p (ls)
&& (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
continue;
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
const location_t *location = gimple_location_ptr (stmt);
struct walk_stmt_info wi;
if (!gimple_has_location (stmt))
continue;
if (is_gimple_call (stmt))
{
size_t i;
size_t n = gimple_call_num_args (stmt);
for (i = 0; i < n; i++)
{
tree arg = gimple_call_arg (stmt, i);
search_for_addr_array (arg, location);
}
}
else
{
memset (&wi, 0, sizeof (wi));
wi.info = CONST_CAST (void *, (const void *) location);
walk_gimple_op (gsi_stmt (si),
check_array_bounds,
&wi);
}
}
}
}
/* Convert range assertion expressions into the implied copies and
copy propagate away the copies. Doing the trivial copy propagation
here avoids the need to run the full copy propagation pass after
VRP.
FIXME, this will eventually lead to copy propagation removing the
names that had useful range information attached to them. For
instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
then N_i will have the range [3, +INF].
However, by converting the assertion into the implied copy
operation N_i = N_j, we will then copy-propagate N_j into the uses
of N_i and lose the range information. We may want to hold on to
ASSERT_EXPRs a little while longer as the ranges could be used in
things like jump threading.
The problem with keeping ASSERT_EXPRs around is that passes after
VRP need to handle them appropriately.
Another approach would be to make the range information a first
class property of the SSA_NAME so that it can be queried from
any pass. This is made somewhat more complex by the need for
multiple ranges to be associated with one SSA_NAME. */
static void
remove_range_assertions (void)
{
basic_block bb;
gimple_stmt_iterator si;
/* Note that the BSI iterator bump happens at the bottom of the
loop and no bump is necessary if we're removing the statement
referenced by the current BSI. */
FOR_EACH_BB (bb)
for (si = gsi_start_bb (bb); !gsi_end_p (si);)
{
gimple stmt = gsi_stmt (si);
gimple use_stmt;
if (is_gimple_assign (stmt)
&& gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
{
tree rhs = gimple_assign_rhs1 (stmt);
tree var;
tree cond = fold (ASSERT_EXPR_COND (rhs));
use_operand_p use_p;
imm_use_iterator iter;
gcc_assert (cond != boolean_false_node);
/* Propagate the RHS into every use of the LHS. */
var = ASSERT_EXPR_VAR (rhs);
FOR_EACH_IMM_USE_STMT (use_stmt, iter,
gimple_assign_lhs (stmt))
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
{
SET_USE (use_p, var);
gcc_assert (TREE_CODE (var) == SSA_NAME);
}
/* And finally, remove the copy, it is not needed. */
gsi_remove (&si, true);
release_defs (stmt);
}
else
gsi_next (&si);
}
}
/* Return true if STMT is interesting for VRP. */
static bool
stmt_interesting_for_vrp (gimple stmt)
{
if (gimple_code (stmt) == GIMPLE_PHI
&& is_gimple_reg (gimple_phi_result (stmt))
&& (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
|| POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
return true;
else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
{
tree lhs = gimple_get_lhs (stmt);
/* In general, assignments with virtual operands are not useful
for deriving ranges, with the obvious exception of calls to
builtin functions. */
if (lhs && TREE_CODE (lhs) == SSA_NAME
&& (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
&& ((is_gimple_call (stmt)
&& gimple_call_fndecl (stmt) != NULL_TREE
&& DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
|| ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
return true;
}
else if (gimple_code (stmt) == GIMPLE_COND
|| gimple_code (stmt) == GIMPLE_SWITCH)
return true;
return false;
}
/* Initialize local data structures for VRP. */
static void
vrp_initialize (void)
{
basic_block bb;
vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
FOR_EACH_BB (bb)
{
gimple_stmt_iterator si;
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple phi = gsi_stmt (si);
if (!stmt_interesting_for_vrp (phi))
{
tree lhs = PHI_RESULT (phi);
set_value_range_to_varying (get_value_range (lhs));
prop_set_simulate_again (phi, false);
}
else
prop_set_simulate_again (phi, true);
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
if (!stmt_interesting_for_vrp (stmt))
{
ssa_op_iter i;
tree def;
FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
set_value_range_to_varying (get_value_range (def));
prop_set_simulate_again (stmt, false);
}
else
{
prop_set_simulate_again (stmt, true);
}
}
}
}
/* Visit assignment STMT. If it produces an interesting range, record
the SSA name in *OUTPUT_P. */
static enum ssa_prop_result
vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
{
tree def, lhs;
ssa_op_iter iter;
enum gimple_code code = gimple_code (stmt);
lhs = gimple_get_lhs (stmt);
/* We only keep track of ranges in integral and pointer types. */
if (TREE_CODE (lhs) == SSA_NAME
&& ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
/* It is valid to have NULL MIN/MAX values on a type. See
build_range_type. */
&& TYPE_MIN_VALUE (TREE_TYPE (lhs))
&& TYPE_MAX_VALUE (TREE_TYPE (lhs)))
|| POINTER_TYPE_P (TREE_TYPE (lhs))))
{
struct loop *l;
value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
if (code == GIMPLE_CALL)
extract_range_basic (&new_vr, stmt);
else
extract_range_from_assignment (&new_vr, stmt);
/* If STMT is inside a loop, we may be able to know something
else about the range of LHS by examining scalar evolution
information. */
if (current_loops && (l = loop_containing_stmt (stmt)))
adjust_range_with_scev (&new_vr, l, stmt, lhs);
if (update_value_range (lhs, &new_vr))
{
*output_p = lhs;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Found new range for ");
print_generic_expr (dump_file, lhs, 0);
fprintf (dump_file, ": ");
dump_value_range (dump_file, &new_vr);
fprintf (dump_file, "\n\n");
}
if (new_vr.type == VR_VARYING)
return SSA_PROP_VARYING;
return SSA_PROP_INTERESTING;
}
return SSA_PROP_NOT_INTERESTING;
}
/* Every other statement produces no useful ranges. */
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
set_value_range_to_varying (get_value_range (def));
return SSA_PROP_VARYING;
}
/* Helper that gets the value range of the SSA_NAME with version I
or a symbolic range containing the SSA_NAME only if the value range
is varying or undefined. */
static inline value_range_t
get_vr_for_comparison (int i)
{
value_range_t vr = *(vr_value[i]);
/* If name N_i does not have a valid range, use N_i as its own
range. This allows us to compare against names that may
have N_i in their ranges. */
if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
{
vr.type = VR_RANGE;
vr.min = ssa_name (i);
vr.max = ssa_name (i);
}
return vr;
}
/* Compare all the value ranges for names equivalent to VAR with VAL
using comparison code COMP. Return the same value returned by
compare_range_with_value, including the setting of
*STRICT_OVERFLOW_P. */
static tree
compare_name_with_value (enum tree_code comp, tree var, tree val,
bool *strict_overflow_p)
{
bitmap_iterator bi;
unsigned i;
bitmap e;
tree retval, t;
int used_strict_overflow;
bool sop;
value_range_t equiv_vr;
/* Get the set of equivalences for VAR. */
e = get_value_range (var)->equiv;
/* Start at -1. Set it to 0 if we do a comparison without relying
on overflow, or 1 if all comparisons rely on overflow. */
used_strict_overflow = -1;
/* Compare vars' value range with val. */
equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
sop = false;
retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
if (retval)
used_strict_overflow = sop ? 1 : 0;
/* If the equiv set is empty we have done all work we need to do. */
if (e == NULL)
{
if (retval
&& used_strict_overflow > 0)
*strict_overflow_p = true;
return retval;
}
EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
{
equiv_vr = get_vr_for_comparison (i);
sop = false;
t = compare_range_with_value (comp, &equiv_vr, val, &sop);
if (t)
{
/* If we get different answers from different members
of the equivalence set this check must be in a dead
code region. Folding it to a trap representation
would be correct here. For now just return don't-know. */
if (retval != NULL
&& t != retval)
{
retval = NULL_TREE;
break;
}
retval = t;
if (!sop)
used_strict_overflow = 0;
else if (used_strict_overflow < 0)
used_strict_overflow = 1;
}
}
if (retval
&& used_strict_overflow > 0)
*strict_overflow_p = true;
return retval;
}
/* Given a comparison code COMP and names N1 and N2, compare all the
ranges equivalent to N1 against all the ranges equivalent to N2
to determine the value of N1 COMP N2. Return the same value
returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
whether we relied on an overflow infinity in the comparison. */
static tree
compare_names (enum tree_code comp, tree n1, tree n2,
bool *strict_overflow_p)
{
tree t, retval;
bitmap e1, e2;
bitmap_iterator bi1, bi2;
unsigned i1, i2;
int used_strict_overflow;
static bitmap_obstack *s_obstack = NULL;
static bitmap s_e1 = NULL, s_e2 = NULL;
/* Compare the ranges of every name equivalent to N1 against the
ranges of every name equivalent to N2. */
e1 = get_value_range (n1)->equiv;
e2 = get_value_range (n2)->equiv;
/* Use the fake bitmaps if e1 or e2 are not available. */
if (s_obstack == NULL)
{
s_obstack = XNEW (bitmap_obstack);
bitmap_obstack_initialize (s_obstack);
s_e1 = BITMAP_ALLOC (s_obstack);
s_e2 = BITMAP_ALLOC (s_obstack);
}
if (e1 == NULL)
e1 = s_e1;
if (e2 == NULL)
e2 = s_e2;
/* Add N1 and N2 to their own set of equivalences to avoid
duplicating the body of the loop just to check N1 and N2
ranges. */
bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
/* If the equivalence sets have a common intersection, then the two
names can be compared without checking their ranges. */
if (bitmap_intersect_p (e1, e2))
{
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
? boolean_true_node
: boolean_false_node;
}
/* Start at -1. Set it to 0 if we do a comparison without relying
on overflow, or 1 if all comparisons rely on overflow. */
used_strict_overflow = -1;
/* Otherwise, compare all the equivalent ranges. First, add N1 and
N2 to their own set of equivalences to avoid duplicating the body
of the loop just to check N1 and N2 ranges. */
EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
{
value_range_t vr1 = get_vr_for_comparison (i1);
t = retval = NULL_TREE;
EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
{
bool sop = false;
value_range_t vr2 = get_vr_for_comparison (i2);
t = compare_ranges (comp, &vr1, &vr2, &sop);
if (t)
{
/* If we get different answers from different members
of the equivalence set this check must be in a dead
code region. Folding it to a trap representation
would be correct here. For now just return don't-know. */
if (retval != NULL
&& t != retval)
{
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
return NULL_TREE;
}
retval = t;
if (!sop)
used_strict_overflow = 0;
else if (used_strict_overflow < 0)
used_strict_overflow = 1;
}
}
if (retval)
{
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
if (used_strict_overflow > 0)
*strict_overflow_p = true;
return retval;
}
}
/* None of the equivalent ranges are useful in computing this
comparison. */
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
return NULL_TREE;
}
/* Helper function for vrp_evaluate_conditional_warnv. */
static tree
vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
tree op0, tree op1,
bool * strict_overflow_p)
{
value_range_t *vr0, *vr1;
vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
if (vr0 && vr1)
return compare_ranges (code, vr0, vr1, strict_overflow_p);
else if (vr0 && vr1 == NULL)
return compare_range_with_value (code, vr0, op1, strict_overflow_p);
else if (vr0 == NULL && vr1)
return (compare_range_with_value
(swap_tree_comparison (code), vr1, op0, strict_overflow_p));
return NULL;
}
/* Helper function for vrp_evaluate_conditional_warnv. */
static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
tree op1, bool use_equiv_p,
bool *strict_overflow_p, bool *only_ranges)
{
tree ret;
if (only_ranges)
*only_ranges = true;
/* We only deal with integral and pointer types. */
if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
return NULL_TREE;
if (use_equiv_p)
{
if (only_ranges
&& (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
(code, op0, op1, strict_overflow_p)))
return ret;
*only_ranges = false;
if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
return compare_names (code, op0, op1, strict_overflow_p);
else if (TREE_CODE (op0) == SSA_NAME)
return compare_name_with_value (code, op0, op1, strict_overflow_p);
else if (TREE_CODE (op1) == SSA_NAME)
return (compare_name_with_value
(swap_tree_comparison (code), op1, op0, strict_overflow_p));
}
else
return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
strict_overflow_p);
return NULL_TREE;
}
/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
information. Return NULL if the conditional can not be evaluated.
The ranges of all the names equivalent with the operands in COND
will be used when trying to compute the value. If the result is
based on undefined signed overflow, issue a warning if
appropriate. */
tree
vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
{
bool sop;
tree ret;
bool only_ranges;
sop = false;
ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
&only_ranges);
if (ret && sop)
{
enum warn_strict_overflow_code wc;
const char* warnmsg;
if (is_gimple_min_invariant (ret))
{
wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
warnmsg = G_("assuming signed overflow does not occur when "
"simplifying conditional to constant");
}
else
{
wc = WARN_STRICT_OVERFLOW_COMPARISON;
warnmsg = G_("assuming signed overflow does not occur when "
"simplifying conditional");
}
if (issue_strict_overflow_warning (wc))
{
location_t location;
if (!gimple_has_location (stmt))
location = input_location;
else
location = gimple_location (stmt);
warning (OPT_Wstrict_overflow, "%H%s", &location, warnmsg);
}
}
if (warn_type_limits
&& ret && only_ranges
&& TREE_CODE_CLASS (code) == tcc_comparison
&& TREE_CODE (op0) == SSA_NAME)
{
/* If the comparison is being folded and the operand on the LHS
is being compared against a constant value that is outside of
the natural range of OP0's type, then the predicate will
always fold regardless of the value of OP0. If -Wtype-limits
was specified, emit a warning. */
const char *warnmsg = NULL;
tree type = TREE_TYPE (op0);
value_range_t *vr0 = get_value_range (op0);
if (vr0->type != VR_VARYING
&& INTEGRAL_TYPE_P (type)
&& vrp_val_is_min (vr0->min)
&& vrp_val_is_max (vr0->max)
&& is_gimple_min_invariant (op1))
{
if (integer_zerop (ret))
warnmsg = G_("comparison always false due to limited range of "
"data type");
else
warnmsg = G_("comparison always true due to limited range of "
"data type");
}
if (warnmsg)
{
location_t location;
if (!gimple_has_location (stmt))
location = input_location;
else
location = gimple_location (stmt);
warning (OPT_Wtype_limits, "%H%s", &location, warnmsg);
}
}
return ret;
}
/* Visit conditional statement STMT. If we can determine which edge
will be taken out of STMT's basic block, record it in
*TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
SSA_PROP_VARYING. */
static enum ssa_prop_result
vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
{
tree val;
bool sop;
*taken_edge_p = NULL;
if (dump_file && (dump_flags & TDF_DETAILS))
{
tree use;
ssa_op_iter i;
fprintf (dump_file, "\nVisiting conditional with predicate: ");
print_gimple_stmt (dump_file, stmt, 0, 0);
fprintf (dump_file, "\nWith known ranges\n");
FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
{
fprintf (dump_file, "\t");
print_generic_expr (dump_file, use, 0);
fprintf (dump_file, ": ");
dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
}
fprintf (dump_file, "\n");
}
/* Compute the value of the predicate COND by checking the known
ranges of each of its operands.
Note that we cannot evaluate all the equivalent ranges here
because those ranges may not yet be final and with the current
propagation strategy, we cannot determine when the value ranges
of the names in the equivalence set have changed.
For instance, given the following code fragment
i_5 = PHI <8, i_13>
...
i_14 = ASSERT_EXPR <i_5, i_5 != 0>
if (i_14 == 1)
...
Assume that on the first visit to i_14, i_5 has the temporary
range [8, 8] because the second argument to the PHI function is
not yet executable. We derive the range ~[0, 0] for i_14 and the
equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
the first time, since i_14 is equivalent to the range [8, 8], we
determine that the predicate is always false.
On the next round of propagation, i_13 is determined to be
VARYING, which causes i_5 to drop down to VARYING. So, another
visit to i_14 is scheduled. In this second visit, we compute the
exact same range and equivalence set for i_14, namely ~[0, 0] and
{ i_5 }. But we did not have the previous range for i_5
registered, so vrp_visit_assignment thinks that the range for
i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
is not visited again, which stops propagation from visiting
statements in the THEN clause of that if().
To properly fix this we would need to keep the previous range
value for the names in the equivalence set. This way we would've
discovered that from one visit to the other i_5 changed from
range [8, 8] to VR_VARYING.
However, fixing this apparent limitation may not be worth the
additional checking. Testing on several code bases (GCC, DLV,
MICO, TRAMP3D and SPEC2000) showed that doing this results in
4 more predicates folded in SPEC. */
sop = false;
val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
gimple_cond_lhs (stmt),
gimple_cond_rhs (stmt),
false, &sop, NULL);
if (val)
{
if (!sop)
*taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
else
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"\nIgnoring predicate evaluation because "
"it assumes that signed overflow is undefined");
val = NULL_TREE;
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nPredicate evaluates to: ");
if (val == NULL_TREE)
fprintf (dump_file, "DON'T KNOW\n");
else
print_generic_stmt (dump_file, val, 0);
}
return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
}
/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
that includes the value VAL. The search is restricted to the range
[START_IDX, n - 1] where n is the size of VEC.
If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
returned.
If there is no CASE_LABEL for VAL and the is one that is larger than VAL,
it is placed in IDX and false is returned.
If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
returned. */
static bool
find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
{
size_t n = gimple_switch_num_labels (stmt);
size_t low, high;
/* Find case label for minimum of the value range or the next one.
At each iteration we are searching in [low, high - 1]. */
for (low = start_idx, high = n; high != low; )
{
tree t;
int cmp;
/* Note that i != high, so we never ask for n. */
size_t i = (high + low) / 2;
t = gimple_switch_label (stmt, i);
/* Cache the result of comparing CASE_LOW and val. */
cmp = tree_int_cst_compare (CASE_LOW (t), val);
if (cmp == 0)
{
/* Ranges cannot be empty. */
*idx = i;
return true;
}
else if (cmp > 0)
high = i;
else
{
low = i + 1;
if (CASE_HIGH (t) != NULL
&& tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
{
*idx = i;
return true;
}
}
}
*idx = high;
return false;
}
/* Searches the case label vector VEC for the range of CASE_LABELs that is used
for values between MIN and MAX. The first index is placed in MIN_IDX. The
last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
then MAX_IDX < MIN_IDX.
Returns true if the default label is not needed. */
static bool
find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
size_t *max_idx)
{
size_t i, j;
bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
bool max_take_default = !find_case_label_index (stmt, i, max, &j);
if (i == j
&& min_take_default
&& max_take_default)
{
/* Only the default case label reached.
Return an empty range. */
*min_idx = 1;
*max_idx = 0;
return false;
}
else
{
bool take_default = min_take_default || max_take_default;
tree low, high;
size_t k;
if (max_take_default)
j--;
/* If the case label range is continuous, we do not need
the default case label. Verify that. */
high = CASE_LOW (gimple_switch_label (stmt, i));
if (CASE_HIGH (gimple_switch_label (stmt, i)))
high = CASE_HIGH (gimple_switch_label (stmt, i));
for (k = i + 1; k <= j; ++k)
{
low = CASE_LOW (gimple_switch_label (stmt, k));
if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
{
take_default = true;
break;
}
high = low;
if (CASE_HIGH (gimple_switch_label (stmt, k)))
high = CASE_HIGH (gimple_switch_label (stmt, k));
}
*min_idx = i;
*max_idx = j;
return !take_default;
}
}
/* Visit switch statement STMT. If we can determine which edge
will be taken out of STMT's basic block, record it in
*TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
SSA_PROP_VARYING. */
static enum ssa_prop_result
vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
{
tree op, val;
value_range_t *vr;
size_t i = 0, j = 0, n;
bool take_default;
*taken_edge_p = NULL;
op = gimple_switch_index (stmt);
if (TREE_CODE (op) != SSA_NAME)
return SSA_PROP_VARYING;
vr = get_value_range (op);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nVisiting switch expression with operand ");
print_generic_expr (dump_file, op, 0);
fprintf (dump_file, " with known range ");
dump_value_range (dump_file, vr);
fprintf (dump_file, "\n");
}
if (vr->type != VR_RANGE
|| symbolic_range_p (vr))
return SSA_PROP_VARYING;
/* Find the single edge that is taken from the switch expression. */
n = gimple_switch_num_labels (stmt);
take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
/* Check if the range spans no CASE_LABEL. If so, we only reach the default
label */
if (j < i)
{
gcc_assert (take_default);
val = gimple_switch_default_label (stmt);
}
else
{
/* Check if labels with index i to j and maybe the default label
are all reaching the same label. */
val = gimple_switch_label (stmt, i);
if (take_default
&& CASE_LABEL (gimple_switch_default_label (stmt))
!= CASE_LABEL (val))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a single destination for this "
"range\n");
return SSA_PROP_VARYING;
}
for (++i; i <= j; ++i)
{
if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a single destination for this "
"range\n");
return SSA_PROP_VARYING;
}
}
}
*taken_edge_p = find_edge (gimple_bb (stmt),
label_to_block (CASE_LABEL (val)));
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " will take edge to ");
print_generic_stmt (dump_file, CASE_LABEL (val), 0);
}
return SSA_PROP_INTERESTING;
}
/* Evaluate statement STMT. If the statement produces a useful range,
return SSA_PROP_INTERESTING and record the SSA name with the
interesting range into *OUTPUT_P.
If STMT is a conditional branch and we can determine its truth
value, the taken edge is recorded in *TAKEN_EDGE_P.
If STMT produces a varying value, return SSA_PROP_VARYING. */
static enum ssa_prop_result
vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
{
tree def;
ssa_op_iter iter;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nVisiting statement:\n");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "\n");
}
if (is_gimple_assign (stmt) || is_gimple_call (stmt))
{
/* In general, assignments with virtual operands are not useful
for deriving ranges, with the obvious exception of calls to
builtin functions. */
if ((is_gimple_call (stmt)
&& gimple_call_fndecl (stmt) != NULL_TREE
&& DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
|| ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
return vrp_visit_assignment_or_call (stmt, output_p);
}
else if (gimple_code (stmt) == GIMPLE_COND)
return vrp_visit_cond_stmt (stmt, taken_edge_p);
else if (gimple_code (stmt) == GIMPLE_SWITCH)
return vrp_visit_switch_stmt (stmt, taken_edge_p);
/* All other statements produce nothing of interest for VRP, so mark
their outputs varying and prevent further simulation. */
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
set_value_range_to_varying (get_value_range (def));
return SSA_PROP_VARYING;
}
/* Meet operation for value ranges. Given two value ranges VR0 and
VR1, store in VR0 a range that contains both VR0 and VR1. This
may not be the smallest possible such range. */
static void
vrp_meet (value_range_t *vr0, value_range_t *vr1)
{
if (vr0->type == VR_UNDEFINED)
{
copy_value_range (vr0, vr1);
return;
}
if (vr1->type == VR_UNDEFINED)
{
/* Nothing to do. VR0 already has the resulting range. */
return;
}
if (vr0->type == VR_VARYING)
{
/* Nothing to do. VR0 already has the resulting range. */
return;
}
if (vr1->type == VR_VARYING)
{
set_value_range_to_varying (vr0);
return;
}
if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
{
int cmp;
tree min, max;
/* Compute the convex hull of the ranges. The lower limit of
the new range is the minimum of the two ranges. If they
cannot be compared, then give up. */
cmp = compare_values (vr0->min, vr1->min);
if (cmp == 0 || cmp == 1)
min = vr1->min;
else if (cmp == -1)
min = vr0->min;
else
goto give_up;
/* Similarly, the upper limit of the new range is the maximum
of the two ranges. If they cannot be compared, then
give up. */
cmp = compare_values (vr0->max, vr1->max);
if (cmp == 0 || cmp == -1)
max = vr1->max;
else if (cmp == 1)
max = vr0->max;
else
goto give_up;
/* Check for useless ranges. */
if (INTEGRAL_TYPE_P (TREE_TYPE (min))
&& ((vrp_val_is_min (min) || is_overflow_infinity (min))
&& (vrp_val_is_max (max) || is_overflow_infinity (max))))
goto give_up;
/* The resulting set of equivalences is the intersection of
the two sets. */
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
bitmap_and_into (vr0->equiv, vr1->equiv);
else if (vr0->equiv && !vr1->equiv)
bitmap_clear (vr0->equiv);
set_value_range (vr0, vr0->type, min, max, vr0->equiv);
}
else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
{
/* Two anti-ranges meet only if their complements intersect.
Only handle the case of identical ranges. */
if (compare_values (vr0->min, vr1->min) == 0
&& compare_values (vr0->max, vr1->max) == 0
&& compare_values (vr0->min, vr0->max) == 0)
{
/* The resulting set of equivalences is the intersection of
the two sets. */
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
bitmap_and_into (vr0->equiv, vr1->equiv);
else if (vr0->equiv && !vr1->equiv)
bitmap_clear (vr0->equiv);
}
else
goto give_up;
}
else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
{
/* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
only handle the case where the ranges have an empty intersection.
The result of the meet operation is the anti-range. */
if (!symbolic_range_p (vr0)
&& !symbolic_range_p (vr1)
&& !value_ranges_intersect_p (vr0, vr1))
{
/* Copy most of VR1 into VR0. Don't copy VR1's equivalence
set. We need to compute the intersection of the two
equivalence sets. */
if (vr1->type == VR_ANTI_RANGE)
set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
/* The resulting set of equivalences is the intersection of
the two sets. */
if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
bitmap_and_into (vr0->equiv, vr1->equiv);
else if (vr0->equiv && !vr1->equiv)
bitmap_clear (vr0->equiv);
}
else
goto give_up;
}
else
gcc_unreachable ();
return;
give_up:
/* Failed to find an efficient meet. Before giving up and setting
the result to VARYING, see if we can at least derive a useful
anti-range. FIXME, all this nonsense about distinguishing
anti-ranges from ranges is necessary because of the odd
semantics of range_includes_zero_p and friends. */
if (!symbolic_range_p (vr0)
&& ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
|| (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
&& !symbolic_range_p (vr1)
&& ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
|| (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
{
set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
/* Since this meet operation did not result from the meeting of
two equivalent names, VR0 cannot have any equivalences. */
if (vr0->equiv)
bitmap_clear (vr0->equiv);
}
else
set_value_range_to_varying (vr0);
}
/* Visit all arguments for PHI node PHI that flow through executable
edges. If a valid value range can be derived from all the incoming
value ranges, set a new range for the LHS of PHI. */
static enum ssa_prop_result
vrp_visit_phi_node (gimple phi)
{
size_t i;
tree lhs = PHI_RESULT (phi);
value_range_t *lhs_vr = get_value_range (lhs);
value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
int edges, old_edges;
copy_value_range (&vr_result, lhs_vr);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nVisiting PHI node: ");
print_gimple_stmt (dump_file, phi, 0, dump_flags);
}
edges = 0;
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
edge e = gimple_phi_arg_edge (phi, i);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"\n Argument #%d (%d -> %d %sexecutable)\n",
(int) i, e->src->index, e->dest->index,
(e->flags & EDGE_EXECUTABLE) ? "" : "not ");
}
if (e->flags & EDGE_EXECUTABLE)
{
tree arg = PHI_ARG_DEF (phi, i);
value_range_t vr_arg;
++edges;
if (TREE_CODE (arg) == SSA_NAME)
{
vr_arg = *(get_value_range (arg));
}
else
{
if (is_overflow_infinity (arg))
{
arg = copy_node (arg);
TREE_OVERFLOW (arg) = 0;
}
vr_arg.type = VR_RANGE;
vr_arg.min = arg;
vr_arg.max = arg;
vr_arg.equiv = NULL;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\t");
print_generic_expr (dump_file, arg, dump_flags);
fprintf (dump_file, "\n\tValue: ");
dump_value_range (dump_file, &vr_arg);
fprintf (dump_file, "\n");
}
vrp_meet (&vr_result, &vr_arg);
if (vr_result.type == VR_VARYING)
break;
}
}
if (vr_result.type == VR_VARYING)
goto varying;
old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
/* To prevent infinite iterations in the algorithm, derive ranges
when the new value is slightly bigger or smaller than the
previous one. We don't do this if we have seen a new executable
edge; this helps us avoid an overflow infinity for conditionals
which are not in a loop. */
if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
&& edges <= old_edges)
{
if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
{
int cmp_min = compare_values (lhs_vr->min, vr_result.min);
int cmp_max = compare_values (lhs_vr->max, vr_result.max);
/* If the new minimum is smaller or larger than the previous
one, go all the way to -INF. In the first case, to avoid
iterating millions of times to reach -INF, and in the
other case to avoid infinite bouncing between different
minimums. */
if (cmp_min > 0 || cmp_min < 0)
{
/* If we will end up with a (-INF, +INF) range, set it to
VARYING. Same if the previous max value was invalid for
the type and we'd end up with vr_result.min > vr_result.max. */
if (vrp_val_is_max (vr_result.max)
|| compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
vr_result.max) > 0)
goto varying;
if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
|| !vrp_var_may_overflow (lhs, phi))
vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
vr_result.min =
negative_overflow_infinity (TREE_TYPE (vr_result.min));
else
goto varying;
}
/* Similarly, if the new maximum is smaller or larger than
the previous one, go all the way to +INF. */
if (cmp_max < 0 || cmp_max > 0)
{
/* If we will end up with a (-INF, +INF) range, set it to
VARYING. Same if the previous min value was invalid for
the type and we'd end up with vr_result.max < vr_result.min. */
if (vrp_val_is_min (vr_result.min)
|| compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
vr_result.min) < 0)
goto varying;
if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
|| !vrp_var_may_overflow (lhs, phi))
vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
vr_result.max =
positive_overflow_infinity (TREE_TYPE (vr_result.max));
else
goto varying;
}
}
}
/* If the new range is different than the previous value, keep
iterating. */
if (update_value_range (lhs, &vr_result))
return SSA_PROP_INTERESTING;
/* Nothing changed, don't add outgoing edges. */
return SSA_PROP_NOT_INTERESTING;
/* No match found. Set the LHS to VARYING. */
varying:
set_value_range_to_varying (lhs_vr);
return SSA_PROP_VARYING;
}
/* Simplify boolean operations if the source is known
to be already a boolean. */
static bool
simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
tree val = NULL;
tree op0, op1;
value_range_t *vr;
bool sop = false;
bool need_conversion;
op0 = gimple_assign_rhs1 (stmt);
if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
{
if (TREE_CODE (op0) != SSA_NAME)
return false;
vr = get_value_range (op0);
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
if (!val || !integer_onep (val))
return false;
val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
if (!val || !integer_onep (val))
return false;
}
if (rhs_code == TRUTH_NOT_EXPR)
{
rhs_code = NE_EXPR;
op1 = build_int_cst (TREE_TYPE (op0), 1);
}
else
{
op1 = gimple_assign_rhs2 (stmt);
/* Reduce number of cases to handle. */
if (is_gimple_min_invariant (op1))
{
/* Exclude anything that should have been already folded. */
if (rhs_code != EQ_EXPR
&& rhs_code != NE_EXPR
&& rhs_code != TRUTH_XOR_EXPR)
return false;
if (!integer_zerop (op1)
&& !integer_onep (op1)
&& !integer_all_onesp (op1))
return false;
/* Limit the number of cases we have to consider. */
if (rhs_code == EQ_EXPR)
{
rhs_code = NE_EXPR;
op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
}
}
else
{
/* Punt on A == B as there is no BIT_XNOR_EXPR. */
if (rhs_code == EQ_EXPR)
return false;
if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
{
vr = get_value_range (op1);
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
if (!val || !integer_onep (val))
return false;
val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
if (!val || !integer_onep (val))
return false;
}
}
}
if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
{
location_t location;
if (!gimple_has_location (stmt))
location = input_location;
else
location = gimple_location (stmt);
if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
warning_at (location, OPT_Wstrict_overflow,
_("assuming signed overflow does not occur when "
"simplifying && or || to & or |"));
else
warning_at (location, OPT_Wstrict_overflow,
_("assuming signed overflow does not occur when "
"simplifying ==, != or ! to identity or ^"));
}
need_conversion =
!useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
TREE_TYPE (op0));
/* Make sure to not sign-extend -1 as a boolean value. */
if (need_conversion
&& !TYPE_UNSIGNED (TREE_TYPE (op0))
&& TYPE_PRECISION (TREE_TYPE (op0)) == 1)
return false;
switch (rhs_code)
{
case TRUTH_AND_EXPR:
rhs_code = BIT_AND_EXPR;
break;
case TRUTH_OR_EXPR:
rhs_code = BIT_IOR_EXPR;
break;
case TRUTH_XOR_EXPR:
case NE_EXPR:
if (integer_zerop (op1))
{
gimple_assign_set_rhs_with_ops (gsi,
need_conversion ? NOP_EXPR : SSA_NAME,
op0, NULL);
update_stmt (gsi_stmt (*gsi));
return true;
}
rhs_code = BIT_XOR_EXPR;
break;
default:
gcc_unreachable ();
}
if (need_conversion)
return false;
gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
update_stmt (gsi_stmt (*gsi));
return true;
}
/* Simplify a division or modulo operator to a right shift or
bitwise and if the first operand is unsigned or is greater
than zero and the second operand is an exact power of two. */
static bool
simplify_div_or_mod_using_ranges (gimple stmt)
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
tree val = NULL;
tree op0 = gimple_assign_rhs1 (stmt);
tree op1 = gimple_assign_rhs2 (stmt);
value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
if (TYPE_UNSIGNED (TREE_TYPE (op0)))
{
val = integer_one_node;
}
else
{
bool sop = false;
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
if (val
&& sop
&& integer_onep (val)
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
{
location_t location;
if (!gimple_has_location (stmt))
location = input_location;
else
location = gimple_location (stmt);
warning (OPT_Wstrict_overflow,
("%Hassuming signed overflow does not occur when "
"simplifying / or %% to >> or &"),
&location);
}
}
if (val && integer_onep (val))
{
tree t;
if (rhs_code == TRUNC_DIV_EXPR)
{
t = build_int_cst (NULL_TREE, tree_log2 (op1));
gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
gimple_assign_set_rhs1 (stmt, op0);
gimple_assign_set_rhs2 (stmt, t);
}
else
{
t = build_int_cst (TREE_TYPE (op1), 1);
t = int_const_binop (MINUS_EXPR, op1, t, 0);
t = fold_convert (TREE_TYPE (op0), t);
gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
gimple_assign_set_rhs1 (stmt, op0);
gimple_assign_set_rhs2 (stmt, t);
}
update_stmt (stmt);
return true;
}
return false;
}
/* If the operand to an ABS_EXPR is >= 0, then eliminate the
ABS_EXPR. If the operand is <= 0, then simplify the
ABS_EXPR into a NEGATE_EXPR. */
static bool
simplify_abs_using_ranges (gimple stmt)
{
tree val = NULL;
tree op = gimple_assign_rhs1 (stmt);
tree type = TREE_TYPE (op);
value_range_t *vr = get_value_range (op);
if (TYPE_UNSIGNED (type))
{
val = integer_zero_node;
}
else if (vr)
{
bool sop = false;
val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
if (!val)
{
sop = false;
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
&sop);
if (val)
{
if (integer_zerop (val))
val = integer_one_node;
else if (integer_onep (val))
val = integer_zero_node;
}
}
if (val
&& (integer_onep (val) || integer_zerop (val)))
{
if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
{
location_t location;
if (!gimple_has_location (stmt))
location = input_location;
else
location = gimple_location (stmt);
warning (OPT_Wstrict_overflow,
("%Hassuming signed overflow does not occur when "
"simplifying abs (X) to X or -X"),
&location);
}
gimple_assign_set_rhs1 (stmt, op);
if (integer_onep (val))
gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
else
gimple_assign_set_rhs_code (stmt, SSA_NAME);
update_stmt (stmt);
return true;
}
}
return false;
}
/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
a known value range VR.
If there is one and only one value which will satisfy the
conditional, then return that value. Else return NULL. */
static tree
test_for_singularity (enum tree_code cond_code, tree op0,
tree op1, value_range_t *vr)
{
tree min = NULL;
tree max = NULL;
/* Extract minimum/maximum values which satisfy the
the conditional as it was written. */
if (cond_code == LE_EXPR || cond_code == LT_EXPR)
{
/* This should not be negative infinity; there is no overflow
here. */
min = TYPE_MIN_VALUE (TREE_TYPE (op0));
max = op1;
if (cond_code == LT_EXPR && !is_overflow_infinity (max))
{
tree one = build_int_cst (TREE_TYPE (op0), 1);
max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
if (EXPR_P (max))
TREE_NO_WARNING (max) = 1;
}
}
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
{
/* This should not be positive infinity; there is no overflow
here. */
max = TYPE_MAX_VALUE (TREE_TYPE (op0));
min = op1;
if (cond_code == GT_EXPR && !is_overflow_infinity (min))
{
tree one = build_int_cst (TREE_TYPE (op0), 1);
min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
if (EXPR_P (min))
TREE_NO_WARNING (min) = 1;
}
}
/* Now refine the minimum and maximum values using any
value range information we have for op0. */
if (min && max)
{
if (compare_values (vr->min, min) == -1)
min = min;
else
min = vr->min;
if (compare_values (vr->max, max) == 1)
max = max;
else
max = vr->max;
/* If the new min/max values have converged to a single value,
then there is only one value which can satisfy the condition,
return that value. */
if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
return min;
}
return NULL;
}
/* Simplify a conditional using a relational operator to an equality
test if the range information indicates only one value can satisfy
the original conditional. */
static bool
simplify_cond_using_ranges (gimple stmt)
{
tree op0 = gimple_cond_lhs (stmt);
tree op1 = gimple_cond_rhs (stmt);
enum tree_code cond_code = gimple_cond_code (stmt);
if (cond_code != NE_EXPR
&& cond_code != EQ_EXPR
&& TREE_CODE (op0) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (op0))
&& is_gimple_min_invariant (op1))
{
value_range_t *vr = get_value_range (op0);
/* If we have range information for OP0, then we might be
able to simplify this conditional. */
if (vr->type == VR_RANGE)
{
tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
if (new_tree)
{
if (dump_file)
{
fprintf (dump_file, "Simplified relational ");
print_gimple_stmt (dump_file, stmt, 0, 0);
fprintf (dump_file, " into ");
}
gimple_cond_set_code (stmt, EQ_EXPR);
gimple_cond_set_lhs (stmt, op0);
gimple_cond_set_rhs (stmt, new_tree);
update_stmt (stmt);
if (dump_file)
{
print_gimple_stmt (dump_file, stmt, 0, 0);
fprintf (dump_file, "\n");
}
return true;
}
/* Try again after inverting the condition. We only deal
with integral types here, so no need to worry about
issues with inverting FP comparisons. */
cond_code = invert_tree_comparison (cond_code, false);
new_tree = test_for_singularity (cond_code, op0, op1, vr);
if (new_tree)
{
if (dump_file)
{
fprintf (dump_file, "Simplified relational ");
print_gimple_stmt (dump_file, stmt, 0, 0);
fprintf (dump_file, " into ");
}
gimple_cond_set_code (stmt, NE_EXPR);
gimple_cond_set_lhs (stmt, op0);
gimple_cond_set_rhs (stmt, new_tree);
update_stmt (stmt);
if (dump_file)
{
print_gimple_stmt (dump_file, stmt, 0, 0);
fprintf (dump_file, "\n");
}
return true;
}
}
}
return false;
}
/* Simplify a switch statement using the value range of the switch
argument. */
static bool
simplify_switch_using_ranges (gimple stmt)
{
tree op = gimple_switch_index (stmt);
value_range_t *vr;
bool take_default;
edge e;
edge_iterator ei;
size_t i = 0, j = 0, n, n2;
tree vec2;
switch_update su;
if (TREE_CODE (op) != SSA_NAME)
return false;
vr = get_value_range (op);
/* We can only handle integer ranges. */
if (vr->type != VR_RANGE
|| symbolic_range_p (vr))
return false;
/* Find case label for min/max of the value range. */
n = gimple_switch_num_labels (stmt);
take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
/* Bail out if this is just all edges taken. */
if (i == 1
&& j == n - 1
&& take_default)
return false;
/* Build a new vector of taken case labels. */
vec2 = make_tree_vec (j - i + 1 + (int)take_default);
n2 = 0;
/* Add the default edge, if necessary. */
if (take_default)
TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
for (; i <= j; ++i, ++n2)
TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
/* Mark needed edges. */
for (i = 0; i < n2; ++i)
{
e = find_edge (gimple_bb (stmt),
label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
e->aux = (void *)-1;
}
/* Queue not needed edges for later removal. */
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
{
if (e->aux == (void *)-1)
{
e->aux = NULL;
continue;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "removing unreachable case label\n");
}
VEC_safe_push (edge, heap, to_remove_edges, e);
}
/* And queue an update for the stmt. */
su.stmt = stmt;
su.vec = vec2;
VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
return false;
}
/* Simplify STMT using ranges if possible. */
bool
simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
{
gimple stmt = gsi_stmt (*gsi);
if (is_gimple_assign (stmt))
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
switch (rhs_code)
{
case EQ_EXPR:
case NE_EXPR:
case TRUTH_NOT_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
/* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
or identity if the RHS is zero or one, and the LHS are known
to be boolean values. Transform all TRUTH_*_EXPR into
BIT_*_EXPR if both arguments are known to be boolean values. */
if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
return simplify_truth_ops_using_ranges (gsi, stmt);
break;
/* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
and BIT_AND_EXPR respectively if the first operand is greater
than zero and the second operand is an exact power of two. */
case TRUNC_DIV_EXPR:
case TRUNC_MOD_EXPR:
if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
&& integer_pow2p (gimple_assign_rhs2 (stmt)))
return simplify_div_or_mod_using_ranges (stmt);
break;
/* Transform ABS (X) into X or -X as appropriate. */
case ABS_EXPR:
if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
return simplify_abs_using_ranges (stmt);
break;
default:
break;
}
}
else if (gimple_code (stmt) == GIMPLE_COND)
return simplify_cond_using_ranges (stmt);
else if (gimple_code (stmt) == GIMPLE_SWITCH)
return simplify_switch_using_ranges (stmt);
return false;
}
/* Stack of dest,src equivalency pairs that need to be restored after
each attempt to thread a block's incoming edge to an outgoing edge.
A NULL entry is used to mark the end of pairs which need to be
restored. */
static VEC(tree,heap) *stack;
/* A trivial wrapper so that we can present the generic jump threading
code with a simple API for simplifying statements. STMT is the
statement we want to simplify, WITHIN_STMT provides the location
for any overflow warnings. */
static tree
simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
{
/* We only use VRP information to simplify conditionals. This is
overly conservative, but it's unclear if doing more would be
worth the compile time cost. */
if (gimple_code (stmt) != GIMPLE_COND)
return NULL;
return vrp_evaluate_conditional (gimple_cond_code (stmt),
gimple_cond_lhs (stmt),
gimple_cond_rhs (stmt), within_stmt);
}
/* Blocks which have more than one predecessor and more than
one successor present jump threading opportunities, i.e.,
when the block is reached from a specific predecessor, we
may be able to determine which of the outgoing edges will
be traversed. When this optimization applies, we are able
to avoid conditionals at runtime and we may expose secondary
optimization opportunities.
This routine is effectively a driver for the generic jump
threading code. It basically just presents the generic code
with edges that may be suitable for jump threading.
Unlike DOM, we do not iterate VRP if jump threading was successful.
While iterating may expose new opportunities for VRP, it is expected
those opportunities would be very limited and the compile time cost
to expose those opportunities would be significant.
As jump threading opportunities are discovered, they are registered
for later realization. */
static void
identify_jump_threads (void)
{
basic_block bb;
gimple dummy;
int i;
edge e;
/* Ugh. When substituting values earlier in this pass we can
wipe the dominance information. So rebuild the dominator
information as we need it within the jump threading code. */
calculate_dominance_info (CDI_DOMINATORS);
/* We do not allow VRP information to be used for jump threading
across a back edge in the CFG. Otherwise it becomes too
difficult to avoid eliminating loop exit tests. Of course
EDGE_DFS_BACK is not accurate at this time so we have to
recompute it. */
mark_dfs_back_edges ();
/* Do not thread across edges we are about to remove. Just marking
them as EDGE_DFS_BACK will do. */
for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
e->flags |= EDGE_DFS_BACK;
/* Allocate our unwinder stack to unwind any temporary equivalences
that might be recorded. */
stack = VEC_alloc (tree, heap, 20);
/* To avoid lots of silly node creation, we create a single
conditional and just modify it in-place when attempting to
thread jumps. */
dummy = gimple_build_cond (EQ_EXPR,
integer_zero_node, integer_zero_node,
NULL, NULL);
/* Walk through all the blocks finding those which present a
potential jump threading opportunity. We could set this up
as a dominator walker and record data during the walk, but
I doubt it's worth the effort for the classes of jump
threading opportunities we are trying to identify at this
point in compilation. */
FOR_EACH_BB (bb)
{
gimple last;
/* If the generic jump threading code does not find this block
interesting, then there is nothing to do. */
if (! potentially_threadable_block (bb))
continue;
/* We only care about blocks ending in a COND_EXPR. While there
may be some value in handling SWITCH_EXPR here, I doubt it's
terribly important. */
last = gsi_stmt (gsi_last_bb (bb));
if (gimple_code (last) != GIMPLE_COND)
continue;
/* We're basically looking for any kind of conditional with
integral type arguments. */
if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
&& (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
|| is_gimple_min_invariant (gimple_cond_rhs (last)))
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
{
edge_iterator ei;
/* We've got a block with multiple predecessors and multiple
successors which also ends in a suitable conditional. For
each predecessor, see if we can thread it to a specific
successor. */
FOR_EACH_EDGE (e, ei, bb->preds)
{
/* Do not thread across back edges or abnormal edges
in the CFG. */
if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
continue;
thread_across_edge (dummy, e, true, &stack,
simplify_stmt_for_jump_threading);
}
}
}
/* We do not actually update the CFG or SSA graphs at this point as
ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
handle ASSERT_EXPRs gracefully. */
}
/* We identified all the jump threading opportunities earlier, but could
not transform the CFG at that time. This routine transforms the
CFG and arranges for the dominator tree to be rebuilt if necessary.
Note the SSA graph update will occur during the normal TODO
processing by the pass manager. */
static void
finalize_jump_threads (void)
{
thread_through_all_blocks (false);
VEC_free (tree, heap, stack);
}
/* Traverse all the blocks folding conditionals with known ranges. */
static void
vrp_finalize (void)
{
size_t i;
prop_value_t *single_val_range;
bool do_value_subst_p;
if (dump_file)
{
fprintf (dump_file, "\nValue ranges after VRP:\n\n");
dump_all_value_ranges (dump_file);
fprintf (dump_file, "\n");
}
/* We may have ended with ranges that have exactly one value. Those
values can be substituted as any other copy/const propagated
value using substitute_and_fold. */
single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
do_value_subst_p = false;
for (i = 0; i < num_ssa_names; i++)
if (vr_value[i]
&& vr_value[i]->type == VR_RANGE
&& vr_value[i]->min == vr_value[i]->max)
{
single_val_range[i].value = vr_value[i]->min;
do_value_subst_p = true;
}
if (!do_value_subst_p)
{
/* We found no single-valued ranges, don't waste time trying to
do single value substitution in substitute_and_fold. */
free (single_val_range);
single_val_range = NULL;
}
substitute_and_fold (single_val_range, true);
if (warn_array_bounds)
check_all_array_refs ();
/* We must identify jump threading opportunities before we release
the datastructures built by VRP. */
identify_jump_threads ();
/* Free allocated memory. */
for (i = 0; i < num_ssa_names; i++)
if (vr_value[i])
{
BITMAP_FREE (vr_value[i]->equiv);
free (vr_value[i]);
}
free (single_val_range);
free (vr_value);
free (vr_phi_edge_counts);
/* So that we can distinguish between VRP data being available
and not available. */
vr_value = NULL;
vr_phi_edge_counts = NULL;
}
/* Main entry point to VRP (Value Range Propagation). This pass is
loosely based on J. R. C. Patterson, ``Accurate Static Branch
Prediction by Value Range Propagation,'' in SIGPLAN Conference on
Programming Language Design and Implementation, pp. 67-78, 1995.
Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
This is essentially an SSA-CCP pass modified to deal with ranges
instead of constants.
While propagating ranges, we may find that two or more SSA name
have equivalent, though distinct ranges. For instance,
1 x_9 = p_3->a;
2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
3 if (p_4 == q_2)
4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5 endif
6 if (q_2)
In the code above, pointer p_5 has range [q_2, q_2], but from the
code we can also determine that p_5 cannot be NULL and, if q_2 had
a non-varying range, p_5's range should also be compatible with it.
These equivalences are created by two expressions: ASSERT_EXPR and
copy operations. Since p_5 is an assertion on p_4, and p_4 was the
result of another assertion, then we can use the fact that p_5 and
p_4 are equivalent when evaluating p_5's range.
Together with value ranges, we also propagate these equivalences
between names so that we can take advantage of information from
multiple ranges when doing final replacement. Note that this
equivalency relation is transitive but not symmetric.
In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
cannot assert that q_2 is equivalent to p_5 because q_2 may be used
in contexts where that assertion does not hold (e.g., in line 6).
TODO, the main difference between this pass and Patterson's is that
we do not propagate edge probabilities. We only compute whether
edges can be taken or not. That is, instead of having a spectrum
of jump probabilities between 0 and 1, we only deal with 0, 1 and
DON'T KNOW. In the future, it may be worthwhile to propagate
probabilities to aid branch prediction. */
static unsigned int
execute_vrp (void)
{
int i;
edge e;
switch_update *su;
loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
scev_initialize ();
insert_range_assertions ();
to_remove_edges = VEC_alloc (edge, heap, 10);
to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
vrp_initialize ();
ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
vrp_finalize ();
/* ASSERT_EXPRs must be removed before finalizing jump threads
as finalizing jump threads calls the CFG cleanup code which
does not properly handle ASSERT_EXPRs. */
remove_range_assertions ();
/* If we exposed any new variables, go ahead and put them into
SSA form now, before we handle jump threading. This simplifies
interactions between rewriting of _DECL nodes into SSA form
and rewriting SSA_NAME nodes into SSA form after block
duplication and CFG manipulation. */
update_ssa (TODO_update_ssa);
finalize_jump_threads ();
/* Remove dead edges from SWITCH_EXPR optimization. This leaves the
CFG in a broken state and requires a cfg_cleanup run. */
for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
remove_edge (e);
/* Update SWITCH_EXPR case label vector. */
for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
{
size_t j;
size_t n = TREE_VEC_LENGTH (su->vec);
tree label;
gimple_switch_set_num_labels (su->stmt, n);
for (j = 0; j < n; j++)
gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
/* As we may have replaced the default label with a regular one
make sure to make it a real default label again. This ensures
optimal expansion. */
label = gimple_switch_default_label (su->stmt);
CASE_LOW (label) = NULL_TREE;
CASE_HIGH (label) = NULL_TREE;
}
if (VEC_length (edge, to_remove_edges) > 0)
free_dominance_info (CDI_DOMINATORS);
VEC_free (edge, heap, to_remove_edges);
VEC_free (switch_update, heap, to_update_switch_stmts);
scev_finalize ();
loop_optimizer_finalize ();
return 0;
}
static bool
gate_vrp (void)
{
return flag_tree_vrp != 0;
}
struct gimple_opt_pass pass_vrp =
{
{
GIMPLE_PASS,
"vrp", /* name */
gate_vrp, /* gate */
execute_vrp, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_VRP, /* tv_id */
PROP_ssa | PROP_alias, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_cleanup_cfg
| TODO_ggc_collect
| TODO_verify_ssa
| TODO_dump_func
| TODO_update_ssa /* todo_flags_finish */
}
};
|