1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
|
/* Analysis Utilities for Loop Vectorization.
Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by Dorit Nuzman <dorit@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "params.h"
#include "tree-data-ref.h"
#include "tree-vectorizer.h"
#include "recog.h"
#include "toplev.h"
/* Function prototypes */
static void vect_pattern_recog_1
(gimple (* ) (gimple, tree *, tree *), gimple_stmt_iterator);
static bool widened_name_p (tree, gimple, tree *, gimple *);
/* Pattern recognition functions */
static gimple vect_recog_widen_sum_pattern (gimple, tree *, tree *);
static gimple vect_recog_widen_mult_pattern (gimple, tree *, tree *);
static gimple vect_recog_dot_prod_pattern (gimple, tree *, tree *);
static gimple vect_recog_pow_pattern (gimple, tree *, tree *);
static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
vect_recog_widen_mult_pattern,
vect_recog_widen_sum_pattern,
vect_recog_dot_prod_pattern,
vect_recog_pow_pattern};
/* Function widened_name_p
Check whether NAME, an ssa-name used in USE_STMT,
is a result of a type-promotion, such that:
DEF_STMT: NAME = NOP (name0)
where the type of name0 (HALF_TYPE) is smaller than the type of NAME.
*/
static bool
widened_name_p (tree name, gimple use_stmt, tree *half_type, gimple *def_stmt)
{
tree dummy;
gimple dummy_gimple;
loop_vec_info loop_vinfo;
stmt_vec_info stmt_vinfo;
tree type = TREE_TYPE (name);
tree oprnd0;
enum vect_def_type dt;
tree def;
stmt_vinfo = vinfo_for_stmt (use_stmt);
loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
if (!vect_is_simple_use (name, loop_vinfo, def_stmt, &def, &dt))
return false;
if (dt != vect_loop_def
&& dt != vect_invariant_def && dt != vect_constant_def)
return false;
if (! *def_stmt)
return false;
if (!is_gimple_assign (*def_stmt))
return false;
if (gimple_assign_rhs_code (*def_stmt) != NOP_EXPR)
return false;
oprnd0 = gimple_assign_rhs1 (*def_stmt);
*half_type = TREE_TYPE (oprnd0);
if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*half_type)
|| (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*half_type))
|| (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 2)))
return false;
if (!vect_is_simple_use (oprnd0, loop_vinfo, &dummy_gimple, &dummy, &dt))
return false;
return true;
}
/* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
static tree
vect_recog_temp_ssa_var (tree type, gimple stmt)
{
tree var = create_tmp_var (type, "patt");
add_referenced_var (var);
var = make_ssa_name (var, stmt);
return var;
}
/* Function vect_recog_dot_prod_pattern
Try to find the following pattern:
type x_t, y_t;
TYPE1 prod;
TYPE2 sum = init;
loop:
sum_0 = phi <init, sum_1>
S1 x_t = ...
S2 y_t = ...
S3 x_T = (TYPE1) x_t;
S4 y_T = (TYPE1) y_t;
S5 prod = x_T * y_T;
[S6 prod = (TYPE2) prod; #optional]
S7 sum_1 = prod + sum_0;
where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
same size of 'TYPE1' or bigger. This is a special case of a reduction
computation.
Input:
* LAST_STMT: A stmt from which the pattern search begins. In the example,
when this function is called with S7, the pattern {S3,S4,S5,S6,S7} will be
detected.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
Note: The dot-prod idiom is a widening reduction pattern that is
vectorized without preserving all the intermediate results. It
produces only N/2 (widened) results (by summing up pairs of
intermediate results) rather than all N results. Therefore, we
cannot allow this pattern when we want to get all the results and in
the correct order (as is the case when this computation is in an
inner-loop nested in an outer-loop that us being vectorized). */
static gimple
vect_recog_dot_prod_pattern (gimple last_stmt, tree *type_in, tree *type_out)
{
gimple stmt;
tree oprnd0, oprnd1;
tree oprnd00, oprnd01;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
tree type, half_type;
gimple pattern_stmt;
tree prod_type;
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_info);
tree var, rhs;
if (!is_gimple_assign (last_stmt))
return NULL;
type = gimple_expr_type (last_stmt);
/* Look for the following pattern
DX = (TYPE1) X;
DY = (TYPE1) Y;
DPROD = DX * DY;
DDPROD = (TYPE2) DPROD;
sum_1 = DDPROD + sum_0;
In which
- DX is double the size of X
- DY is double the size of Y
- DX, DY, DPROD all have the same type
- sum is the same size of DPROD or bigger
- sum has been recognized as a reduction variable.
This is equivalent to:
DPROD = X w* Y; #widen mult
sum_1 = DPROD w+ sum_0; #widen summation
or
DPROD = X w* Y; #widen mult
sum_1 = DPROD + sum_0; #summation
*/
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
return NULL;
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
{
/* Has been detected as widening-summation? */
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
type = gimple_expr_type (stmt);
if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
return NULL;
oprnd0 = gimple_assign_rhs1 (stmt);
oprnd1 = gimple_assign_rhs2 (stmt);
half_type = TREE_TYPE (oprnd0);
}
else
{
gimple def_stmt;
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
return NULL;
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
|| TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
return NULL;
stmt = last_stmt;
if (widened_name_p (oprnd0, stmt, &half_type, &def_stmt))
{
stmt = def_stmt;
oprnd0 = gimple_assign_rhs1 (stmt);
}
else
half_type = type;
}
/* So far so good. Since last_stmt was detected as a (summation) reduction,
we know that oprnd1 is the reduction variable (defined by a loop-header
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
Left to check that oprnd0 is defined by a (widen_)mult_expr */
prod_type = half_type;
stmt = SSA_NAME_DEF_STMT (oprnd0);
/* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
inside the loop (in case we are analyzing an outer-loop). */
if (!is_gimple_assign (stmt))
return NULL;
stmt_vinfo = vinfo_for_stmt (stmt);
gcc_assert (stmt_vinfo);
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_loop_def)
return NULL;
if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
return NULL;
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
{
/* Has been detected as a widening multiplication? */
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
return NULL;
stmt_vinfo = vinfo_for_stmt (stmt);
gcc_assert (stmt_vinfo);
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_loop_def);
oprnd00 = gimple_assign_rhs1 (stmt);
oprnd01 = gimple_assign_rhs2 (stmt);
}
else
{
tree half_type0, half_type1;
gimple def_stmt;
tree oprnd0, oprnd1;
oprnd0 = gimple_assign_rhs1 (stmt);
oprnd1 = gimple_assign_rhs2 (stmt);
if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0))
!= TYPE_MAIN_VARIANT (prod_type)
|| TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1))
!= TYPE_MAIN_VARIANT (prod_type))
return NULL;
if (!widened_name_p (oprnd0, stmt, &half_type0, &def_stmt))
return NULL;
oprnd00 = gimple_assign_rhs1 (def_stmt);
if (!widened_name_p (oprnd1, stmt, &half_type1, &def_stmt))
return NULL;
oprnd01 = gimple_assign_rhs1 (def_stmt);
if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
return NULL;
if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
return NULL;
}
half_type = TREE_TYPE (oprnd00);
*type_in = half_type;
*type_out = type;
/* Pattern detected. Create a stmt to be used to replace the pattern: */
var = vect_recog_temp_ssa_var (type, NULL);
rhs = build3 (DOT_PROD_EXPR, type, oprnd00, oprnd01, oprnd1),
pattern_stmt = gimple_build_assign (var, rhs);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "vect_recog_dot_prod_pattern: detected: ");
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
}
/* We don't allow changing the order of the computation in the inner-loop
when doing outer-loop vectorization. */
if (nested_in_vect_loop_p (loop, last_stmt))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vect_recog_dot_prod_pattern: not allowed.");
return NULL;
}
return pattern_stmt;
}
/* Function vect_recog_widen_mult_pattern
Try to find the following pattern:
type a_t, b_t;
TYPE a_T, b_T, prod_T;
S1 a_t = ;
S2 b_t = ;
S3 a_T = (TYPE) a_t;
S4 b_T = (TYPE) b_t;
S5 prod_T = a_T * b_T;
where type 'TYPE' is at least double the size of type 'type'.
Input:
* LAST_STMT: A stmt from which the pattern search begins. In the example,
when this function is called with S5, the pattern {S3,S4,S5} is be detected.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_MULT <a_t, b_t>
*/
static gimple
vect_recog_widen_mult_pattern (gimple last_stmt,
tree *type_in,
tree *type_out)
{
gimple def_stmt0, def_stmt1;
tree oprnd0, oprnd1;
tree type, half_type0, half_type1;
gimple pattern_stmt;
tree vectype;
tree dummy;
tree var;
enum tree_code dummy_code;
int dummy_int;
VEC (tree, heap) *dummy_vec;
if (!is_gimple_assign (last_stmt))
return NULL;
type = gimple_expr_type (last_stmt);
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
return NULL;
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
|| TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
return NULL;
/* Check argument 0 */
if (!widened_name_p (oprnd0, last_stmt, &half_type0, &def_stmt0))
return NULL;
oprnd0 = gimple_assign_rhs1 (def_stmt0);
/* Check argument 1 */
if (!widened_name_p (oprnd1, last_stmt, &half_type1, &def_stmt1))
return NULL;
oprnd1 = gimple_assign_rhs1 (def_stmt1);
if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
return NULL;
/* Pattern detected. */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vect_recog_widen_mult_pattern: detected: ");
/* Check target support */
vectype = get_vectype_for_scalar_type (half_type0);
if (!vectype
|| !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt, vectype,
&dummy, &dummy, &dummy_code,
&dummy_code, &dummy_int, &dummy_vec))
return NULL;
*type_in = vectype;
*type_out = NULL_TREE;
/* Pattern supported. Create a stmt to be used to replace the pattern: */
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign_with_ops (WIDEN_MULT_EXPR, var, oprnd0,
oprnd1);
SSA_NAME_DEF_STMT (var) = pattern_stmt;
if (vect_print_dump_info (REPORT_DETAILS))
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
return pattern_stmt;
}
/* Function vect_recog_pow_pattern
Try to find the following pattern:
x = POW (y, N);
with POW being one of pow, powf, powi, powif and N being
either 2 or 0.5.
Input:
* LAST_STMT: A stmt from which the pattern search begins.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
x = x * x
or
x = sqrt (x)
*/
static gimple
vect_recog_pow_pattern (gimple last_stmt, tree *type_in, tree *type_out)
{
tree type;
tree fn, base, exp = NULL;
gimple stmt;
tree var;
if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
return NULL;
type = gimple_expr_type (last_stmt);
fn = gimple_call_fndecl (last_stmt);
switch (DECL_FUNCTION_CODE (fn))
{
case BUILT_IN_POWIF:
case BUILT_IN_POWI:
case BUILT_IN_POWF:
case BUILT_IN_POW:
base = gimple_call_arg (last_stmt, 0);
exp = gimple_call_arg (last_stmt, 1);
if (TREE_CODE (exp) != REAL_CST
&& TREE_CODE (exp) != INTEGER_CST)
return NULL;
break;
default:
return NULL;
}
/* We now have a pow or powi builtin function call with a constant
exponent. */
*type_out = NULL_TREE;
/* Catch squaring. */
if ((host_integerp (exp, 0)
&& tree_low_cst (exp, 0) == 2)
|| (TREE_CODE (exp) == REAL_CST
&& REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconst2)))
{
*type_in = TREE_TYPE (base);
var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
stmt = gimple_build_assign_with_ops (MULT_EXPR, var, base, base);
SSA_NAME_DEF_STMT (var) = stmt;
return stmt;
}
/* Catch square root. */
if (TREE_CODE (exp) == REAL_CST
&& REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconsthalf))
{
tree newfn = mathfn_built_in (TREE_TYPE (base), BUILT_IN_SQRT);
*type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
if (*type_in)
{
gimple stmt = gimple_build_call (newfn, 1, base);
if (vectorizable_function (stmt, *type_in, *type_in)
!= NULL_TREE)
{
var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
gimple_call_set_lhs (stmt, var);
return stmt;
}
}
}
return NULL;
}
/* Function vect_recog_widen_sum_pattern
Try to find the following pattern:
type x_t;
TYPE x_T, sum = init;
loop:
sum_0 = phi <init, sum_1>
S1 x_t = *p;
S2 x_T = (TYPE) x_t;
S3 sum_1 = x_T + sum_0;
where type 'TYPE' is at least double the size of type 'type', i.e - we're
summing elements of type 'type' into an accumulator of type 'TYPE'. This is
a special case of a reduction computation.
Input:
* LAST_STMT: A stmt from which the pattern search begins. In the example,
when this function is called with S3, the pattern {S2,S3} will be detected.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_SUM <x_t, sum_0>
Note: The widening-sum idiom is a widening reduction pattern that is
vectorized without preserving all the intermediate results. It
produces only N/2 (widened) results (by summing up pairs of
intermediate results) rather than all N results. Therefore, we
cannot allow this pattern when we want to get all the results and in
the correct order (as is the case when this computation is in an
inner-loop nested in an outer-loop that us being vectorized). */
static gimple
vect_recog_widen_sum_pattern (gimple last_stmt, tree *type_in, tree *type_out)
{
gimple stmt;
tree oprnd0, oprnd1;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
tree type, half_type;
gimple pattern_stmt;
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_info);
tree var;
if (!is_gimple_assign (last_stmt))
return NULL;
type = gimple_expr_type (last_stmt);
/* Look for the following pattern
DX = (TYPE) X;
sum_1 = DX + sum_0;
In which DX is at least double the size of X, and sum_1 has been
recognized as a reduction variable.
*/
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
return NULL;
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
return NULL;
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
|| TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
return NULL;
/* So far so good. Since last_stmt was detected as a (summation) reduction,
we know that oprnd1 is the reduction variable (defined by a loop-header
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
Left to check that oprnd0 is defined by a cast from type 'type' to type
'TYPE'. */
if (!widened_name_p (oprnd0, last_stmt, &half_type, &stmt))
return NULL;
oprnd0 = gimple_assign_rhs1 (stmt);
*type_in = half_type;
*type_out = type;
/* Pattern detected. Create a stmt to be used to replace the pattern: */
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign_with_ops (WIDEN_SUM_EXPR, var,
oprnd0, oprnd1);
SSA_NAME_DEF_STMT (var) = pattern_stmt;
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "vect_recog_widen_sum_pattern: detected: ");
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
}
/* We don't allow changing the order of the computation in the inner-loop
when doing outer-loop vectorization. */
if (nested_in_vect_loop_p (loop, last_stmt))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vect_recog_widen_sum_pattern: not allowed.");
return NULL;
}
return pattern_stmt;
}
/* Function vect_pattern_recog_1
Input:
PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
computation pattern.
STMT: A stmt from which the pattern search should start.
If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
expression that computes the same functionality and can be used to
replace the sequence of stmts that are involved in the pattern.
Output:
This function checks if the expression returned by PATTERN_RECOG_FUNC is
supported in vector form by the target. We use 'TYPE_IN' to obtain the
relevant vector type. If 'TYPE_IN' is already a vector type, then this
indicates that target support had already been checked by PATTERN_RECOG_FUNC.
If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
to the available target pattern.
This function also does some bookkeeping, as explained in the documentation
for vect_recog_pattern. */
static void
vect_pattern_recog_1 (
gimple (* vect_recog_func) (gimple, tree *, tree *),
gimple_stmt_iterator si)
{
gimple stmt = gsi_stmt (si), pattern_stmt;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
stmt_vec_info pattern_stmt_info;
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
tree pattern_vectype;
tree type_in, type_out;
enum tree_code code;
pattern_stmt = (* vect_recog_func) (stmt, &type_in, &type_out);
if (!pattern_stmt)
return;
if (VECTOR_MODE_P (TYPE_MODE (type_in)))
{
/* No need to check target support (already checked by the pattern
recognition function). */
pattern_vectype = type_in;
}
else
{
enum tree_code vec_mode;
enum insn_code icode;
optab optab;
/* Check target support */
pattern_vectype = get_vectype_for_scalar_type (type_in);
if (!pattern_vectype)
return;
if (is_gimple_assign (pattern_stmt))
code = gimple_assign_rhs_code (pattern_stmt);
else
{
gcc_assert (is_gimple_call (pattern_stmt));
code = CALL_EXPR;
}
optab = optab_for_tree_code (code, pattern_vectype, optab_default);
vec_mode = TYPE_MODE (pattern_vectype);
if (!optab
|| (icode = optab_handler (optab, vec_mode)->insn_code) ==
CODE_FOR_nothing
|| (type_out
&& (!get_vectype_for_scalar_type (type_out)
|| (insn_data[icode].operand[0].mode !=
TYPE_MODE (get_vectype_for_scalar_type (type_out))))))
return;
}
/* Found a vectorizable pattern. */
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "pattern recognized: ");
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
}
/* Mark the stmts that are involved in the pattern. */
gsi_insert_before (&si, pattern_stmt, GSI_SAME_STMT);
set_vinfo_for_stmt (pattern_stmt,
new_stmt_vec_info (pattern_stmt, loop_vinfo));
pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
STMT_VINFO_RELATED_STMT (pattern_stmt_info) = stmt;
STMT_VINFO_DEF_TYPE (pattern_stmt_info) = STMT_VINFO_DEF_TYPE (stmt_info);
STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
STMT_VINFO_IN_PATTERN_P (stmt_info) = true;
STMT_VINFO_RELATED_STMT (stmt_info) = pattern_stmt;
return;
}
/* Function vect_pattern_recog
Input:
LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
computation idioms.
Output - for each computation idiom that is detected we insert a new stmt
that provides the same functionality and that can be vectorized. We
also record some information in the struct_stmt_info of the relevant
stmts, as explained below:
At the entry to this function we have the following stmts, with the
following initial value in the STMT_VINFO fields:
stmt in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
S4: a_0 = ..use(a_1).. - - -
S5: ... = ..use(a_0).. - - -
Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
represented by a single stmt. We then:
- create a new stmt S6 that will replace the pattern.
- insert the new stmt S6 before the last stmt in the pattern
- fill in the STMT_VINFO fields as follows:
in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
> S6: a_new = .... - S4 -
S4: a_0 = ..use(a_1).. true S6 -
S5: ... = ..use(a_0).. - - -
(the last stmt in the pattern (S4) and the new pattern stmt (S6) point
to each other through the RELATED_STMT field).
S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
remain irrelevant unless used by stmts other than S4.
If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
(because they are marked as irrelevant). It will vectorize S6, and record
a pointer to the new vector stmt VS6 both from S6 (as usual), and also
from S4. We do that so that when we get to vectorizing stmts that use the
def of S4 (like S5 that uses a_0), we'll know where to take the relevant
vector-def from. S4 will be skipped, and S5 will be vectorized as usual:
in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
> VS6: va_new = .... - - -
S6: a_new = .... - S4 VS6
S4: a_0 = ..use(a_1).. true S6 VS6
> VS5: ... = ..vuse(va_new).. - - -
S5: ... = ..use(a_0).. - - -
DCE could then get rid of {S1,S2,S3,S4,S5,S6} (if their defs are not used
elsewhere), and we'll end up with:
VS6: va_new = ....
VS5: ... = ..vuse(va_new)..
If vectorization does not succeed, DCE will clean S6 away (its def is
not used), and we'll end up with the original sequence.
*/
void
vect_pattern_recog (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
unsigned int nbbs = loop->num_nodes;
gimple_stmt_iterator si;
gimple stmt;
unsigned int i, j;
gimple (* vect_recog_func_ptr) (gimple, tree *, tree *);
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== vect_pattern_recog ===");
/* Scan through the loop stmts, applying the pattern recognition
functions starting at each stmt visited: */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
stmt = gsi_stmt (si);
/* Scan over all generic vect_recog_xxx_pattern functions. */
for (j = 0; j < NUM_PATTERNS; j++)
{
vect_recog_func_ptr = vect_vect_recog_func_ptrs[j];
vect_pattern_recog_1 (vect_recog_func_ptr, si);
}
}
}
}
|