1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
|
/* Loop Vectorization
Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Loop Vectorization Pass.
This pass tries to vectorize loops. This first implementation focuses on
simple inner-most loops, with no conditional control flow, and a set of
simple operations which vector form can be expressed using existing
tree codes (PLUS, MULT etc).
For example, the vectorizer transforms the following simple loop:
short a[N]; short b[N]; short c[N]; int i;
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
as if it was manually vectorized by rewriting the source code into:
typedef int __attribute__((mode(V8HI))) v8hi;
short a[N]; short b[N]; short c[N]; int i;
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
v8hi va, vb, vc;
for (i=0; i<N/8; i++){
vb = pb[i];
vc = pc[i];
va = vb + vc;
pa[i] = va;
}
The main entry to this pass is vectorize_loops(), in which
the vectorizer applies a set of analyses on a given set of loops,
followed by the actual vectorization transformation for the loops that
had successfully passed the analysis phase.
Throughout this pass we make a distinction between two types of
data: scalars (which are represented by SSA_NAMES), and memory references
("data-refs"). These two types of data require different handling both
during analysis and transformation. The types of data-refs that the
vectorizer currently supports are ARRAY_REFS which base is an array DECL
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
accesses are required to have a simple (consecutive) access pattern.
Analysis phase:
===============
The driver for the analysis phase is vect_analyze_loop_nest().
It applies a set of analyses, some of which rely on the scalar evolution
analyzer (scev) developed by Sebastian Pop.
During the analysis phase the vectorizer records some information
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
loop, as well as general information about the loop as a whole, which is
recorded in a "loop_vec_info" struct attached to each loop.
Transformation phase:
=====================
The loop transformation phase scans all the stmts in the loop, and
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
the loop that needs to be vectorized. It insert the vector code sequence
just before the scalar stmt S, and records a pointer to the vector code
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
attached to S). This pointer will be used for the vectorization of following
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
otherwise, we rely on dead code elimination for removing it.
For example, say stmt S1 was vectorized into stmt VS1:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
S2: a = b;
To vectorize stmt S2, the vectorizer first finds the stmt that defines
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
vector stmt VS1 pointed by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
resulting sequence would be:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
VS2: va = vb;
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
Operands that are not SSA_NAMEs, are data-refs that appear in
load/store operations (like 'x[i]' in S1), and are handled differently.
Target modeling:
=================
Currently the only target specific information that is used is the
size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
support different sizes of vectors, for now will need to specify one value
for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
Since we only vectorize operations which vector form can be
expressed using existing tree codes, to verify that an operation is
supported, the vectorizer checks the relevant optab at the relevant
machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code). If
the value found is CODE_FOR_nothing, then there's no target support, and
we can't vectorize the stmt.
For additional information on this project see:
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "expr.h"
#include "optabs.h"
#include "toplev.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "input.h"
#include "tree-vectorizer.h"
#include "tree-pass.h"
/*************************************************************************
Simple Loop Peeling Utilities
*************************************************************************/
static struct loop *slpeel_tree_duplicate_loop_to_edge_cfg
(struct loop *, struct loops *, edge);
static void slpeel_update_phis_for_duplicate_loop
(struct loop *, struct loop *, bool after);
static void slpeel_update_phi_nodes_for_guard1
(edge, struct loop *, bool, basic_block *, bitmap *);
static void slpeel_update_phi_nodes_for_guard2
(edge, struct loop *, bool, basic_block *);
static edge slpeel_add_loop_guard (basic_block, tree, basic_block, basic_block);
static void rename_use_op (use_operand_p);
static void rename_variables_in_bb (basic_block);
static void rename_variables_in_loop (struct loop *);
/*************************************************************************
General Vectorization Utilities
*************************************************************************/
static void vect_set_dump_settings (void);
/* vect_dump will be set to stderr or dump_file if exist. */
FILE *vect_dump;
/* vect_verbosity_level set to an invalid value
to mark that it's uninitialized. */
enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
/* Number of loops, at the beginning of vectorization. */
unsigned int vect_loops_num;
/*************************************************************************
Simple Loop Peeling Utilities
Utilities to support loop peeling for vectorization purposes.
*************************************************************************/
/* Renames the use *OP_P. */
static void
rename_use_op (use_operand_p op_p)
{
tree new_name;
if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
return;
new_name = get_current_def (USE_FROM_PTR (op_p));
/* Something defined outside of the loop. */
if (!new_name)
return;
/* An ordinary ssa name defined in the loop. */
SET_USE (op_p, new_name);
}
/* Renames the variables in basic block BB. */
static void
rename_variables_in_bb (basic_block bb)
{
tree phi;
block_stmt_iterator bsi;
tree stmt;
use_operand_p use_p;
ssa_op_iter iter;
edge e;
edge_iterator ei;
struct loop *loop = bb->loop_father;
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
stmt = bsi_stmt (bsi);
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
(SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
rename_use_op (use_p);
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (!flow_bb_inside_loop_p (loop, e->dest))
continue;
for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e));
}
}
/* Renames variables in new generated LOOP. */
static void
rename_variables_in_loop (struct loop *loop)
{
unsigned i;
basic_block *bbs;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
rename_variables_in_bb (bbs[i]);
free (bbs);
}
/* Update the PHI nodes of NEW_LOOP.
NEW_LOOP is a duplicate of ORIG_LOOP.
AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
executes before it. */
static void
slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
struct loop *new_loop, bool after)
{
tree new_ssa_name;
tree phi_new, phi_orig;
tree def;
edge orig_loop_latch = loop_latch_edge (orig_loop);
edge orig_entry_e = loop_preheader_edge (orig_loop);
edge new_loop_exit_e = new_loop->single_exit;
edge new_loop_entry_e = loop_preheader_edge (new_loop);
edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
/*
step 1. For each loop-header-phi:
Add the first phi argument for the phi in NEW_LOOP
(the one associated with the entry of NEW_LOOP)
step 2. For each loop-header-phi:
Add the second phi argument for the phi in NEW_LOOP
(the one associated with the latch of NEW_LOOP)
step 3. Update the phis in the successor block of NEW_LOOP.
case 1: NEW_LOOP was placed before ORIG_LOOP:
The successor block of NEW_LOOP is the header of ORIG_LOOP.
Updating the phis in the successor block can therefore be done
along with the scanning of the loop header phis, because the
header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
phi nodes, organized in the same order.
case 2: NEW_LOOP was placed after ORIG_LOOP:
The successor block of NEW_LOOP is the original exit block of
ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
We postpone updating these phis to a later stage (when
loop guards are added).
*/
/* Scan the phis in the headers of the old and new loops
(they are organized in exactly the same order). */
for (phi_new = phi_nodes (new_loop->header),
phi_orig = phi_nodes (orig_loop->header);
phi_new && phi_orig;
phi_new = PHI_CHAIN (phi_new), phi_orig = PHI_CHAIN (phi_orig))
{
/* step 1. */
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
add_phi_arg (phi_new, def, new_loop_entry_e);
/* step 2. */
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
if (TREE_CODE (def) != SSA_NAME)
continue;
new_ssa_name = get_current_def (def);
if (!new_ssa_name)
{
/* This only happens if there are no definitions
inside the loop. use the phi_result in this case. */
new_ssa_name = PHI_RESULT (phi_new);
}
/* An ordinary ssa name defined in the loop. */
add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
/* step 3 (case 1). */
if (!after)
{
gcc_assert (new_loop_exit_e == orig_entry_e);
SET_PHI_ARG_DEF (phi_orig,
new_loop_exit_e->dest_idx,
new_ssa_name);
}
}
}
/* Update PHI nodes for a guard of the LOOP.
Input:
- LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
controls whether LOOP is to be executed. GUARD_EDGE is the edge that
originates from the guard-bb, skips LOOP and reaches the (unique) exit
bb of LOOP. This loop-exit-bb is an empty bb with one successor.
We denote this bb NEW_MERGE_BB because before the guard code was added
it had a single predecessor (the LOOP header), and now it became a merge
point of two paths - the path that ends with the LOOP exit-edge, and
the path that ends with GUARD_EDGE.
- NEW_EXIT_BB: New basic block that is added by this function between LOOP
and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
===> The CFG before the guard-code was added:
LOOP_header_bb:
loop_body
if (exit_loop) goto update_bb
else goto LOOP_header_bb
update_bb:
==> The CFG after the guard-code was added:
guard_bb:
if (LOOP_guard_condition) goto new_merge_bb
else goto LOOP_header_bb
LOOP_header_bb:
loop_body
if (exit_loop_condition) goto new_merge_bb
else goto LOOP_header_bb
new_merge_bb:
goto update_bb
update_bb:
==> The CFG after this function:
guard_bb:
if (LOOP_guard_condition) goto new_merge_bb
else goto LOOP_header_bb
LOOP_header_bb:
loop_body
if (exit_loop_condition) goto new_exit_bb
else goto LOOP_header_bb
new_exit_bb:
new_merge_bb:
goto update_bb
update_bb:
This function:
1. creates and updates the relevant phi nodes to account for the new
incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
1.1. Create phi nodes at NEW_MERGE_BB.
1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
2. preserves loop-closed-ssa-form by creating the required phi nodes
at the exit of LOOP (i.e, in NEW_EXIT_BB).
There are two flavors to this function:
slpeel_update_phi_nodes_for_guard1:
Here the guard controls whether we enter or skip LOOP, where LOOP is a
prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
for variables that have phis in the loop header.
slpeel_update_phi_nodes_for_guard2:
Here the guard controls whether we enter or skip LOOP, where LOOP is an
epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
for variables that have phis in the loop exit.
I.E., the overall structure is:
loop1_preheader_bb:
guard1 (goto loop1/merg1_bb)
loop1
loop1_exit_bb:
guard2 (goto merge1_bb/merge2_bb)
merge1_bb
loop2
loop2_exit_bb
merge2_bb
next_bb
slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
that have phis in loop1->header).
slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
that have phis in next_bb). It also adds some of these phis to
loop1_exit_bb.
slpeel_update_phi_nodes_for_guard1 is always called before
slpeel_update_phi_nodes_for_guard2. They are both needed in order
to create correct data-flow and loop-closed-ssa-form.
Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
that change between iterations of a loop (and therefore have a phi-node
at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
phis for variables that are used out of the loop (and therefore have
loop-closed exit phis). Some variables may be both updated between
iterations and used after the loop. This is why in loop1_exit_bb we
may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
and exit phis (created by slpeel_update_phi_nodes_for_guard2).
- IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
an original loop. i.e., we have:
orig_loop
guard_bb (goto LOOP/new_merge)
new_loop <-- LOOP
new_exit
new_merge
next_bb
If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
have:
new_loop
guard_bb (goto LOOP/new_merge)
orig_loop <-- LOOP
new_exit
new_merge
next_bb
The SSA names defined in the original loop have a current
reaching definition that that records the corresponding new
ssa-name used in the new duplicated loop copy.
*/
/* Function slpeel_update_phi_nodes_for_guard1
Input:
- GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
- DEFS - a bitmap of ssa names to mark new names for which we recorded
information.
In the context of the overall structure, we have:
loop1_preheader_bb:
guard1 (goto loop1/merg1_bb)
LOOP-> loop1
loop1_exit_bb:
guard2 (goto merge1_bb/merge2_bb)
merge1_bb
loop2
loop2_exit_bb
merge2_bb
next_bb
For each name updated between loop iterations (i.e - for each name that has
an entry (loop-header) phi in LOOP) we create a new phi in:
1. merge1_bb (to account for the edge from guard1)
2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
*/
static void
slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
bool is_new_loop, basic_block *new_exit_bb,
bitmap *defs)
{
tree orig_phi, new_phi;
tree update_phi, update_phi2;
tree guard_arg, loop_arg;
basic_block new_merge_bb = guard_edge->dest;
edge e = EDGE_SUCC (new_merge_bb, 0);
basic_block update_bb = e->dest;
basic_block orig_bb = loop->header;
edge new_exit_e;
tree current_new_name;
/* Create new bb between loop and new_merge_bb. */
*new_exit_bb = split_edge (loop->single_exit);
add_bb_to_loop (*new_exit_bb, loop->outer);
new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
for (orig_phi = phi_nodes (orig_bb), update_phi = phi_nodes (update_bb);
orig_phi && update_phi;
orig_phi = PHI_CHAIN (orig_phi), update_phi = PHI_CHAIN (update_phi))
{
/** 1. Handle new-merge-point phis **/
/* 1.1. Generate new phi node in NEW_MERGE_BB: */
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
new_merge_bb);
/* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
of LOOP. Set the two phi args in NEW_PHI for these edges: */
loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
add_phi_arg (new_phi, loop_arg, new_exit_e);
add_phi_arg (new_phi, guard_arg, guard_edge);
/* 1.3. Update phi in successor block. */
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
|| PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
update_phi2 = new_phi;
/** 2. Handle loop-closed-ssa-form phis **/
/* 2.1. Generate new phi node in NEW_EXIT_BB: */
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
*new_exit_bb);
/* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
add_phi_arg (new_phi, loop_arg, loop->single_exit);
/* 2.3. Update phi in successor of NEW_EXIT_BB: */
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
/* 2.4. Record the newly created name with set_current_def.
We want to find a name such that
name = get_current_def (orig_loop_name)
and to set its current definition as follows:
set_current_def (name, new_phi_name)
If LOOP is a new loop then loop_arg is already the name we're
looking for. If LOOP is the original loop, then loop_arg is
the orig_loop_name and the relevant name is recorded in its
current reaching definition. */
if (is_new_loop)
current_new_name = loop_arg;
else
{
current_new_name = get_current_def (loop_arg);
/* current_def is not available only if the variable does not
change inside the loop, in which case we also don't care
about recording a current_def for it because we won't be
trying to create loop-exit-phis for it. */
if (!current_new_name)
continue;
}
gcc_assert (get_current_def (current_new_name) == NULL_TREE);
set_current_def (current_new_name, PHI_RESULT (new_phi));
bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
}
set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
}
/* Function slpeel_update_phi_nodes_for_guard2
Input:
- GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
In the context of the overall structure, we have:
loop1_preheader_bb:
guard1 (goto loop1/merg1_bb)
loop1
loop1_exit_bb:
guard2 (goto merge1_bb/merge2_bb)
merge1_bb
LOOP-> loop2
loop2_exit_bb
merge2_bb
next_bb
For each name used out side the loop (i.e - for each name that has an exit
phi in next_bb) we create a new phi in:
1. merge2_bb (to account for the edge from guard_bb)
2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
*/
static void
slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
bool is_new_loop, basic_block *new_exit_bb)
{
tree orig_phi, new_phi;
tree update_phi, update_phi2;
tree guard_arg, loop_arg;
basic_block new_merge_bb = guard_edge->dest;
edge e = EDGE_SUCC (new_merge_bb, 0);
basic_block update_bb = e->dest;
edge new_exit_e;
tree orig_def, orig_def_new_name;
tree new_name, new_name2;
tree arg;
/* Create new bb between loop and new_merge_bb. */
*new_exit_bb = split_edge (loop->single_exit);
add_bb_to_loop (*new_exit_bb, loop->outer);
new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
for (update_phi = phi_nodes (update_bb); update_phi;
update_phi = PHI_CHAIN (update_phi))
{
orig_phi = update_phi;
orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
orig_def_new_name = get_current_def (orig_def);
arg = NULL_TREE;
/** 1. Handle new-merge-point phis **/
/* 1.1. Generate new phi node in NEW_MERGE_BB: */
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
new_merge_bb);
/* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
of LOOP. Set the two PHI args in NEW_PHI for these edges: */
new_name = orig_def;
new_name2 = NULL_TREE;
if (orig_def_new_name)
{
new_name = orig_def_new_name;
/* Some variables have both loop-entry-phis and loop-exit-phis.
Such variables were given yet newer names by phis placed in
guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
new_name2 = get_current_def (get_current_def (orig_name)). */
new_name2 = get_current_def (new_name);
}
if (is_new_loop)
{
guard_arg = orig_def;
loop_arg = new_name;
}
else
{
guard_arg = new_name;
loop_arg = orig_def;
}
if (new_name2)
guard_arg = new_name2;
add_phi_arg (new_phi, loop_arg, new_exit_e);
add_phi_arg (new_phi, guard_arg, guard_edge);
/* 1.3. Update phi in successor block. */
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
update_phi2 = new_phi;
/** 2. Handle loop-closed-ssa-form phis **/
/* 2.1. Generate new phi node in NEW_EXIT_BB: */
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
*new_exit_bb);
/* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
add_phi_arg (new_phi, loop_arg, loop->single_exit);
/* 2.3. Update phi in successor of NEW_EXIT_BB: */
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
/** 3. Handle loop-closed-ssa-form phis for first loop **/
/* 3.1. Find the relevant names that need an exit-phi in
GUARD_BB, i.e. names for which
slpeel_update_phi_nodes_for_guard1 had not already created a
phi node. This is the case for names that are used outside
the loop (and therefore need an exit phi) but are not updated
across loop iterations (and therefore don't have a
loop-header-phi).
slpeel_update_phi_nodes_for_guard1 is responsible for
creating loop-exit phis in GUARD_BB for names that have a
loop-header-phi. When such a phi is created we also record
the new name in its current definition. If this new name
exists, then guard_arg was set to this new name (see 1.2
above). Therefore, if guard_arg is not this new name, this
is an indication that an exit-phi in GUARD_BB was not yet
created, so we take care of it here. */
if (guard_arg == new_name2)
continue;
arg = guard_arg;
/* 3.2. Generate new phi node in GUARD_BB: */
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
guard_edge->src);
/* 3.3. GUARD_BB has one incoming edge: */
gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0));
/* 3.4. Update phi in successor of GUARD_BB: */
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
== guard_arg);
SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
}
set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
}
/* Make the LOOP iterate NITERS times. This is done by adding a new IV
that starts at zero, increases by one and its limit is NITERS.
Assumption: the exit-condition of LOOP is the last stmt in the loop. */
void
slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
{
tree indx_before_incr, indx_after_incr, cond_stmt, cond;
tree orig_cond;
edge exit_edge = loop->single_exit;
block_stmt_iterator loop_cond_bsi;
block_stmt_iterator incr_bsi;
bool insert_after;
tree begin_label = tree_block_label (loop->latch);
tree exit_label = tree_block_label (loop->single_exit->dest);
tree init = build_int_cst (TREE_TYPE (niters), 0);
tree step = build_int_cst (TREE_TYPE (niters), 1);
tree then_label;
tree else_label;
LOC loop_loc;
orig_cond = get_loop_exit_condition (loop);
gcc_assert (orig_cond);
loop_cond_bsi = bsi_for_stmt (orig_cond);
standard_iv_increment_position (loop, &incr_bsi, &insert_after);
create_iv (init, step, NULL_TREE, loop,
&incr_bsi, insert_after, &indx_before_incr, &indx_after_incr);
if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop. */
{
cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters);
then_label = build1 (GOTO_EXPR, void_type_node, exit_label);
else_label = build1 (GOTO_EXPR, void_type_node, begin_label);
}
else /* 'then' edge loops back. */
{
cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters);
then_label = build1 (GOTO_EXPR, void_type_node, begin_label);
else_label = build1 (GOTO_EXPR, void_type_node, exit_label);
}
cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond), cond,
then_label, else_label);
bsi_insert_before (&loop_cond_bsi, cond_stmt, BSI_SAME_STMT);
/* Remove old loop exit test: */
bsi_remove (&loop_cond_bsi);
loop_loc = find_loop_location (loop);
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (loop_loc != UNKNOWN_LOC)
fprintf (dump_file, "\nloop at %s:%d: ",
LOC_FILE (loop_loc), LOC_LINE (loop_loc));
print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
}
loop->nb_iterations = niters;
}
/* Given LOOP this function generates a new copy of it and puts it
on E which is either the entry or exit of LOOP. */
static struct loop *
slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
edge e)
{
struct loop *new_loop;
basic_block *new_bbs, *bbs;
bool at_exit;
bool was_imm_dom;
basic_block exit_dest;
tree phi, phi_arg;
at_exit = (e == loop->single_exit);
if (!at_exit && e != loop_preheader_edge (loop))
return NULL;
bbs = get_loop_body (loop);
/* Check whether duplication is possible. */
if (!can_copy_bbs_p (bbs, loop->num_nodes))
{
free (bbs);
return NULL;
}
/* Generate new loop structure. */
new_loop = duplicate_loop (loops, loop, loop->outer);
if (!new_loop)
{
free (bbs);
return NULL;
}
exit_dest = loop->single_exit->dest;
was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
exit_dest) == loop->header ?
true : false);
new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
copy_bbs (bbs, loop->num_nodes, new_bbs,
&loop->single_exit, 1, &new_loop->single_exit, NULL);
/* Duplicating phi args at exit bbs as coming
also from exit of duplicated loop. */
for (phi = phi_nodes (exit_dest); phi; phi = PHI_CHAIN (phi))
{
phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->single_exit);
if (phi_arg)
{
edge new_loop_exit_edge;
if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
else
new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
add_phi_arg (phi, phi_arg, new_loop_exit_edge);
}
}
if (at_exit) /* Add the loop copy at exit. */
{
redirect_edge_and_branch_force (e, new_loop->header);
set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
if (was_imm_dom)
set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
}
else /* Add the copy at entry. */
{
edge new_exit_e;
edge entry_e = loop_preheader_edge (loop);
basic_block preheader = entry_e->src;
if (!flow_bb_inside_loop_p (new_loop,
EDGE_SUCC (new_loop->header, 0)->dest))
new_exit_e = EDGE_SUCC (new_loop->header, 0);
else
new_exit_e = EDGE_SUCC (new_loop->header, 1);
redirect_edge_and_branch_force (new_exit_e, loop->header);
set_immediate_dominator (CDI_DOMINATORS, loop->header,
new_exit_e->src);
/* We have to add phi args to the loop->header here as coming
from new_exit_e edge. */
for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
{
phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
if (phi_arg)
add_phi_arg (phi, phi_arg, new_exit_e);
}
redirect_edge_and_branch_force (entry_e, new_loop->header);
set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
}
free (new_bbs);
free (bbs);
return new_loop;
}
/* Given the condition statement COND, put it as the last statement
of GUARD_BB; EXIT_BB is the basic block to skip the loop;
Assumes that this is the single exit of the guarded loop.
Returns the skip edge. */
static edge
slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
basic_block dom_bb)
{
block_stmt_iterator bsi;
edge new_e, enter_e;
tree cond_stmt, then_label, else_label;
enter_e = EDGE_SUCC (guard_bb, 0);
enter_e->flags &= ~EDGE_FALLTHRU;
enter_e->flags |= EDGE_FALSE_VALUE;
bsi = bsi_last (guard_bb);
then_label = build1 (GOTO_EXPR, void_type_node,
tree_block_label (exit_bb));
else_label = build1 (GOTO_EXPR, void_type_node,
tree_block_label (enter_e->dest));
cond_stmt = build3 (COND_EXPR, void_type_node, cond,
then_label, else_label);
bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
/* Add new edge to connect guard block to the merge/loop-exit block. */
new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
return new_e;
}
/* This function verifies that the following restrictions apply to LOOP:
(1) it is innermost
(2) it consists of exactly 2 basic blocks - header, and an empty latch.
(3) it is single entry, single exit
(4) its exit condition is the last stmt in the header
(5) E is the entry/exit edge of LOOP.
*/
bool
slpeel_can_duplicate_loop_p (struct loop *loop, edge e)
{
edge exit_e = loop->single_exit;
edge entry_e = loop_preheader_edge (loop);
tree orig_cond = get_loop_exit_condition (loop);
block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src);
if (need_ssa_update_p ())
return false;
if (loop->inner
/* All loops have an outer scope; the only case loop->outer is NULL is for
the function itself. */
|| !loop->outer
|| loop->num_nodes != 2
|| !empty_block_p (loop->latch)
|| !loop->single_exit
/* Verify that new loop exit condition can be trivially modified. */
|| (!orig_cond || orig_cond != bsi_stmt (loop_exit_bsi))
|| (e != exit_e && e != entry_e))
return false;
return true;
}
#ifdef ENABLE_CHECKING
void
slpeel_verify_cfg_after_peeling (struct loop *first_loop,
struct loop *second_loop)
{
basic_block loop1_exit_bb = first_loop->single_exit->dest;
basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
/* A guard that controls whether the second_loop is to be executed or skipped
is placed in first_loop->exit. first_loopt->exit therefore has two
successors - one is the preheader of second_loop, and the other is a bb
after second_loop.
*/
gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
/* 1. Verify that one of the successors of first_loopt->exit is the preheader
of second_loop. */
/* The preheader of new_loop is expected to have two predecessors:
first_loop->exit and the block that precedes first_loop. */
gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
&& ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
&& EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
|| (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
&& EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
/* Verify that the other successor of first_loopt->exit is after the
second_loop. */
/* TODO */
}
#endif
/* Function slpeel_tree_peel_loop_to_edge.
Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
that is placed on the entry (exit) edge E of LOOP. After this transformation
we have two loops one after the other - first-loop iterates FIRST_NITERS
times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
Input:
- LOOP: the loop to be peeled.
- E: the exit or entry edge of LOOP.
If it is the entry edge, we peel the first iterations of LOOP. In this
case first-loop is LOOP, and second-loop is the newly created loop.
If it is the exit edge, we peel the last iterations of LOOP. In this
case, first-loop is the newly created loop, and second-loop is LOOP.
- NITERS: the number of iterations that LOOP iterates.
- FIRST_NITERS: the number of iterations that the first-loop should iterate.
- UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
for updating the loop bound of the first-loop to FIRST_NITERS. If it
is false, the caller of this function may want to take care of this
(this can be useful if we don't want new stmts added to first-loop).
Output:
The function returns a pointer to the new loop-copy, or NULL if it failed
to perform the transformation.
The function generates two if-then-else guards: one before the first loop,
and the other before the second loop:
The first guard is:
if (FIRST_NITERS == 0) then skip the first loop,
and go directly to the second loop.
The second guard is:
if (FIRST_NITERS == NITERS) then skip the second loop.
FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
FORNOW the resulting code will not be in loop-closed-ssa form.
*/
struct loop*
slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops,
edge e, tree first_niters,
tree niters, bool update_first_loop_count)
{
struct loop *new_loop = NULL, *first_loop, *second_loop;
edge skip_e;
tree pre_condition;
bitmap definitions;
basic_block bb_before_second_loop, bb_after_second_loop;
basic_block bb_before_first_loop;
basic_block bb_between_loops;
basic_block new_exit_bb;
edge exit_e = loop->single_exit;
LOC loop_loc;
if (!slpeel_can_duplicate_loop_p (loop, e))
return NULL;
/* We have to initialize cfg_hooks. Then, when calling
cfg_hooks->split_edge, the function tree_split_edge
is actually called and, when calling cfg_hooks->duplicate_block,
the function tree_duplicate_bb is called. */
tree_register_cfg_hooks ();
/* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
Resulting CFG would be:
first_loop:
do {
} while ...
second_loop:
do {
} while ...
orig_exit_bb:
*/
if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, loops, e)))
{
loop_loc = find_loop_location (loop);
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (loop_loc != UNKNOWN_LOC)
fprintf (dump_file, "\n%s:%d: note: ",
LOC_FILE (loop_loc), LOC_LINE (loop_loc));
fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
}
return NULL;
}
if (e == exit_e)
{
/* NEW_LOOP was placed after LOOP. */
first_loop = loop;
second_loop = new_loop;
}
else
{
/* NEW_LOOP was placed before LOOP. */
first_loop = new_loop;
second_loop = loop;
}
definitions = ssa_names_to_replace ();
slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
rename_variables_in_loop (new_loop);
/* 2. Add the guard that controls whether the first loop is executed.
Resulting CFG would be:
bb_before_first_loop:
if (FIRST_NITERS == 0) GOTO bb_before_second_loop
GOTO first-loop
first_loop:
do {
} while ...
bb_before_second_loop:
second_loop:
do {
} while ...
orig_exit_bb:
*/
bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
add_bb_to_loop (bb_before_first_loop, first_loop->outer);
bb_before_second_loop = split_edge (first_loop->single_exit);
add_bb_to_loop (bb_before_second_loop, first_loop->outer);
pre_condition =
fold (build2 (LE_EXPR, boolean_type_node, first_niters, integer_zero_node));
skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
bb_before_second_loop, bb_before_first_loop);
slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
first_loop == new_loop,
&new_exit_bb, &definitions);
/* 3. Add the guard that controls whether the second loop is executed.
Resulting CFG would be:
bb_before_first_loop:
if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
GOTO first-loop
first_loop:
do {
} while ...
bb_between_loops:
if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
GOTO bb_before_second_loop
bb_before_second_loop:
second_loop:
do {
} while ...
bb_after_second_loop:
orig_exit_bb:
*/
bb_between_loops = new_exit_bb;
bb_after_second_loop = split_edge (second_loop->single_exit);
add_bb_to_loop (bb_after_second_loop, second_loop->outer);
pre_condition =
fold (build2 (EQ_EXPR, boolean_type_node, first_niters, niters));
skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
bb_after_second_loop, bb_before_first_loop);
slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
second_loop == new_loop, &new_exit_bb);
/* 4. Make first-loop iterate FIRST_NITERS times, if requested.
*/
if (update_first_loop_count)
slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
BITMAP_FREE (definitions);
delete_update_ssa ();
return new_loop;
}
/* Function vect_get_loop_location.
Extract the location of the loop in the source code.
If the loop is not well formed for vectorization, an estimated
location is calculated.
Return the loop location if succeed and NULL if not. */
LOC
find_loop_location (struct loop *loop)
{
tree node = NULL_TREE;
basic_block bb;
block_stmt_iterator si;
if (!loop)
return UNKNOWN_LOC;
node = get_loop_exit_condition (loop);
if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node)
&& EXPR_FILENAME (node) && EXPR_LINENO (node))
return EXPR_LOC (node);
/* If we got here the loop is probably not "well formed",
try to estimate the loop location */
if (!loop->header)
return UNKNOWN_LOC;
bb = loop->header;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
node = bsi_stmt (si);
if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node))
return EXPR_LOC (node);
}
return UNKNOWN_LOC;
}
/*************************************************************************
Vectorization Debug Information.
*************************************************************************/
/* Function vect_set_verbosity_level.
Called from toplev.c upon detection of the
-ftree-vectorizer-verbose=N option. */
void
vect_set_verbosity_level (const char *val)
{
unsigned int vl;
vl = atoi (val);
if (vl < MAX_VERBOSITY_LEVEL)
vect_verbosity_level = vl;
else
vect_verbosity_level = MAX_VERBOSITY_LEVEL - 1;
}
/* Function vect_set_dump_settings.
Fix the verbosity level of the vectorizer if the
requested level was not set explicitly using the flag
-ftree-vectorizer-verbose=N.
Decide where to print the debugging information (dump_file/stderr).
If the user defined the verbosity level, but there is no dump file,
print to stderr, otherwise print to the dump file. */
static void
vect_set_dump_settings (void)
{
vect_dump = dump_file;
/* Check if the verbosity level was defined by the user: */
if (vect_verbosity_level != MAX_VERBOSITY_LEVEL)
{
/* If there is no dump file, print to stderr. */
if (!dump_file)
vect_dump = stderr;
return;
}
/* User didn't specify verbosity level: */
if (dump_file && (dump_flags & TDF_DETAILS))
vect_verbosity_level = REPORT_DETAILS;
else if (dump_file && (dump_flags & TDF_STATS))
vect_verbosity_level = REPORT_UNVECTORIZED_LOOPS;
else
vect_verbosity_level = REPORT_NONE;
gcc_assert (dump_file || vect_verbosity_level == REPORT_NONE);
}
/* Function debug_loop_details.
For vectorization debug dumps. */
bool
vect_print_dump_info (enum verbosity_levels vl, LOC loc)
{
if (vl > vect_verbosity_level)
return false;
if (loc == UNKNOWN_LOC)
fprintf (vect_dump, "\n%s:%d: note: ",
DECL_SOURCE_FILE (current_function_decl),
DECL_SOURCE_LINE (current_function_decl));
else
fprintf (vect_dump, "\n%s:%d: note: ", LOC_FILE (loc), LOC_LINE (loc));
return true;
}
/*************************************************************************
Vectorization Utilities.
*************************************************************************/
/* Function new_stmt_vec_info.
Create and initialize a new stmt_vec_info struct for STMT. */
stmt_vec_info
new_stmt_vec_info (tree stmt, loop_vec_info loop_vinfo)
{
stmt_vec_info res;
res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
STMT_VINFO_TYPE (res) = undef_vec_info_type;
STMT_VINFO_STMT (res) = stmt;
STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
STMT_VINFO_RELEVANT_P (res) = 0;
STMT_VINFO_LIVE_P (res) = 0;
STMT_VINFO_VECTYPE (res) = NULL;
STMT_VINFO_VEC_STMT (res) = NULL;
STMT_VINFO_DATA_REF (res) = NULL;
if (TREE_CODE (stmt) == PHI_NODE)
STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
else
STMT_VINFO_DEF_TYPE (res) = vect_loop_def;
STMT_VINFO_MEMTAG (res) = NULL;
STMT_VINFO_PTR_INFO (res) = NULL;
STMT_VINFO_SUBVARS (res) = NULL;
STMT_VINFO_VECT_DR_BASE_ADDRESS (res) = NULL;
STMT_VINFO_VECT_INIT_OFFSET (res) = NULL_TREE;
STMT_VINFO_VECT_STEP (res) = NULL_TREE;
STMT_VINFO_VECT_BASE_ALIGNED_P (res) = false;
STMT_VINFO_VECT_MISALIGNMENT (res) = NULL_TREE;
STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
return res;
}
/* Function new_loop_vec_info.
Create and initialize a new loop_vec_info struct for LOOP, as well as
stmt_vec_info structs for all the stmts in LOOP. */
loop_vec_info
new_loop_vec_info (struct loop *loop)
{
loop_vec_info res;
basic_block *bbs;
block_stmt_iterator si;
unsigned int i;
res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
bbs = get_loop_body (loop);
/* Create stmt_info for all stmts in the loop. */
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
tree phi;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
tree_ann_t ann = get_tree_ann (phi);
set_stmt_info (ann, new_stmt_vec_info (phi, res));
}
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
stmt_ann_t ann;
ann = stmt_ann (stmt);
set_stmt_info ((tree_ann_t)ann, new_stmt_vec_info (stmt, res));
}
}
LOOP_VINFO_LOOP (res) = loop;
LOOP_VINFO_BBS (res) = bbs;
LOOP_VINFO_EXIT_COND (res) = NULL;
LOOP_VINFO_NITERS (res) = NULL;
LOOP_VINFO_VECTORIZABLE_P (res) = 0;
LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
LOOP_VINFO_VECT_FACTOR (res) = 0;
VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20,
"loop_write_datarefs");
VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20,
"loop_read_datarefs");
LOOP_VINFO_UNALIGNED_DR (res) = NULL;
LOOP_VINFO_LOC (res) = UNKNOWN_LOC;
return res;
}
/* Function destroy_loop_vec_info.
Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
stmts in the loop. */
void
destroy_loop_vec_info (loop_vec_info loop_vinfo)
{
struct loop *loop;
basic_block *bbs;
int nbbs;
block_stmt_iterator si;
int j;
if (!loop_vinfo)
return;
loop = LOOP_VINFO_LOOP (loop_vinfo);
bbs = LOOP_VINFO_BBS (loop_vinfo);
nbbs = loop->num_nodes;
for (j = 0; j < nbbs; j++)
{
basic_block bb = bbs[j];
tree phi;
stmt_vec_info stmt_info;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
tree_ann_t ann = get_tree_ann (phi);
stmt_info = vinfo_for_stmt (phi);
free (stmt_info);
set_stmt_info (ann, NULL);
}
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
stmt_ann_t ann = stmt_ann (stmt);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
if (stmt_info)
{
VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
free (stmt_info);
set_stmt_info ((tree_ann_t)ann, NULL);
}
}
}
free (LOOP_VINFO_BBS (loop_vinfo));
varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo));
free (loop_vinfo);
}
/* Function vect_strip_conversions
Strip conversions that don't narrow the mode. */
tree
vect_strip_conversion (tree expr)
{
tree to, ti, oprnd0;
while (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
{
to = TREE_TYPE (expr);
oprnd0 = TREE_OPERAND (expr, 0);
ti = TREE_TYPE (oprnd0);
if (!INTEGRAL_TYPE_P (to) || !INTEGRAL_TYPE_P (ti))
return NULL_TREE;
if (GET_MODE_SIZE (TYPE_MODE (to)) < GET_MODE_SIZE (TYPE_MODE (ti)))
return NULL_TREE;
expr = oprnd0;
}
return expr;
}
/* Function vect_force_dr_alignment_p.
Returns whether the alignment of a DECL can be forced to be aligned
on ALIGNMENT bit boundary. */
bool
vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
{
if (TREE_CODE (decl) != VAR_DECL)
return false;
if (DECL_EXTERNAL (decl))
return false;
if (TREE_ASM_WRITTEN (decl))
return false;
if (TREE_STATIC (decl))
return (alignment <= MAX_OFILE_ALIGNMENT);
else
/* This is not 100% correct. The absolute correct stack alignment
is STACK_BOUNDARY. We're supposed to hope, but not assume, that
PREFERRED_STACK_BOUNDARY is honored by all translation units.
However, until someone implements forced stack alignment, SSE
isn't really usable without this. */
return (alignment <= PREFERRED_STACK_BOUNDARY);
}
/* Function get_vectype_for_scalar_type.
Returns the vector type corresponding to SCALAR_TYPE as supported
by the target. */
tree
get_vectype_for_scalar_type (tree scalar_type)
{
enum machine_mode inner_mode = TYPE_MODE (scalar_type);
int nbytes = GET_MODE_SIZE (inner_mode);
int nunits;
tree vectype;
if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD)
return NULL_TREE;
/* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
is expected. */
nunits = UNITS_PER_SIMD_WORD / nbytes;
vectype = build_vector_type (scalar_type, nunits);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "get vectype with %d units of type ", nunits);
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
}
if (!vectype)
return NULL_TREE;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "vectype: ");
print_generic_expr (vect_dump, vectype, TDF_SLIM);
}
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
&& !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "mode not supported by target.");
return NULL_TREE;
}
return vectype;
}
/* Function vect_supportable_dr_alignment
Return whether the data reference DR is supported with respect to its
alignment. */
enum dr_alignment_support
vect_supportable_dr_alignment (struct data_reference *dr)
{
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
enum machine_mode mode = (int) TYPE_MODE (vectype);
if (aligned_access_p (dr))
return dr_aligned;
/* Possibly unaligned access. */
if (DR_IS_READ (dr))
{
if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing
&& (!targetm.vectorize.builtin_mask_for_load
|| targetm.vectorize.builtin_mask_for_load ()))
return dr_unaligned_software_pipeline;
if (movmisalign_optab->handlers[mode].insn_code != CODE_FOR_nothing)
/* Can't software pipeline the loads, but can at least do them. */
return dr_unaligned_supported;
}
/* Unsupported. */
return dr_unaligned_unsupported;
}
/* Function vect_is_simple_use.
Input:
LOOP - the loop that is being vectorized.
OPERAND - operand of a stmt in LOOP.
DEF - the defining stmt in case OPERAND is an SSA_NAME.
Returns whether a stmt with OPERAND can be vectorized.
Supportable operands are constants, loop invariants, and operands that are
defined by the current iteration of the loop. Unsupportable operands are
those that are defined by a previous iteration of the loop (as is the case
in reduction/induction computations). */
bool
vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, tree *def_stmt,
tree *def, enum vect_def_type *dt)
{
basic_block bb;
stmt_vec_info stmt_vinfo;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
*def_stmt = NULL_TREE;
*def = NULL_TREE;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "vect_is_simple_use: operand ");
print_generic_expr (vect_dump, operand, TDF_SLIM);
}
if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
{
*dt = vect_constant_def;
return true;
}
if (TREE_CODE (operand) != SSA_NAME)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "not ssa-name.");
return false;
}
*def_stmt = SSA_NAME_DEF_STMT (operand);
if (*def_stmt == NULL_TREE )
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "no def_stmt.");
return false;
}
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "def_stmt: ");
print_generic_expr (vect_dump, *def_stmt, TDF_SLIM);
}
/* empty stmt is expected only in case of a function argument.
(Otherwise - we expect a phi_node or a modify_expr). */
if (IS_EMPTY_STMT (*def_stmt))
{
tree arg = TREE_OPERAND (*def_stmt, 0);
if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
{
*def = operand;
*dt = vect_invariant_def;
return true;
}
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "Unexpected empty stmt.");
return false;
}
bb = bb_for_stmt (*def_stmt);
if (!flow_bb_inside_loop_p (loop, bb))
*dt = vect_invariant_def;
else
{
stmt_vinfo = vinfo_for_stmt (*def_stmt);
*dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
}
if (*dt == vect_unknown_def_type)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "Unsupported pattern.");
return false;
}
/* stmts inside the loop that have been identified as performing
a reduction operation cannot have uses in the loop. */
if (*dt == vect_reduction_def && TREE_CODE (*def_stmt) != PHI_NODE)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "reduction used in loop.");
return false;
}
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "type of def: %d.",*dt);
switch (TREE_CODE (*def_stmt))
{
case PHI_NODE:
*def = PHI_RESULT (*def_stmt);
gcc_assert (*dt == vect_induction_def || *dt == vect_reduction_def
|| *dt == vect_invariant_def);
break;
case MODIFY_EXPR:
*def = TREE_OPERAND (*def_stmt, 0);
gcc_assert (*dt == vect_loop_def || *dt == vect_invariant_def);
break;
default:
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "unsupported defining stmt: ");
return false;
}
if (*dt == vect_induction_def)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "induction not supported.");
return false;
}
return true;
}
/* Function reduction_code_for_scalar_code
Input:
CODE - tree_code of a reduction operations.
Output:
REDUC_CODE - the correponding tree-code to be used to reduce the
vector of partial results into a single scalar result (which
will also reside in a vector).
Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise. */
bool
reduction_code_for_scalar_code (enum tree_code code,
enum tree_code *reduc_code)
{
switch (code)
{
case MAX_EXPR:
*reduc_code = REDUC_MAX_EXPR;
return true;
case MIN_EXPR:
*reduc_code = REDUC_MIN_EXPR;
return true;
case PLUS_EXPR:
*reduc_code = REDUC_PLUS_EXPR;
return true;
default:
return false;
}
}
/* Function vect_is_simple_reduction
Detect a cross-iteration def-use cucle that represents a simple
reduction computation. We look for the following pattern:
loop_header:
a1 = phi < a0, a2 >
a3 = ...
a2 = operation (a3, a1)
such that:
1. operation is commutative and associative and it is safe to
change the the order of the computation.
2. no uses for a2 in the loop (a2 is used out of the loop)
3. no uses of a1 in the loop besides the reduction operation.
Condition 1 is tested here.
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized. */
tree
vect_is_simple_reduction (struct loop *loop ATTRIBUTE_UNUSED,
tree phi ATTRIBUTE_UNUSED)
{
edge latch_e = loop_latch_edge (loop);
tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
tree def_stmt, def1, def2;
enum tree_code code;
int op_type;
tree operation, op1, op2;
tree type;
if (TREE_CODE (loop_arg) != SSA_NAME)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "reduction: not ssa_name: ");
print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
}
return NULL_TREE;
}
def_stmt = SSA_NAME_DEF_STMT (loop_arg);
if (!def_stmt)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "reduction: no def_stmt.");
return NULL_TREE;
}
if (TREE_CODE (def_stmt) != MODIFY_EXPR)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
}
return NULL_TREE;
}
operation = TREE_OPERAND (def_stmt, 1);
code = TREE_CODE (operation);
if (!commutative_tree_code (code) || !associative_tree_code (code))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "reduction: not commutative/associative: ");
print_generic_expr (vect_dump, operation, TDF_SLIM);
}
return NULL_TREE;
}
op_type = TREE_CODE_LENGTH (code);
if (op_type != binary_op)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "reduction: not binary operation: ");
print_generic_expr (vect_dump, operation, TDF_SLIM);
}
return NULL_TREE;
}
op1 = TREE_OPERAND (operation, 0);
op2 = TREE_OPERAND (operation, 1);
if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "reduction: uses not ssa_names: ");
print_generic_expr (vect_dump, operation, TDF_SLIM);
}
return NULL_TREE;
}
/* Check that it's ok to change the order of the computation */
type = TREE_TYPE (operation);
if (type != TREE_TYPE (op1) || type != TREE_TYPE (op2))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "reduction: multiple types: operation type: ");
print_generic_expr (vect_dump, type, TDF_SLIM);
fprintf (vect_dump, ", operands types: ");
print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
fprintf (vect_dump, ",");
print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
}
return NULL_TREE;
}
/* CHECKME: check for !flag_finite_math_only too? */
if (SCALAR_FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
{
/* Changing the order of operations changes the sematics. */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "reduction: unsafe fp math optimization: ");
print_generic_expr (vect_dump, operation, TDF_SLIM);
}
return NULL_TREE;
}
else if (INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type) && flag_trapv)
{
/* Changing the order of operations changes the sematics. */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "reduction: unsafe int math optimization: ");
print_generic_expr (vect_dump, operation, TDF_SLIM);
}
return NULL_TREE;
}
/* reduction is safe. we're dealing with one of the following:
1) integer arithmetic and no trapv
2) floating point arithmetic, and special flags permit this optimization.
*/
def1 = SSA_NAME_DEF_STMT (op1);
def2 = SSA_NAME_DEF_STMT (op2);
if (!def1 || !def2)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "reduction: no defs for operands: ");
print_generic_expr (vect_dump, operation, TDF_SLIM);
}
return NULL_TREE;
}
if (TREE_CODE (def1) == MODIFY_EXPR
&& flow_bb_inside_loop_p (loop, bb_for_stmt (def1))
&& def2 == phi)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "detected reduction:");
print_generic_expr (vect_dump, operation, TDF_SLIM);
}
return def_stmt;
}
else if (TREE_CODE (def2) == MODIFY_EXPR
&& flow_bb_inside_loop_p (loop, bb_for_stmt (def2))
&& def1 == phi)
{
use_operand_p use;
ssa_op_iter iter;
/* Swap operands (just for simplicity - so that the rest of the code
can assume that the reduction variable is always the last (second)
argument). */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "detected reduction: need to swap operands:");
print_generic_expr (vect_dump, operation, TDF_SLIM);
}
/* CHECKME */
FOR_EACH_SSA_USE_OPERAND (use, def_stmt, iter, SSA_OP_USE)
{
tree tuse = USE_FROM_PTR (use);
if (tuse == op1)
SET_USE (use, op2);
else if (tuse == op2)
SET_USE (use, op1);
}
return def_stmt;
}
else
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "reduction: unknown pattern.");
print_generic_expr (vect_dump, operation, TDF_SLIM);
}
return NULL_TREE;
}
}
/* Function vect_is_simple_iv_evolution.
FORNOW: A simple evolution of an induction variables in the loop is
considered a polynomial evolution with constant step. */
bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
tree * step)
{
tree init_expr;
tree step_expr;
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
/* When there is no evolution in this loop, the evolution function
is not "simple". */
if (evolution_part == NULL_TREE)
return false;
/* When the evolution is a polynomial of degree >= 2
the evolution function is not "simple". */
if (tree_is_chrec (evolution_part))
return false;
step_expr = evolution_part;
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
loop_nb));
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "step: ");
print_generic_expr (vect_dump, step_expr, TDF_SLIM);
fprintf (vect_dump, ", init: ");
print_generic_expr (vect_dump, init_expr, TDF_SLIM);
}
*init = init_expr;
*step = step_expr;
if (TREE_CODE (step_expr) != INTEGER_CST)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "step unknown.");
return false;
}
return true;
}
/* Function vectorize_loops.
Entry Point to loop vectorization phase. */
void
vectorize_loops (struct loops *loops)
{
unsigned int i;
unsigned int num_vectorized_loops = 0;
/* Fix the verbosity level if not defined explicitly by the user. */
vect_set_dump_settings ();
/* ----------- Analyze loops. ----------- */
/* If some loop was duplicated, it gets bigger number
than all previously defined loops. This fact allows us to run
only over initial loops skipping newly generated ones. */
vect_loops_num = loops->num;
for (i = 1; i < vect_loops_num; i++)
{
loop_vec_info loop_vinfo;
struct loop *loop = loops->parray[i];
if (!loop)
continue;
loop_vinfo = vect_analyze_loop (loop);
loop->aux = loop_vinfo;
if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
continue;
vect_transform_loop (loop_vinfo, loops);
num_vectorized_loops++;
}
if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS, UNKNOWN_LOC))
fprintf (vect_dump, "vectorized %u loops in function.\n",
num_vectorized_loops);
/* ----------- Finalize. ----------- */
for (i = 1; i < vect_loops_num; i++)
{
struct loop *loop = loops->parray[i];
loop_vec_info loop_vinfo;
if (!loop)
continue;
loop_vinfo = loop->aux;
destroy_loop_vec_info (loop_vinfo);
loop->aux = NULL;
}
}
|