1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
|
/* Loop Vectorization
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software
Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com> and
Ira Rosen <irar@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "expr.h"
#include "recog.h"
#include "optabs.h"
#include "params.h"
#include "toplev.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
/* Loop Vectorization Pass.
This pass tries to vectorize loops.
For example, the vectorizer transforms the following simple loop:
short a[N]; short b[N]; short c[N]; int i;
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
as if it was manually vectorized by rewriting the source code into:
typedef int __attribute__((mode(V8HI))) v8hi;
short a[N]; short b[N]; short c[N]; int i;
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
v8hi va, vb, vc;
for (i=0; i<N/8; i++){
vb = pb[i];
vc = pc[i];
va = vb + vc;
pa[i] = va;
}
The main entry to this pass is vectorize_loops(), in which
the vectorizer applies a set of analyses on a given set of loops,
followed by the actual vectorization transformation for the loops that
had successfully passed the analysis phase.
Throughout this pass we make a distinction between two types of
data: scalars (which are represented by SSA_NAMES), and memory references
("data-refs"). These two types of data require different handling both
during analysis and transformation. The types of data-refs that the
vectorizer currently supports are ARRAY_REFS which base is an array DECL
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
accesses are required to have a simple (consecutive) access pattern.
Analysis phase:
===============
The driver for the analysis phase is vect_analyze_loop().
It applies a set of analyses, some of which rely on the scalar evolution
analyzer (scev) developed by Sebastian Pop.
During the analysis phase the vectorizer records some information
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
loop, as well as general information about the loop as a whole, which is
recorded in a "loop_vec_info" struct attached to each loop.
Transformation phase:
=====================
The loop transformation phase scans all the stmts in the loop, and
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
the loop that needs to be vectorized. It inserts the vector code sequence
just before the scalar stmt S, and records a pointer to the vector code
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
attached to S). This pointer will be used for the vectorization of following
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
otherwise, we rely on dead code elimination for removing it.
For example, say stmt S1 was vectorized into stmt VS1:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
S2: a = b;
To vectorize stmt S2, the vectorizer first finds the stmt that defines
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
resulting sequence would be:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
VS2: va = vb;
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
Operands that are not SSA_NAMEs, are data-refs that appear in
load/store operations (like 'x[i]' in S1), and are handled differently.
Target modeling:
=================
Currently the only target specific information that is used is the
size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
support different sizes of vectors, for now will need to specify one value
for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
Since we only vectorize operations which vector form can be
expressed using existing tree codes, to verify that an operation is
supported, the vectorizer checks the relevant optab at the relevant
machine_mode (e.g, optab_handler (add_optab, V8HImode)->insn_code). If
the value found is CODE_FOR_nothing, then there's no target support, and
we can't vectorize the stmt.
For additional information on this project see:
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/
/* Function vect_determine_vectorization_factor
Determine the vectorization factor (VF). VF is the number of data elements
that are operated upon in parallel in a single iteration of the vectorized
loop. For example, when vectorizing a loop that operates on 4byte elements,
on a target with vector size (VS) 16byte, the VF is set to 4, since 4
elements can fit in a single vector register.
We currently support vectorization of loops in which all types operated upon
are of the same size. Therefore this function currently sets VF according to
the size of the types operated upon, and fails if there are multiple sizes
in the loop.
VF is also the factor by which the loop iterations are strip-mined, e.g.:
original loop:
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
vectorized loop:
for (i=0; i<N; i+=VF){
a[i:VF] = b[i:VF] + c[i:VF];
}
*/
static bool
vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
gimple_stmt_iterator si;
unsigned int vectorization_factor = 0;
tree scalar_type;
gimple phi;
tree vectype;
unsigned int nunits;
stmt_vec_info stmt_info;
int i;
HOST_WIDE_INT dummy;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
phi = gsi_stmt (si);
stmt_info = vinfo_for_stmt (phi);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "==> examining phi: ");
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
}
gcc_assert (stmt_info);
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
scalar_type = TREE_TYPE (PHI_RESULT (phi));
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "get vectype for scalar type: ");
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
}
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
{
fprintf (vect_dump,
"not vectorized: unsupported data-type ");
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
}
return false;
}
STMT_VINFO_VECTYPE (stmt_info) = vectype;
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "vectype: ");
print_generic_expr (vect_dump, vectype, TDF_SLIM);
}
nunits = TYPE_VECTOR_SUBPARTS (vectype);
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "nunits = %d", nunits);
if (!vectorization_factor
|| (nunits > vectorization_factor))
vectorization_factor = nunits;
}
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
stmt_info = vinfo_for_stmt (stmt);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "==> examining statement: ");
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
}
gcc_assert (stmt_info);
/* skip stmts which do not need to be vectorized. */
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "skip.");
continue;
}
if (gimple_get_lhs (stmt) == NULL_TREE)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
{
fprintf (vect_dump, "not vectorized: irregular stmt.");
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
}
return false;
}
if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
{
fprintf (vect_dump, "not vectorized: vector stmt in loop:");
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
}
return false;
}
if (STMT_VINFO_VECTYPE (stmt_info))
{
/* The only case when a vectype had been already set is for stmts
that contain a dataref, or for "pattern-stmts" (stmts generated
by the vectorizer to represent/replace a certain idiom). */
gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
|| is_pattern_stmt_p (stmt_info));
vectype = STMT_VINFO_VECTYPE (stmt_info);
}
else
{
gcc_assert (! STMT_VINFO_DATA_REF (stmt_info)
&& !is_pattern_stmt_p (stmt_info));
scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
&dummy);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "get vectype for scalar type: ");
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
}
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
{
fprintf (vect_dump,
"not vectorized: unsupported data-type ");
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
}
return false;
}
STMT_VINFO_VECTYPE (stmt_info) = vectype;
}
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "vectype: ");
print_generic_expr (vect_dump, vectype, TDF_SLIM);
}
nunits = TYPE_VECTOR_SUBPARTS (vectype);
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "nunits = %d", nunits);
if (!vectorization_factor
|| (nunits > vectorization_factor))
vectorization_factor = nunits;
}
}
/* TODO: Analyze cost. Decide if worth while to vectorize. */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vectorization factor = %d", vectorization_factor);
if (vectorization_factor <= 1)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
fprintf (vect_dump, "not vectorized: unsupported data-type");
return false;
}
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
return true;
}
/* Function vect_is_simple_iv_evolution.
FORNOW: A simple evolution of an induction variables in the loop is
considered a polynomial evolution with constant step. */
static bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
tree * step)
{
tree init_expr;
tree step_expr;
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
/* When there is no evolution in this loop, the evolution function
is not "simple". */
if (evolution_part == NULL_TREE)
return false;
/* When the evolution is a polynomial of degree >= 2
the evolution function is not "simple". */
if (tree_is_chrec (evolution_part))
return false;
step_expr = evolution_part;
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "step: ");
print_generic_expr (vect_dump, step_expr, TDF_SLIM);
fprintf (vect_dump, ", init: ");
print_generic_expr (vect_dump, init_expr, TDF_SLIM);
}
*init = init_expr;
*step = step_expr;
if (TREE_CODE (step_expr) != INTEGER_CST)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "step unknown.");
return false;
}
return true;
}
/* Function vect_analyze_scalar_cycles_1.
Examine the cross iteration def-use cycles of scalar variables
in LOOP. LOOP_VINFO represents the loop that is now being
considered for vectorization (can be LOOP, or an outer-loop
enclosing LOOP). */
static void
vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
{
basic_block bb = loop->header;
tree dumy;
VEC(gimple,heap) *worklist = VEC_alloc (gimple, heap, 64);
gimple_stmt_iterator gsi;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
/* First - identify all inductions. */
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
tree access_fn = NULL;
tree def = PHI_RESULT (phi);
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "Analyze phi: ");
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
}
/* Skip virtual phi's. The data dependences that are associated with
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
if (!is_gimple_reg (SSA_NAME_VAR (def)))
continue;
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
/* Analyze the evolution function. */
access_fn = analyze_scalar_evolution (loop, def);
if (access_fn && vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "Access function of PHI: ");
print_generic_expr (vect_dump, access_fn, TDF_SLIM);
}
if (!access_fn
|| !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
{
VEC_safe_push (gimple, heap, worklist, phi);
continue;
}
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "Detected induction.");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
}
/* Second - identify all reductions. */
while (VEC_length (gimple, worklist) > 0)
{
gimple phi = VEC_pop (gimple, worklist);
tree def = PHI_RESULT (phi);
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
gimple reduc_stmt;
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "Analyze phi: ");
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
}
gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
reduc_stmt = vect_is_simple_reduction (loop_vinfo, phi);
if (reduc_stmt)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "Detected reduction.");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
vect_reduction_def;
}
else
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "Unknown def-use cycle pattern.");
}
VEC_free (gimple, heap, worklist);
return;
}
/* Function vect_analyze_scalar_cycles.
Examine the cross iteration def-use cycles of scalar variables, by
analyzing the loop-header PHIs of scalar variables; Classify each
cycle as one of the following: invariant, induction, reduction, unknown.
We do that for the loop represented by LOOP_VINFO, and also to its
inner-loop, if exists.
Examples for scalar cycles:
Example1: reduction:
loop1:
for (i=0; i<N; i++)
sum += a[i];
Example2: induction:
loop2:
for (i=0; i<N; i++)
a[i] = i; */
static void
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
/* When vectorizing an outer-loop, the inner-loop is executed sequentially.
Reductions in such inner-loop therefore have different properties than
the reductions in the nest that gets vectorized:
1. When vectorized, they are executed in the same order as in the original
scalar loop, so we can't change the order of computation when
vectorizing them.
2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
current checks are too strict. */
if (loop->inner)
vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
}
/* Function vect_get_loop_niters.
Determine how many iterations the loop is executed.
If an expression that represents the number of iterations
can be constructed, place it in NUMBER_OF_ITERATIONS.
Return the loop exit condition. */
static gimple
vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
{
tree niters;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== get_loop_niters ===");
niters = number_of_exit_cond_executions (loop);
if (niters != NULL_TREE
&& niters != chrec_dont_know)
{
*number_of_iterations = niters;
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "==> get_loop_niters:" );
print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
}
}
return get_loop_exit_condition (loop);
}
/* Function bb_in_loop_p
Used as predicate for dfs order traversal of the loop bbs. */
static bool
bb_in_loop_p (const_basic_block bb, const void *data)
{
const struct loop *const loop = (const struct loop *)data;
if (flow_bb_inside_loop_p (loop, bb))
return true;
return false;
}
/* Function new_loop_vec_info.
Create and initialize a new loop_vec_info struct for LOOP, as well as
stmt_vec_info structs for all the stmts in LOOP. */
static loop_vec_info
new_loop_vec_info (struct loop *loop)
{
loop_vec_info res;
basic_block *bbs;
gimple_stmt_iterator si;
unsigned int i, nbbs;
res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
LOOP_VINFO_LOOP (res) = loop;
bbs = get_loop_body (loop);
/* Create/Update stmt_info for all stmts in the loop. */
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
/* BBs in a nested inner-loop will have been already processed (because
we will have called vect_analyze_loop_form for any nested inner-loop).
Therefore, for stmts in an inner-loop we just want to update the
STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
loop_info of the outer-loop we are currently considering to vectorize
(instead of the loop_info of the inner-loop).
For stmts in other BBs we need to create a stmt_info from scratch. */
if (bb->loop_father != loop)
{
/* Inner-loop bb. */
gcc_assert (loop->inner && bb->loop_father == loop->inner);
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple phi = gsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
loop_vec_info inner_loop_vinfo =
STMT_VINFO_LOOP_VINFO (stmt_info);
gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
STMT_VINFO_LOOP_VINFO (stmt_info) = res;
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
loop_vec_info inner_loop_vinfo =
STMT_VINFO_LOOP_VINFO (stmt_info);
gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
STMT_VINFO_LOOP_VINFO (stmt_info) = res;
}
}
else
{
/* bb in current nest. */
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple phi = gsi_stmt (si);
gimple_set_uid (phi, 0);
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
gimple_set_uid (stmt, 0);
set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
}
}
}
/* CHECKME: We want to visit all BBs before their successors (except for
latch blocks, for which this assertion wouldn't hold). In the simple
case of the loop forms we allow, a dfs order of the BBs would the same
as reversed postorder traversal, so we are safe. */
free (bbs);
bbs = XCNEWVEC (basic_block, loop->num_nodes);
nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
bbs, loop->num_nodes, loop);
gcc_assert (nbbs == loop->num_nodes);
LOOP_VINFO_BBS (res) = bbs;
LOOP_VINFO_NITERS (res) = NULL;
LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
LOOP_VINFO_VECTORIZABLE_P (res) = 0;
LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
LOOP_VINFO_VECT_FACTOR (res) = 0;
LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
LOOP_VINFO_UNALIGNED_DR (res) = NULL;
LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
VEC_alloc (gimple, heap,
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
LOOP_VINFO_MAY_ALIAS_DDRS (res) =
VEC_alloc (ddr_p, heap,
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
return res;
}
/* Function destroy_loop_vec_info.
Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
stmts in the loop. */
void
destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
{
struct loop *loop;
basic_block *bbs;
int nbbs;
gimple_stmt_iterator si;
int j;
VEC (slp_instance, heap) *slp_instances;
slp_instance instance;
if (!loop_vinfo)
return;
loop = LOOP_VINFO_LOOP (loop_vinfo);
bbs = LOOP_VINFO_BBS (loop_vinfo);
nbbs = loop->num_nodes;
if (!clean_stmts)
{
free (LOOP_VINFO_BBS (loop_vinfo));
free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
free (loop_vinfo);
loop->aux = NULL;
return;
}
for (j = 0; j < nbbs; j++)
{
basic_block bb = bbs[j];
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
free_stmt_vec_info (gsi_stmt (si));
for (si = gsi_start_bb (bb); !gsi_end_p (si); )
{
gimple stmt = gsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
if (stmt_info)
{
/* Check if this is a "pattern stmt" (introduced by the
vectorizer during the pattern recognition pass). */
bool remove_stmt_p = false;
gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
if (orig_stmt)
{
stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
if (orig_stmt_info
&& STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
remove_stmt_p = true;
}
/* Free stmt_vec_info. */
free_stmt_vec_info (stmt);
/* Remove dead "pattern stmts". */
if (remove_stmt_p)
gsi_remove (&si, true);
}
gsi_next (&si);
}
}
free (LOOP_VINFO_BBS (loop_vinfo));
free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
for (j = 0; VEC_iterate (slp_instance, slp_instances, j, instance); j++)
vect_free_slp_instance (instance);
VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
free (loop_vinfo);
loop->aux = NULL;
}
/* Function vect_analyze_loop_1.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. This is a subset of the analyses applied in
vect_analyze_loop, to be applied on an inner-loop nested in the loop
that is now considered for (outer-loop) vectorization. */
static loop_vec_info
vect_analyze_loop_1 (struct loop *loop)
{
loop_vec_info loop_vinfo;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "===== analyze_loop_nest_1 =====");
/* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
loop_vinfo = vect_analyze_loop_form (loop);
if (!loop_vinfo)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "bad inner-loop form.");
return NULL;
}
return loop_vinfo;
}
/* Function vect_analyze_loop_form.
Verify that certain CFG restrictions hold, including:
- the loop has a pre-header
- the loop has a single entry and exit
- the loop exit condition is simple enough, and the number of iterations
can be analyzed (a countable loop). */
loop_vec_info
vect_analyze_loop_form (struct loop *loop)
{
loop_vec_info loop_vinfo;
gimple loop_cond;
tree number_of_iterations = NULL;
loop_vec_info inner_loop_vinfo = NULL;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== vect_analyze_loop_form ===");
/* Different restrictions apply when we are considering an inner-most loop,
vs. an outer (nested) loop.
(FORNOW. May want to relax some of these restrictions in the future). */
if (!loop->inner)
{
/* Inner-most loop. We currently require that the number of BBs is
exactly 2 (the header and latch). Vectorizable inner-most loops
look like this:
(pre-header)
|
header <--------+
| | |
| +--> latch --+
|
(exit-bb) */
if (loop->num_nodes != 2)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump, "not vectorized: too many BBs in loop.");
return NULL;
}
if (empty_block_p (loop->header))
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump, "not vectorized: empty loop.");
return NULL;
}
}
else
{
struct loop *innerloop = loop->inner;
edge backedge, entryedge;
/* Nested loop. We currently require that the loop is doubly-nested,
contains a single inner loop, and the number of BBs is exactly 5.
Vectorizable outer-loops look like this:
(pre-header)
|
header <---+
| |
inner-loop |
| |
tail ------+
|
(exit-bb)
The inner-loop has the properties expected of inner-most loops
as described above. */
if ((loop->inner)->inner || (loop->inner)->next)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump, "not vectorized: multiple nested loops.");
return NULL;
}
/* Analyze the inner-loop. */
inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
if (!inner_loop_vinfo)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump, "not vectorized: Bad inner loop.");
return NULL;
}
if (!expr_invariant_in_loop_p (loop,
LOOP_VINFO_NITERS (inner_loop_vinfo)))
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump,
"not vectorized: inner-loop count not invariant.");
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
if (loop->num_nodes != 5)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump, "not vectorized: too many BBs in loop.");
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
backedge = EDGE_PRED (innerloop->header, 1);
entryedge = EDGE_PRED (innerloop->header, 0);
if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
{
backedge = EDGE_PRED (innerloop->header, 0);
entryedge = EDGE_PRED (innerloop->header, 1);
}
if (entryedge->src != loop->header
|| !single_exit (innerloop)
|| single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump, "not vectorized: unsupported outerloop form.");
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "Considering outer-loop vectorization.");
}
if (!single_exit (loop)
|| EDGE_COUNT (loop->header->preds) != 2)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
{
if (!single_exit (loop))
fprintf (vect_dump, "not vectorized: multiple exits.");
else if (EDGE_COUNT (loop->header->preds) != 2)
fprintf (vect_dump, "not vectorized: too many incoming edges.");
}
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
/* We assume that the loop exit condition is at the end of the loop. i.e,
that the loop is represented as a do-while (with a proper if-guard
before the loop if needed), where the loop header contains all the
executable statements, and the latch is empty. */
if (!empty_block_p (loop->latch)
|| phi_nodes (loop->latch))
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump, "not vectorized: unexpected loop form.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
/* Make sure there exists a single-predecessor exit bb: */
if (!single_pred_p (single_exit (loop)->dest))
{
edge e = single_exit (loop);
if (!(e->flags & EDGE_ABNORMAL))
{
split_loop_exit_edge (e);
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "split exit edge.");
}
else
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
}
loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
if (!loop_cond)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump, "not vectorized: complicated exit condition.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
if (!number_of_iterations)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump,
"not vectorized: number of iterations cannot be computed.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
if (chrec_contains_undetermined (number_of_iterations))
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
fprintf (vect_dump, "Infinite number of iterations.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
if (!NITERS_KNOWN_P (number_of_iterations))
{
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "Symbolic number of iterations is ");
print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
}
}
else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
fprintf (vect_dump, "not vectorized: number of iterations = 0.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, false);
return NULL;
}
loop_vinfo = new_loop_vec_info (loop);
LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
/* CHECKME: May want to keep it around it in the future. */
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, false);
gcc_assert (!loop->aux);
loop->aux = loop_vinfo;
return loop_vinfo;
}
/* Function vect_analyze_loop_operations.
Scan the loop stmts and make sure they are all vectorizable. */
static bool
vect_analyze_loop_operations (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
gimple_stmt_iterator si;
unsigned int vectorization_factor = 0;
int i;
gimple phi;
stmt_vec_info stmt_info;
bool need_to_vectorize = false;
int min_profitable_iters;
int min_scalar_loop_bound;
unsigned int th;
bool only_slp_in_loop = true, ok;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== vect_analyze_loop_operations ===");
gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
phi = gsi_stmt (si);
ok = true;
stmt_info = vinfo_for_stmt (phi);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "examining phi: ");
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
}
if (! is_loop_header_bb_p (bb))
{
/* inner-loop loop-closed exit phi in outer-loop vectorization
(i.e. a phi in the tail of the outer-loop).
FORNOW: we currently don't support the case that these phis
are not used in the outerloop, cause this case requires
to actually do something here. */
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|| STMT_VINFO_LIVE_P (stmt_info))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump,
"Unsupported loop-closed phi in outer-loop.");
return false;
}
continue;
}
gcc_assert (stmt_info);
if (STMT_VINFO_LIVE_P (stmt_info))
{
/* FORNOW: not yet supported. */
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
fprintf (vect_dump, "not vectorized: value used after loop.");
return false;
}
if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
{
/* A scalar-dependence cycle that we don't support. */
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
fprintf (vect_dump, "not vectorized: scalar dependence cycle.");
return false;
}
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
need_to_vectorize = true;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
ok = vectorizable_induction (phi, NULL, NULL);
}
if (!ok)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
{
fprintf (vect_dump,
"not vectorized: relevant phi not supported: ");
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
}
return false;
}
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
gcc_assert (stmt_info);
if (!vect_analyze_stmt (stmt, &need_to_vectorize))
return false;
if (STMT_VINFO_RELEVANT_P (stmt_info) && !PURE_SLP_STMT (stmt_info))
/* STMT needs both SLP and loop-based vectorization. */
only_slp_in_loop = false;
}
} /* bbs */
/* All operations in the loop are either irrelevant (deal with loop
control, or dead), or only used outside the loop and can be moved
out of the loop (e.g. invariants, inductions). The loop can be
optimized away by scalar optimizations. We're better off not
touching this loop. */
if (!need_to_vectorize)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump,
"All the computation can be taken out of the loop.");
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
fprintf (vect_dump,
"not vectorized: redundant loop. no profit to vectorize.");
return false;
}
/* If all the stmts in the loop can be SLPed, we perform only SLP, and
vectorization factor of the loop is the unrolling factor required by the
SLP instances. If that unrolling factor is 1, we say, that we perform
pure SLP on loop - cross iteration parallelism is not exploited. */
if (only_slp_in_loop)
vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
else
vectorization_factor = least_common_multiple (vectorization_factor,
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump,
"vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
fprintf (vect_dump, "not vectorized: iteration count too small.");
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump,"not vectorized: iteration count smaller than "
"vectorization factor.");
return false;
}
/* Analyze cost. Decide if worth while to vectorize. */
/* Once VF is set, SLP costs should be updated since the number of created
vector stmts depends on VF. */
vect_update_slp_costs_according_to_vf (loop_vinfo);
min_profitable_iters = vect_estimate_min_profitable_iters (loop_vinfo);
LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
if (min_profitable_iters < 0)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
fprintf (vect_dump, "not vectorized: vectorization not profitable.");
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "not vectorized: vector version will never be "
"profitable.");
return false;
}
min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
* vectorization_factor) - 1);
/* Use the cost model only if it is more conservative than user specified
threshold. */
th = (unsigned) min_scalar_loop_bound;
if (min_profitable_iters
&& (!min_scalar_loop_bound
|| min_profitable_iters > min_scalar_loop_bound))
th = (unsigned) min_profitable_iters;
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
fprintf (vect_dump, "not vectorized: vectorization not "
"profitable.");
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "not vectorized: iteration count smaller than "
"user specified loop bound parameter or minimum "
"profitable iterations (whichever is more conservative).");
return false;
}
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
|| LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "epilog loop required.");
if (!vect_can_advance_ivs_p (loop_vinfo))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
fprintf (vect_dump,
"not vectorized: can't create epilog loop 1.");
return false;
}
if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
fprintf (vect_dump,
"not vectorized: can't create epilog loop 2.");
return false;
}
}
return true;
}
/* Function vect_analyze_loop.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. */
loop_vec_info
vect_analyze_loop (struct loop *loop)
{
bool ok;
loop_vec_info loop_vinfo;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "===== analyze_loop_nest =====");
if (loop_outer (loop)
&& loop_vec_info_for_loop (loop_outer (loop))
&& LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "outer-loop already vectorized.");
return NULL;
}
/* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
loop_vinfo = vect_analyze_loop_form (loop);
if (!loop_vinfo)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "bad loop form.");
return NULL;
}
/* Find all data references in the loop (which correspond to vdefs/vuses)
and analyze their evolution in the loop.
FORNOW: Handle only simple, array references, which
alignment can be forced, and aligned pointer-references. */
ok = vect_analyze_data_refs (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "bad data references.");
destroy_loop_vec_info (loop_vinfo, true);
return NULL;
}
/* Classify all cross-iteration scalar data-flow cycles.
Cross-iteration cycles caused by virtual phis are analyzed separately. */
vect_analyze_scalar_cycles (loop_vinfo);
vect_pattern_recog (loop_vinfo);
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "unexpected pattern.");
destroy_loop_vec_info (loop_vinfo, true);
return NULL;
}
/* Analyze the alignment of the data-refs in the loop.
Fail if a data reference is found that cannot be vectorized. */
ok = vect_analyze_data_refs_alignment (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "bad data alignment.");
destroy_loop_vec_info (loop_vinfo, true);
return NULL;
}
ok = vect_determine_vectorization_factor (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "can't determine vectorization factor.");
destroy_loop_vec_info (loop_vinfo, true);
return NULL;
}
/* Analyze data dependences between the data-refs in the loop.
FORNOW: fail at the first data dependence that we encounter. */
ok = vect_analyze_data_ref_dependences (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "bad data dependence.");
destroy_loop_vec_info (loop_vinfo, true);
return NULL;
}
/* Analyze the access patterns of the data-refs in the loop (consecutive,
complex, etc.). FORNOW: Only handle consecutive access pattern. */
ok = vect_analyze_data_ref_accesses (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "bad data access.");
destroy_loop_vec_info (loop_vinfo, true);
return NULL;
}
/* Prune the list of ddrs to be tested at run-time by versioning for alias.
It is important to call pruning after vect_analyze_data_ref_accesses,
since we use grouping information gathered by interleaving analysis. */
ok = vect_prune_runtime_alias_test_list (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "too long list of versioning for alias "
"run-time tests.");
destroy_loop_vec_info (loop_vinfo, true);
return NULL;
}
/* Check the SLP opportunities in the loop, analyze and build SLP trees. */
ok = vect_analyze_slp (loop_vinfo);
if (ok)
{
/* Decide which possible SLP instances to SLP. */
vect_make_slp_decision (loop_vinfo);
/* Find stmts that need to be both vectorized and SLPed. */
vect_detect_hybrid_slp (loop_vinfo);
}
/* This pass will decide on using loop versioning and/or loop peeling in
order to enhance the alignment of data references in the loop. */
ok = vect_enhance_data_refs_alignment (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "bad data alignment.");
destroy_loop_vec_info (loop_vinfo, true);
return NULL;
}
/* Scan all the operations in the loop and make sure they are
vectorizable. */
ok = vect_analyze_loop_operations (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "bad operation or unsupported loop bound.");
destroy_loop_vec_info (loop_vinfo, true);
return NULL;
}
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
return loop_vinfo;
}
/* Function reduction_code_for_scalar_code
Input:
CODE - tree_code of a reduction operations.
Output:
REDUC_CODE - the corresponding tree-code to be used to reduce the
vector of partial results into a single scalar result (which
will also reside in a vector).
Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise. */
static bool
reduction_code_for_scalar_code (enum tree_code code,
enum tree_code *reduc_code)
{
switch (code)
{
case MAX_EXPR:
*reduc_code = REDUC_MAX_EXPR;
return true;
case MIN_EXPR:
*reduc_code = REDUC_MIN_EXPR;
return true;
case PLUS_EXPR:
*reduc_code = REDUC_PLUS_EXPR;
return true;
default:
return false;
}
}
/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
STMT is printed with a message MSG. */
static void
report_vect_op (gimple stmt, const char *msg)
{
fprintf (vect_dump, "%s", msg);
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
}
/* Function vect_is_simple_reduction
Detect a cross-iteration def-use cycle that represents a simple
reduction computation. We look for the following pattern:
loop_header:
a1 = phi < a0, a2 >
a3 = ...
a2 = operation (a3, a1)
such that:
1. operation is commutative and associative and it is safe to
change the order of the computation.
2. no uses for a2 in the loop (a2 is used out of the loop)
3. no uses of a1 in the loop besides the reduction operation.
Condition 1 is tested here.
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized. */
gimple
vect_is_simple_reduction (loop_vec_info loop_info, gimple phi)
{
struct loop *loop = (gimple_bb (phi))->loop_father;
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
edge latch_e = loop_latch_edge (loop);
tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
gimple def_stmt, def1, def2;
enum tree_code code;
tree op1, op2;
tree type;
int nloop_uses;
tree name;
imm_use_iterator imm_iter;
use_operand_p use_p;
gcc_assert (loop == vect_loop || flow_loop_nested_p (vect_loop, loop));
name = PHI_RESULT (phi);
nloop_uses = 0;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
{
gimple use_stmt = USE_STMT (use_p);
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
&& vinfo_for_stmt (use_stmt)
&& !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
nloop_uses++;
if (nloop_uses > 1)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "reduction used in loop.");
return NULL;
}
}
if (TREE_CODE (loop_arg) != SSA_NAME)
{
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "reduction: not ssa_name: ");
print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
}
return NULL;
}
def_stmt = SSA_NAME_DEF_STMT (loop_arg);
if (!def_stmt)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "reduction: no def_stmt.");
return NULL;
}
if (!is_gimple_assign (def_stmt))
{
if (vect_print_dump_info (REPORT_DETAILS))
print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
return NULL;
}
name = gimple_assign_lhs (def_stmt);
nloop_uses = 0;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
{
gimple use_stmt = USE_STMT (use_p);
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
&& vinfo_for_stmt (use_stmt)
&& !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
nloop_uses++;
if (nloop_uses > 1)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "reduction used in loop.");
return NULL;
}
}
code = gimple_assign_rhs_code (def_stmt);
if (!commutative_tree_code (code) || !associative_tree_code (code))
{
if (vect_print_dump_info (REPORT_DETAILS))
report_vect_op (def_stmt, "reduction: not commutative/associative: ");
return NULL;
}
if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
{
if (vect_print_dump_info (REPORT_DETAILS))
report_vect_op (def_stmt, "reduction: not binary operation: ");
return NULL;
}
op1 = gimple_assign_rhs1 (def_stmt);
op2 = gimple_assign_rhs2 (def_stmt);
if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
{
if (vect_print_dump_info (REPORT_DETAILS))
report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
return NULL;
}
/* Check that it's ok to change the order of the computation. */
type = TREE_TYPE (gimple_assign_lhs (def_stmt));
if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1))
|| TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2)))
{
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "reduction: multiple types: operation type: ");
print_generic_expr (vect_dump, type, TDF_SLIM);
fprintf (vect_dump, ", operands types: ");
print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
fprintf (vect_dump, ",");
print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
}
return NULL;
}
/* Generally, when vectorizing a reduction we change the order of the
computation. This may change the behavior of the program in some
cases, so we need to check that this is ok. One exception is when
vectorizing an outer-loop: the inner-loop is executed sequentially,
and therefore vectorizing reductions in the inner-loop during
outer-loop vectorization is safe. */
/* CHECKME: check for !flag_finite_math_only too? */
if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
&& !nested_in_vect_loop_p (vect_loop, def_stmt))
{
/* Changing the order of operations changes the semantics. */
if (vect_print_dump_info (REPORT_DETAILS))
report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
return NULL;
}
else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
&& !nested_in_vect_loop_p (vect_loop, def_stmt))
{
/* Changing the order of operations changes the semantics. */
if (vect_print_dump_info (REPORT_DETAILS))
report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
return NULL;
}
else if (SAT_FIXED_POINT_TYPE_P (type))
{
/* Changing the order of operations changes the semantics. */
if (vect_print_dump_info (REPORT_DETAILS))
report_vect_op (def_stmt,
"reduction: unsafe fixed-point math optimization: ");
return NULL;
}
/* reduction is safe. we're dealing with one of the following:
1) integer arithmetic and no trapv
2) floating point arithmetic, and special flags permit this optimization.
*/
def1 = SSA_NAME_DEF_STMT (op1);
def2 = SSA_NAME_DEF_STMT (op2);
if (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2))
{
if (vect_print_dump_info (REPORT_DETAILS))
report_vect_op (def_stmt, "reduction: no defs for operands: ");
return NULL;
}
/* Check that one def is the reduction def, defined by PHI,
the other def is either defined in the loop ("vect_internal_def"),
or it's an induction (defined by a loop-header phi-node). */
if (def2 == phi
&& flow_bb_inside_loop_p (loop, gimple_bb (def1))
&& (is_gimple_assign (def1)
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_induction_def
|| (gimple_code (def1) == GIMPLE_PHI
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_internal_def
&& !is_loop_header_bb_p (gimple_bb (def1)))))
{
if (vect_print_dump_info (REPORT_DETAILS))
report_vect_op (def_stmt, "detected reduction:");
return def_stmt;
}
else if (def1 == phi
&& flow_bb_inside_loop_p (loop, gimple_bb (def2))
&& (is_gimple_assign (def2)
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_induction_def
|| (gimple_code (def2) == GIMPLE_PHI
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_internal_def
&& !is_loop_header_bb_p (gimple_bb (def2)))))
{
/* Swap operands (just for simplicity - so that the rest of the code
can assume that the reduction variable is always the last (second)
argument). */
if (vect_print_dump_info (REPORT_DETAILS))
report_vect_op (def_stmt ,
"detected reduction: need to swap operands:");
swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
gimple_assign_rhs2_ptr (def_stmt));
return def_stmt;
}
else
{
if (vect_print_dump_info (REPORT_DETAILS))
report_vect_op (def_stmt, "reduction: unknown pattern.");
return NULL;
}
}
/* Function vect_estimate_min_profitable_iters
Return the number of iterations required for the vector version of the
loop to be profitable relative to the cost of the scalar version of the
loop.
TODO: Take profile info into account before making vectorization
decisions, if available. */
int
vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
{
int i;
int min_profitable_iters;
int peel_iters_prologue;
int peel_iters_epilogue;
int vec_inside_cost = 0;
int vec_outside_cost = 0;
int scalar_single_iter_cost = 0;
int scalar_outside_cost = 0;
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
int peel_guard_costs = 0;
int innerloop_iters = 0, factor;
VEC (slp_instance, heap) *slp_instances;
slp_instance instance;
/* Cost model disabled. */
if (!flag_vect_cost_model)
{
if (vect_print_dump_info (REPORT_COST))
fprintf (vect_dump, "cost model disabled.");
return 0;
}
/* Requires loop versioning tests to handle misalignment. */
if (VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
{
/* FIXME: Make cost depend on complexity of individual check. */
vec_outside_cost +=
VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
if (vect_print_dump_info (REPORT_COST))
fprintf (vect_dump, "cost model: Adding cost of checks for loop "
"versioning to treat misalignment.\n");
}
if (VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
{
/* FIXME: Make cost depend on complexity of individual check. */
vec_outside_cost +=
VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
if (vect_print_dump_info (REPORT_COST))
fprintf (vect_dump, "cost model: Adding cost of checks for loop "
"versioning aliasing.\n");
}
if (VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
|| VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
{
vec_outside_cost += TARG_COND_TAKEN_BRANCH_COST;
}
/* Count statements in scalar loop. Using this as scalar cost for a single
iteration for now.
TODO: Add outer loop support.
TODO: Consider assigning different costs to different scalar
statements. */
/* FORNOW. */
if (loop->inner)
innerloop_iters = 50; /* FIXME */
for (i = 0; i < nbbs; i++)
{
gimple_stmt_iterator si;
basic_block bb = bbs[i];
if (bb->loop_father == loop->inner)
factor = innerloop_iters;
else
factor = 1;
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
/* Skip stmts that are not vectorized inside the loop. */
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& (!STMT_VINFO_LIVE_P (stmt_info)
|| STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
continue;
scalar_single_iter_cost += cost_for_stmt (stmt) * factor;
vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
/* FIXME: for stmts in the inner-loop in outer-loop vectorization,
some of the "outside" costs are generated inside the outer-loop. */
vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
}
}
/* Add additional cost for the peeled instructions in prologue and epilogue
loop.
FORNOW: If we don't know the value of peel_iters for prologue or epilogue
at compile-time - we assume it's vf/2 (the worst would be vf-1).
TODO: Build an expression that represents peel_iters for prologue and
epilogue to be used in a run-time test. */
if (byte_misalign < 0)
{
peel_iters_prologue = vf/2;
if (vect_print_dump_info (REPORT_COST))
fprintf (vect_dump, "cost model: "
"prologue peel iters set to vf/2.");
/* If peeling for alignment is unknown, loop bound of main loop becomes
unknown. */
peel_iters_epilogue = vf/2;
if (vect_print_dump_info (REPORT_COST))
fprintf (vect_dump, "cost model: "
"epilogue peel iters set to vf/2 because "
"peeling for alignment is unknown .");
/* If peeled iterations are unknown, count a taken branch and a not taken
branch per peeled loop. Even if scalar loop iterations are known,
vector iterations are not known since peeled prologue iterations are
not known. Hence guards remain the same. */
peel_guard_costs += 2 * (TARG_COND_TAKEN_BRANCH_COST
+ TARG_COND_NOT_TAKEN_BRANCH_COST);
}
else
{
if (byte_misalign)
{
struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
int element_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
int nelements = TYPE_VECTOR_SUBPARTS (vectype);
peel_iters_prologue = nelements - (byte_misalign / element_size);
}
else
peel_iters_prologue = 0;
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
peel_iters_epilogue = vf/2;
if (vect_print_dump_info (REPORT_COST))
fprintf (vect_dump, "cost model: "
"epilogue peel iters set to vf/2 because "
"loop iterations are unknown .");
/* If peeled iterations are known but number of scalar loop
iterations are unknown, count a taken branch per peeled loop. */
peel_guard_costs += 2 * TARG_COND_TAKEN_BRANCH_COST;
}
else
{
int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
peel_iters_prologue = niters < peel_iters_prologue ?
niters : peel_iters_prologue;
peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
}
}
vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
+ (peel_iters_epilogue * scalar_single_iter_cost)
+ peel_guard_costs;
/* FORNOW: The scalar outside cost is incremented in one of the
following ways:
1. The vectorizer checks for alignment and aliasing and generates
a condition that allows dynamic vectorization. A cost model
check is ANDED with the versioning condition. Hence scalar code
path now has the added cost of the versioning check.
if (cost > th & versioning_check)
jmp to vector code
Hence run-time scalar is incremented by not-taken branch cost.
2. The vectorizer then checks if a prologue is required. If the
cost model check was not done before during versioning, it has to
be done before the prologue check.
if (cost <= th)
prologue = scalar_iters
if (prologue == 0)
jmp to vector code
else
execute prologue
if (prologue == num_iters)
go to exit
Hence the run-time scalar cost is incremented by a taken branch,
plus a not-taken branch, plus a taken branch cost.
3. The vectorizer then checks if an epilogue is required. If the
cost model check was not done before during prologue check, it
has to be done with the epilogue check.
if (prologue == 0)
jmp to vector code
else
execute prologue
if (prologue == num_iters)
go to exit
vector code:
if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
jmp to epilogue
Hence the run-time scalar cost should be incremented by 2 taken
branches.
TODO: The back end may reorder the BBS's differently and reverse
conditions/branch directions. Change the estimates below to
something more reasonable. */
/* If the number of iterations is known and we do not do versioning, we can
decide whether to vectorize at compile time. Hence the scalar version
do not carry cost model guard costs. */
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
|| VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
{
/* Cost model check occurs at versioning. */
if (VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
|| VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
scalar_outside_cost += TARG_COND_NOT_TAKEN_BRANCH_COST;
else
{
/* Cost model check occurs at prologue generation. */
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
scalar_outside_cost += 2 * TARG_COND_TAKEN_BRANCH_COST
+ TARG_COND_NOT_TAKEN_BRANCH_COST;
/* Cost model check occurs at epilogue generation. */
else
scalar_outside_cost += 2 * TARG_COND_TAKEN_BRANCH_COST;
}
}
/* Add SLP costs. */
slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
{
vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
}
/* Calculate number of iterations required to make the vector version
profitable, relative to the loop bodies only. The following condition
must hold true:
SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
where
SIC = scalar iteration cost, VIC = vector iteration cost,
VOC = vector outside cost, VF = vectorization factor,
PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
SOC = scalar outside cost for run time cost model check. */
if ((scalar_single_iter_cost * vf) > vec_inside_cost)
{
if (vec_outside_cost <= 0)
min_profitable_iters = 1;
else
{
min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
- vec_inside_cost * peel_iters_prologue
- vec_inside_cost * peel_iters_epilogue)
/ ((scalar_single_iter_cost * vf)
- vec_inside_cost);
if ((scalar_single_iter_cost * vf * min_profitable_iters)
<= ((vec_inside_cost * min_profitable_iters)
+ ((vec_outside_cost - scalar_outside_cost) * vf)))
min_profitable_iters++;
}
}
/* vector version will never be profitable. */
else
{
if (vect_print_dump_info (REPORT_COST))
fprintf (vect_dump, "cost model: vector iteration cost = %d "
"is divisible by scalar iteration cost = %d by a factor "
"greater than or equal to the vectorization factor = %d .",
vec_inside_cost, scalar_single_iter_cost, vf);
return -1;
}
if (vect_print_dump_info (REPORT_COST))
{
fprintf (vect_dump, "Cost model analysis: \n");
fprintf (vect_dump, " Vector inside of loop cost: %d\n",
vec_inside_cost);
fprintf (vect_dump, " Vector outside of loop cost: %d\n",
vec_outside_cost);
fprintf (vect_dump, " Scalar iteration cost: %d\n",
scalar_single_iter_cost);
fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
fprintf (vect_dump, " prologue iterations: %d\n",
peel_iters_prologue);
fprintf (vect_dump, " epilogue iterations: %d\n",
peel_iters_epilogue);
fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
min_profitable_iters);
}
min_profitable_iters =
min_profitable_iters < vf ? vf : min_profitable_iters;
/* Because the condition we create is:
if (niters <= min_profitable_iters)
then skip the vectorized loop. */
min_profitable_iters--;
if (vect_print_dump_info (REPORT_COST))
fprintf (vect_dump, " Profitability threshold = %d\n",
min_profitable_iters);
return min_profitable_iters;
}
/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
functions. Design better to avoid maintenance issues. */
/* Function vect_model_reduction_cost.
Models cost for a reduction operation, including the vector ops
generated within the strip-mine loop, the initial definition before
the loop, and the epilogue code that must be generated. */
static bool
vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
int ncopies)
{
int outer_cost = 0;
enum tree_code code;
optab optab;
tree vectype;
gimple stmt, orig_stmt;
tree reduction_op;
enum machine_mode mode;
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Cost of reduction op inside loop. */
STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) += ncopies * TARG_VEC_STMT_COST;
stmt = STMT_VINFO_STMT (stmt_info);
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
{
case GIMPLE_SINGLE_RHS:
gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
break;
case GIMPLE_UNARY_RHS:
reduction_op = gimple_assign_rhs1 (stmt);
break;
case GIMPLE_BINARY_RHS:
reduction_op = gimple_assign_rhs2 (stmt);
break;
default:
gcc_unreachable ();
}
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
if (!vectype)
{
if (vect_print_dump_info (REPORT_COST))
{
fprintf (vect_dump, "unsupported data-type ");
print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
}
return false;
}
mode = TYPE_MODE (vectype);
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
if (!orig_stmt)
orig_stmt = STMT_VINFO_STMT (stmt_info);
code = gimple_assign_rhs_code (orig_stmt);
/* Add in cost for initial definition. */
outer_cost += TARG_SCALAR_TO_VEC_COST;
/* Determine cost of epilogue code.
We have a reduction operator that will reduce the vector in one statement.
Also requires scalar extract. */
if (!nested_in_vect_loop_p (loop, orig_stmt))
{
if (reduc_code != ERROR_MARK)
outer_cost += TARG_VEC_STMT_COST + TARG_VEC_TO_SCALAR_COST;
else
{
int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
tree bitsize =
TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
int element_bitsize = tree_low_cst (bitsize, 1);
int nelements = vec_size_in_bits / element_bitsize;
optab = optab_for_tree_code (code, vectype, optab_default);
/* We have a whole vector shift available. */
if (VECTOR_MODE_P (mode)
&& optab_handler (optab, mode)->insn_code != CODE_FOR_nothing
&& optab_handler (vec_shr_optab, mode)->insn_code != CODE_FOR_nothing)
/* Final reduction via vector shifts and the reduction operator. Also
requires scalar extract. */
outer_cost += ((exact_log2(nelements) * 2) * TARG_VEC_STMT_COST
+ TARG_VEC_TO_SCALAR_COST);
else
/* Use extracts and reduction op for final reduction. For N elements,
we have N extracts and N-1 reduction ops. */
outer_cost += ((nelements + nelements - 1) * TARG_VEC_STMT_COST);
}
}
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
if (vect_print_dump_info (REPORT_COST))
fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
"outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
return true;
}
/* Function vect_model_induction_cost.
Models cost for induction operations. */
static void
vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
{
/* loop cost for vec_loop. */
STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) = ncopies * TARG_VEC_STMT_COST;
/* prologue cost for vec_init and vec_step. */
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = 2 * TARG_SCALAR_TO_VEC_COST;
if (vect_print_dump_info (REPORT_COST))
fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
"outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
}
/* Function get_initial_def_for_induction
Input:
STMT - a stmt that performs an induction operation in the loop.
IV_PHI - the initial value of the induction variable
Output:
Return a vector variable, initialized with the first VF values of
the induction variable. E.g., for an iv with IV_PHI='X' and
evolution S, for a vector of 4 units, we want to return:
[X, X + S, X + 2*S, X + 3*S]. */
static tree
get_initial_def_for_induction (gimple iv_phi)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree scalar_type = TREE_TYPE (gimple_phi_result (iv_phi));
tree vectype;
int nunits;
edge pe = loop_preheader_edge (loop);
struct loop *iv_loop;
basic_block new_bb;
tree vec, vec_init, vec_step, t;
tree access_fn;
tree new_var;
tree new_name;
gimple init_stmt, induction_phi, new_stmt;
tree induc_def, vec_def, vec_dest;
tree init_expr, step_expr;
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
int i;
bool ok;
int ncopies;
tree expr;
stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
bool nested_in_vect_loop = false;
gimple_seq stmts = NULL;
imm_use_iterator imm_iter;
use_operand_p use_p;
gimple exit_phi;
edge latch_e;
tree loop_arg;
gimple_stmt_iterator si;
basic_block bb = gimple_bb (iv_phi);
vectype = get_vectype_for_scalar_type (scalar_type);
gcc_assert (vectype);
nunits = TYPE_VECTOR_SUBPARTS (vectype);
ncopies = vf / nunits;
gcc_assert (phi_info);
gcc_assert (ncopies >= 1);
/* Find the first insertion point in the BB. */
si = gsi_after_labels (bb);
if (INTEGRAL_TYPE_P (scalar_type) || POINTER_TYPE_P (scalar_type))
step_expr = build_int_cst (scalar_type, 0);
else
step_expr = build_real (scalar_type, dconst0);
/* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
if (nested_in_vect_loop_p (loop, iv_phi))
{
nested_in_vect_loop = true;
iv_loop = loop->inner;
}
else
iv_loop = loop;
gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
latch_e = loop_latch_edge (iv_loop);
loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
gcc_assert (access_fn);
ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
&init_expr, &step_expr);
gcc_assert (ok);
pe = loop_preheader_edge (iv_loop);
/* Create the vector that holds the initial_value of the induction. */
if (nested_in_vect_loop)
{
/* iv_loop is nested in the loop to be vectorized. init_expr had already
been created during vectorization of previous stmts; We obtain it from
the STMT_VINFO_VEC_STMT of the defining stmt. */
tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi, loop_preheader_edge (iv_loop));
vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
}
else
{
/* iv_loop is the loop to be vectorized. Create:
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
add_referenced_var (new_var);
new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
t = NULL_TREE;
t = tree_cons (NULL_TREE, init_expr, t);
for (i = 1; i < nunits; i++)
{
/* Create: new_name_i = new_name + step_expr */
enum tree_code code = POINTER_TYPE_P (scalar_type)
? POINTER_PLUS_EXPR : PLUS_EXPR;
init_stmt = gimple_build_assign_with_ops (code, new_var,
new_name, step_expr);
new_name = make_ssa_name (new_var, init_stmt);
gimple_assign_set_lhs (init_stmt, new_name);
new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
gcc_assert (!new_bb);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "created new init_stmt: ");
print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
}
t = tree_cons (NULL_TREE, new_name, t);
}
/* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
vec = build_constructor_from_list (vectype, nreverse (t));
vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
}
/* Create the vector that holds the step of the induction. */
if (nested_in_vect_loop)
/* iv_loop is nested in the loop to be vectorized. Generate:
vec_step = [S, S, S, S] */
new_name = step_expr;
else
{
/* iv_loop is the loop to be vectorized. Generate:
vec_step = [VF*S, VF*S, VF*S, VF*S] */
expr = build_int_cst (scalar_type, vf);
new_name = fold_build2 (MULT_EXPR, scalar_type, expr, step_expr);
}
t = NULL_TREE;
for (i = 0; i < nunits; i++)
t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
gcc_assert (CONSTANT_CLASS_P (new_name));
vec = build_vector (vectype, t);
vec_step = vect_init_vector (iv_phi, vec, vectype, NULL);
/* Create the following def-use cycle:
loop prolog:
vec_init = ...
vec_step = ...
loop:
vec_iv = PHI <vec_init, vec_loop>
...
STMT
...
vec_loop = vec_iv + vec_step; */
/* Create the induction-phi that defines the induction-operand. */
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
add_referenced_var (vec_dest);
induction_phi = create_phi_node (vec_dest, iv_loop->header);
set_vinfo_for_stmt (induction_phi,
new_stmt_vec_info (induction_phi, loop_vinfo));
induc_def = PHI_RESULT (induction_phi);
/* Create the iv update inside the loop */
new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
induc_def, vec_step);
vec_def = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, vec_def);
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
/* Set the arguments of the phi node: */
add_phi_arg (induction_phi, vec_init, pe);
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop));
/* In case that vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
if (ncopies > 1)
{
stmt_vec_info prev_stmt_vinfo;
/* FORNOW. This restriction should be relaxed. */
gcc_assert (!nested_in_vect_loop);
/* Create the vector that holds the step of the induction. */
expr = build_int_cst (scalar_type, nunits);
new_name = fold_build2 (MULT_EXPR, scalar_type, expr, step_expr);
t = NULL_TREE;
for (i = 0; i < nunits; i++)
t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
gcc_assert (CONSTANT_CLASS_P (new_name));
vec = build_vector (vectype, t);
vec_step = vect_init_vector (iv_phi, vec, vectype, NULL);
vec_def = induc_def;
prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
for (i = 1; i < ncopies; i++)
{
/* vec_i = vec_prev + vec_step */
new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
vec_def, vec_step);
vec_def = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, vec_def);
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
set_vinfo_for_stmt (new_stmt,
new_stmt_vec_info (new_stmt, loop_vinfo));
STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
}
}
if (nested_in_vect_loop)
{
/* Find the loop-closed exit-phi of the induction, and record
the final vector of induction results: */
exit_phi = NULL;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
{
if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
{
exit_phi = USE_STMT (use_p);
break;
}
}
if (exit_phi)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
/* FORNOW. Currently not supporting the case that an inner-loop induction
is not used in the outer-loop (i.e. only outside the outer-loop). */
gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
&& !STMT_VINFO_LIVE_P (stmt_vinfo));
STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "vector of inductions after inner-loop:");
print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
}
}
}
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "transform induction: created def-use cycle: ");
print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
fprintf (vect_dump, "\n");
print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
}
STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
return induc_def;
}
/* Function get_initial_def_for_reduction
Input:
STMT - a stmt that performs a reduction operation in the loop.
INIT_VAL - the initial value of the reduction variable
Output:
ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
of the reduction (used for adjusting the epilog - see below).
Return a vector variable, initialized according to the operation that STMT
performs. This vector will be used as the initial value of the
vector of partial results.
Option1 (adjust in epilog): Initialize the vector as follows:
add: [0,0,...,0,0]
mult: [1,1,...,1,1]
min/max: [init_val,init_val,..,init_val,init_val]
bit and/or: [init_val,init_val,..,init_val,init_val]
and when necessary (e.g. add/mult case) let the caller know
that it needs to adjust the result by init_val.
Option2: Initialize the vector as follows:
add: [0,0,...,0,init_val]
mult: [1,1,...,1,init_val]
min/max: [init_val,init_val,...,init_val]
bit and/or: [init_val,init_val,...,init_val]
and no adjustments are needed.
For example, for the following code:
s = init_val;
for (i=0;i<n;i++)
s = s + a[i];
STMT is 's = s + a[i]', and the reduction variable is 's'.
For a vector of 4 units, we want to return either [0,0,0,init_val],
or [0,0,0,0] and let the caller know that it needs to adjust
the result at the end by 'init_val'.
FORNOW, we are using the 'adjust in epilog' scheme, because this way the
initialization vector is simpler (same element in all entries).
A cost model should help decide between these two schemes. */
tree
get_initial_def_for_reduction (gimple stmt, tree init_val, tree *adjustment_def)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree scalar_type = TREE_TYPE (init_val);
tree vectype = get_vectype_for_scalar_type (scalar_type);
int nunits;
enum tree_code code = gimple_assign_rhs_code (stmt);
tree def_for_init;
tree init_def;
tree t = NULL_TREE;
int i;
bool nested_in_vect_loop = false;
gcc_assert (vectype);
nunits = TYPE_VECTOR_SUBPARTS (vectype);
gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
|| SCALAR_FLOAT_TYPE_P (scalar_type));
if (nested_in_vect_loop_p (loop, stmt))
nested_in_vect_loop = true;
else
gcc_assert (loop == (gimple_bb (stmt))->loop_father);
switch (code)
{
case WIDEN_SUM_EXPR:
case DOT_PROD_EXPR:
case PLUS_EXPR:
if (nested_in_vect_loop)
*adjustment_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
else
*adjustment_def = init_val;
/* Create a vector of zeros for init_def. */
if (SCALAR_FLOAT_TYPE_P (scalar_type))
def_for_init = build_real (scalar_type, dconst0);
else
def_for_init = build_int_cst (scalar_type, 0);
for (i = nunits - 1; i >= 0; --i)
t = tree_cons (NULL_TREE, def_for_init, t);
init_def = build_vector (vectype, t);
break;
case MIN_EXPR:
case MAX_EXPR:
*adjustment_def = NULL_TREE;
init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
break;
default:
gcc_unreachable ();
}
return init_def;
}
/* Function vect_create_epilog_for_reduction
Create code at the loop-epilog to finalize the result of a reduction
computation.
VECT_DEF is a vector of partial results.
REDUC_CODE is the tree-code for the epilog reduction.
NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
number of elements that we can fit in a vectype (nunits). In this case
we have to generate more than one vector stmt - i.e - we need to "unroll"
the vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation.
STMT is the scalar reduction stmt that is being vectorized.
REDUCTION_PHI is the phi-node that carries the reduction computation.
This function:
1. Creates the reduction def-use cycle: sets the arguments for
REDUCTION_PHI:
The loop-entry argument is the vectorized initial-value of the reduction.
The loop-latch argument is VECT_DEF - the vector of partial sums.
2. "Reduces" the vector of partial results VECT_DEF into a single result,
by applying the operation specified by REDUC_CODE if available, or by
other means (whole-vector shifts or a scalar loop).
The function also creates a new phi node at the loop exit to preserve
loop-closed form, as illustrated below.
The flow at the entry to this function:
loop:
vec_def = phi <null, null> # REDUCTION_PHI
VECT_DEF = vector_stmt # vectorized form of STMT
s_loop = scalar_stmt # (scalar) STMT
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
use <s_out0>
use <s_out0>
The above is transformed by this function into:
loop:
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
VECT_DEF = vector_stmt # vectorized form of STMT
s_loop = scalar_stmt # (scalar) STMT
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1>
s_out3 = extract_field <v_out2, 0>
s_out4 = adjust_result <s_out3>
use <s_out4>
use <s_out4>
*/
static void
vect_create_epilog_for_reduction (tree vect_def, gimple stmt,
int ncopies,
enum tree_code reduc_code,
gimple reduction_phi)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
stmt_vec_info prev_phi_info;
tree vectype;
enum machine_mode mode;
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block exit_bb;
tree scalar_dest;
tree scalar_type;
gimple new_phi = NULL, phi;
gimple_stmt_iterator exit_gsi;
tree vec_dest;
tree new_temp = NULL_TREE;
tree new_name;
gimple epilog_stmt = NULL;
tree new_scalar_dest, new_dest;
gimple exit_phi;
tree bitsize, bitpos, bytesize;
enum tree_code code = gimple_assign_rhs_code (stmt);
tree adjustment_def;
tree vec_initial_def, def;
tree orig_name;
imm_use_iterator imm_iter;
use_operand_p use_p;
bool extract_scalar_result = false;
tree reduction_op, expr;
gimple orig_stmt;
gimple use_stmt;
bool nested_in_vect_loop = false;
VEC(gimple,heap) *phis = NULL;
enum vect_def_type dt = vect_unknown_def_type;
int j, i;
if (nested_in_vect_loop_p (loop, stmt))
{
loop = loop->inner;
nested_in_vect_loop = true;
}
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
{
case GIMPLE_SINGLE_RHS:
gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
break;
case GIMPLE_UNARY_RHS:
reduction_op = gimple_assign_rhs1 (stmt);
break;
case GIMPLE_BINARY_RHS:
reduction_op = gimple_assign_rhs2 (stmt);
break;
default:
gcc_unreachable ();
}
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
gcc_assert (vectype);
mode = TYPE_MODE (vectype);
/*** 1. Create the reduction def-use cycle ***/
/* For the case of reduction, vect_get_vec_def_for_operand returns
the scalar def before the loop, that defines the initial value
of the reduction variable. */
vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
&adjustment_def);
phi = reduction_phi;
def = vect_def;
for (j = 0; j < ncopies; j++)
{
/* 1.1 set the loop-entry arg of the reduction-phi: */
add_phi_arg (phi, vec_initial_def, loop_preheader_edge (loop));
/* 1.2 set the loop-latch arg for the reduction-phi: */
if (j > 0)
def = vect_get_vec_def_for_stmt_copy (dt, def);
add_phi_arg (phi, def, loop_latch_edge (loop));
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "transform reduction: created def-use cycle: ");
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
fprintf (vect_dump, "\n");
print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0, TDF_SLIM);
}
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
}
/*** 2. Create epilog code
The reduction epilog code operates across the elements of the vector
of partial results computed by the vectorized loop.
The reduction epilog code consists of:
step 1: compute the scalar result in a vector (v_out2)
step 2: extract the scalar result (s_out3) from the vector (v_out2)
step 3: adjust the scalar result (s_out3) if needed.
Step 1 can be accomplished using one the following three schemes:
(scheme 1) using reduc_code, if available.
(scheme 2) using whole-vector shifts, if available.
(scheme 3) using a scalar loop. In this case steps 1+2 above are
combined.
The overall epilog code looks like this:
s_out0 = phi <s_loop> # original EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1> # step 1
s_out3 = extract_field <v_out2, 0> # step 2
s_out4 = adjust_result <s_out3> # step 3
(step 3 is optional, and steps 1 and 2 may be combined).
Lastly, the uses of s_out0 are replaced by s_out4.
***/
/* 2.1 Create new loop-exit-phi to preserve loop-closed form:
v_out1 = phi <v_loop> */
exit_bb = single_exit (loop)->dest;
def = vect_def;
prev_phi_info = NULL;
for (j = 0; j < ncopies; j++)
{
phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
if (j == 0)
new_phi = phi;
else
{
def = vect_get_vec_def_for_stmt_copy (dt, def);
STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
}
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
prev_phi_info = vinfo_for_stmt (phi);
}
exit_gsi = gsi_after_labels (exit_bb);
/* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
(i.e. when reduc_code is not available) and in the final adjustment
code (if needed). Also get the original scalar reduction variable as
defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
represents a reduction pattern), the tree-code and scalar-def are
taken from the original stmt that the pattern-stmt (STMT) replaces.
Otherwise (it is a regular reduction) - the tree-code and scalar-def
are taken from STMT. */
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
if (!orig_stmt)
{
/* Regular reduction */
orig_stmt = stmt;
}
else
{
/* Reduction pattern */
stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
}
code = gimple_assign_rhs_code (orig_stmt);
scalar_dest = gimple_assign_lhs (orig_stmt);
scalar_type = TREE_TYPE (scalar_dest);
new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
bitsize = TYPE_SIZE (scalar_type);
bytesize = TYPE_SIZE_UNIT (scalar_type);
/* In case this is a reduction in an inner-loop while vectorizing an outer
loop - we don't need to extract a single scalar result at the end of the
inner-loop. The final vector of partial results will be used in the
vectorized outer-loop, or reduced to a scalar result at the end of the
outer-loop. */
if (nested_in_vect_loop)
goto vect_finalize_reduction;
/* FORNOW */
gcc_assert (ncopies == 1);
/* 2.3 Create the reduction code, using one of the three schemes described
above. */
if (reduc_code != ERROR_MARK)
{
tree tmp;
/*** Case 1: Create:
v_out2 = reduc_expr <v_out1> */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "Reduce using direct vector reduction.");
vec_dest = vect_create_destination_var (scalar_dest, vectype);
tmp = build1 (reduc_code, vectype, PHI_RESULT (new_phi));
epilog_stmt = gimple_build_assign (vec_dest, tmp);
new_temp = make_ssa_name (vec_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
extract_scalar_result = true;
}
else
{
enum tree_code shift_code = ERROR_MARK;
bool have_whole_vector_shift = true;
int bit_offset;
int element_bitsize = tree_low_cst (bitsize, 1);
int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
tree vec_temp;
if (optab_handler (vec_shr_optab, mode)->insn_code != CODE_FOR_nothing)
shift_code = VEC_RSHIFT_EXPR;
else
have_whole_vector_shift = false;
/* Regardless of whether we have a whole vector shift, if we're
emulating the operation via tree-vect-generic, we don't want
to use it. Only the first round of the reduction is likely
to still be profitable via emulation. */
/* ??? It might be better to emit a reduction tree code here, so that
tree-vect-generic can expand the first round via bit tricks. */
if (!VECTOR_MODE_P (mode))
have_whole_vector_shift = false;
else
{
optab optab = optab_for_tree_code (code, vectype, optab_default);
if (optab_handler (optab, mode)->insn_code == CODE_FOR_nothing)
have_whole_vector_shift = false;
}
if (have_whole_vector_shift)
{
/*** Case 2: Create:
for (offset = VS/2; offset >= element_size; offset/=2)
{
Create: va' = vec_shift <va, offset>
Create: va = vop <va, va'>
} */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "Reduce using vector shifts");
vec_dest = vect_create_destination_var (scalar_dest, vectype);
new_temp = PHI_RESULT (new_phi);
for (bit_offset = vec_size_in_bits/2;
bit_offset >= element_bitsize;
bit_offset /= 2)
{
tree bitpos = size_int (bit_offset);
epilog_stmt = gimple_build_assign_with_ops (shift_code, vec_dest,
new_temp, bitpos);
new_name = make_ssa_name (vec_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_name);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
new_name, new_temp);
new_temp = make_ssa_name (vec_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
}
extract_scalar_result = true;
}
else
{
tree rhs;
/*** Case 3: Create:
s = extract_field <v_out2, 0>
for (offset = element_size;
offset < vector_size;
offset += element_size;)
{
Create: s' = extract_field <v_out2, offset>
Create: s = op <s, s'>
} */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "Reduce using scalar code. ");
vec_temp = PHI_RESULT (new_phi);
vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
bitsize_zero_node);
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
for (bit_offset = element_bitsize;
bit_offset < vec_size_in_bits;
bit_offset += element_bitsize)
{
tree bitpos = bitsize_int (bit_offset);
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
bitpos);
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_name);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
epilog_stmt = gimple_build_assign_with_ops (code,
new_scalar_dest,
new_name, new_temp);
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
}
extract_scalar_result = false;
}
}
/* 2.4 Extract the final scalar result. Create:
s_out3 = extract_field <v_out2, bitpos> */
if (extract_scalar_result)
{
tree rhs;
gcc_assert (!nested_in_vect_loop);
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "extract scalar result");
if (BYTES_BIG_ENDIAN)
bitpos = size_binop (MULT_EXPR,
bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
TYPE_SIZE (scalar_type));
else
bitpos = bitsize_zero_node;
rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
}
vect_finalize_reduction:
/* 2.5 Adjust the final result by the initial value of the reduction
variable. (When such adjustment is not needed, then
'adjustment_def' is zero). For example, if code is PLUS we create:
new_temp = loop_exit_def + adjustment_def */
if (adjustment_def)
{
if (nested_in_vect_loop)
{
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
new_dest = vect_create_destination_var (scalar_dest, vectype);
}
else
{
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
expr = build2 (code, scalar_type, new_temp, adjustment_def);
new_dest = vect_create_destination_var (scalar_dest, scalar_type);
}
epilog_stmt = gimple_build_assign (new_dest, expr);
new_temp = make_ssa_name (new_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
}
/* 2.6 Handle the loop-exit phi */
/* Replace uses of s_out0 with uses of s_out3:
Find the loop-closed-use at the loop exit of the original scalar result.
(The reduction result is expected to have two immediate uses - one at the
latch block, and one at the loop exit). */
phis = VEC_alloc (gimple, heap, 10);
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
{
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
{
exit_phi = USE_STMT (use_p);
VEC_quick_push (gimple, phis, exit_phi);
}
}
/* We expect to have found an exit_phi because of loop-closed-ssa form. */
gcc_assert (!VEC_empty (gimple, phis));
for (i = 0; VEC_iterate (gimple, phis, i, exit_phi); i++)
{
if (nested_in_vect_loop)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
/* FORNOW. Currently not supporting the case that an inner-loop
reduction is not used in the outer-loop (but only outside the
outer-loop). */
gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
&& !STMT_VINFO_LIVE_P (stmt_vinfo));
epilog_stmt = adjustment_def ? epilog_stmt : new_phi;
STMT_VINFO_VEC_STMT (stmt_vinfo) = epilog_stmt;
set_vinfo_for_stmt (epilog_stmt,
new_stmt_vec_info (epilog_stmt, loop_vinfo));
if (adjustment_def)
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
continue;
}
/* Replace the uses: */
orig_name = PHI_RESULT (exit_phi);
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, new_temp);
}
VEC_free (gimple, heap, phis);
}
/* Function vectorizable_reduction.
Check if STMT performs a reduction operation that can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise.
This function also handles reduction idioms (patterns) that have been
recognized in advance during vect_pattern_recog. In this case, STMT may be
of this form:
X = pattern_expr (arg0, arg1, ..., X)
and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
sequence that had been detected and replaced by the pattern-stmt (STMT).
In some cases of reduction patterns, the type of the reduction variable X is
different than the type of the other arguments of STMT.
In such cases, the vectype that is used when transforming STMT into a vector
stmt is different than the vectype that is used to determine the
vectorization factor, because it consists of a different number of elements
than the actual number of elements that are being operated upon in parallel.
For example, consider an accumulation of shorts into an int accumulator.
On some targets it's possible to vectorize this pattern operating on 8
shorts at a time (hence, the vectype for purposes of determining the
vectorization factor should be V8HI); on the other hand, the vectype that
is used to create the vector form is actually V4SI (the type of the result).
Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
indicates what is the actual level of parallelism (V8HI in the example), so
that the right vectorization factor would be derived. This vectype
corresponds to the type of arguments to the reduction stmt, and should *NOT*
be used to create the vectorized stmt. The right vectype for the vectorized
stmt is obtained from the type of the result X:
get_vectype_for_scalar_type (TREE_TYPE (X))
This means that, contrary to "regular" reductions (or "regular" stmts in
general), the following equation:
STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
does *NOT* necessarily hold for reduction patterns. */
bool
vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
gimple *vec_stmt)
{
tree vec_dest;
tree scalar_dest;
tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
enum tree_code code, orig_code, epilog_reduc_code;
enum machine_mode vec_mode;
int op_type;
optab optab, reduc_optab;
tree new_temp = NULL_TREE;
tree def;
gimple def_stmt;
enum vect_def_type dt;
gimple new_phi = NULL;
tree scalar_type;
bool is_simple_use;
gimple orig_stmt;
stmt_vec_info orig_stmt_info;
tree expr = NULL_TREE;
int i;
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
int epilog_copies;
stmt_vec_info prev_stmt_info, prev_phi_info;
gimple first_phi = NULL;
bool single_defuse_cycle = false;
tree reduc_def;
gimple new_stmt = NULL;
int j;
tree ops[3];
if (nested_in_vect_loop_p (loop, stmt))
loop = loop->inner;
gcc_assert (ncopies >= 1);
/* FORNOW: SLP not supported. */
if (STMT_SLP_TYPE (stmt_info))
return false;
/* 1. Is vectorizable reduction? */
/* Not supportable if the reduction variable is used in the loop. */
if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer)
return false;
/* Reductions that are not used even in an enclosing outer-loop,
are expected to be "live" (used out of the loop). */
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
&& !STMT_VINFO_LIVE_P (stmt_info))
return false;
/* Make sure it was already recognized as a reduction computation. */
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def)
return false;
/* 2. Has this been recognized as a reduction pattern?
Check if STMT represents a pattern that has been recognized
in earlier analysis stages. For stmts that represent a pattern,
the STMT_VINFO_RELATED_STMT field records the last stmt in
the original sequence that constitutes the pattern. */
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
if (orig_stmt)
{
orig_stmt_info = vinfo_for_stmt (orig_stmt);
gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
}
/* 3. Check the operands of the operation. The first operands are defined
inside the loop body. The last operand is the reduction variable,
which is defined by the loop-header-phi. */
gcc_assert (is_gimple_assign (stmt));
/* Flatten RHS */
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
{
case GIMPLE_SINGLE_RHS:
op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
if (op_type == ternary_op)
{
tree rhs = gimple_assign_rhs1 (stmt);
ops[0] = TREE_OPERAND (rhs, 0);
ops[1] = TREE_OPERAND (rhs, 1);
ops[2] = TREE_OPERAND (rhs, 2);
code = TREE_CODE (rhs);
}
else
return false;
break;
case GIMPLE_BINARY_RHS:
code = gimple_assign_rhs_code (stmt);
op_type = TREE_CODE_LENGTH (code);
gcc_assert (op_type == binary_op);
ops[0] = gimple_assign_rhs1 (stmt);
ops[1] = gimple_assign_rhs2 (stmt);
break;
case GIMPLE_UNARY_RHS:
return false;
default:
gcc_unreachable ();
}
scalar_dest = gimple_assign_lhs (stmt);
scalar_type = TREE_TYPE (scalar_dest);
if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
&& !SCALAR_FLOAT_TYPE_P (scalar_type))
return false;
/* All uses but the last are expected to be defined in the loop.
The last use is the reduction variable. */
for (i = 0; i < op_type-1; i++)
{
is_simple_use = vect_is_simple_use (ops[i], loop_vinfo, &def_stmt,
&def, &dt);
gcc_assert (is_simple_use);
if (dt != vect_internal_def
&& dt != vect_external_def
&& dt != vect_constant_def
&& dt != vect_induction_def)
return false;
}
is_simple_use = vect_is_simple_use (ops[i], loop_vinfo, &def_stmt, &def,
&dt);
gcc_assert (is_simple_use);
gcc_assert (dt == vect_reduction_def);
gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
if (orig_stmt)
gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo, def_stmt));
else
gcc_assert (stmt == vect_is_simple_reduction (loop_vinfo, def_stmt));
if (STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
return false;
/* 4. Supportable by target? */
/* 4.1. check support for the operation in the loop */
optab = optab_for_tree_code (code, vectype, optab_default);
if (!optab)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "no optab.");
return false;
}
vec_mode = TYPE_MODE (vectype);
if (optab_handler (optab, vec_mode)->insn_code == CODE_FOR_nothing)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "op not supported by target.");
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|| LOOP_VINFO_VECT_FACTOR (loop_vinfo)
< vect_min_worthwhile_factor (code))
return false;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "proceeding using word mode.");
}
/* Worthwhile without SIMD support? */
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
&& LOOP_VINFO_VECT_FACTOR (loop_vinfo)
< vect_min_worthwhile_factor (code))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "not worthwhile without SIMD support.");
return false;
}
/* 4.2. Check support for the epilog operation.
If STMT represents a reduction pattern, then the type of the
reduction variable may be different than the type of the rest
of the arguments. For example, consider the case of accumulation
of shorts into an int accumulator; The original code:
S1: int_a = (int) short_a;
orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
was replaced with:
STMT: int_acc = widen_sum <short_a, int_acc>
This means that:
1. The tree-code that is used to create the vector operation in the
epilog code (that reduces the partial results) is not the
tree-code of STMT, but is rather the tree-code of the original
stmt from the pattern that STMT is replacing. I.e, in the example
above we want to use 'widen_sum' in the loop, but 'plus' in the
epilog.
2. The type (mode) we use to check available target support
for the vector operation to be created in the *epilog*, is
determined by the type of the reduction variable (in the example
above we'd check this: plus_optab[vect_int_mode]).
However the type (mode) we use to check available target support
for the vector operation to be created *inside the loop*, is
determined by the type of the other arguments to STMT (in the
example we'd check this: widen_sum_optab[vect_short_mode]).
This is contrary to "regular" reductions, in which the types of all
the arguments are the same as the type of the reduction variable.
For "regular" reductions we can therefore use the same vector type
(and also the same tree-code) when generating the epilog code and
when generating the code inside the loop. */
if (orig_stmt)
{
/* This is a reduction pattern: get the vectype from the type of the
reduction variable, and get the tree-code from orig_stmt. */
orig_code = gimple_assign_rhs_code (orig_stmt);
vectype = get_vectype_for_scalar_type (TREE_TYPE (def));
if (!vectype)
{
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "unsupported data-type ");
print_generic_expr (vect_dump, TREE_TYPE (def), TDF_SLIM);
}
return false;
}
vec_mode = TYPE_MODE (vectype);
}
else
{
/* Regular reduction: use the same vectype and tree-code as used for
the vector code inside the loop can be used for the epilog code. */
orig_code = code;
}
if (!reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
return false;
reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype, optab_default);
if (!reduc_optab)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "no optab for reduction.");
epilog_reduc_code = ERROR_MARK;
}
if (optab_handler (reduc_optab, vec_mode)->insn_code == CODE_FOR_nothing)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "reduc op not supported by target.");
epilog_reduc_code = ERROR_MARK;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
return false;
return true;
}
/** Transform. **/
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "transform reduction.");
/* Create the destination vector */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
/* In case the vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
/* If the reduction is used in an outer loop we need to generate
VF intermediate results, like so (e.g. for ncopies=2):
r0 = phi (init, r0)
r1 = phi (init, r1)
r0 = x0 + r0;
r1 = x1 + r1;
(i.e. we generate VF results in 2 registers).
In this case we have a separate def-use cycle for each copy, and therefore
for each copy we get the vector def for the reduction variable from the
respective phi node created for this copy.
Otherwise (the reduction is unused in the loop nest), we can combine
together intermediate results, like so (e.g. for ncopies=2):
r = phi (init, r)
r = x0 + r;
r = x1 + r;
(i.e. we generate VF/2 results in a single register).
In this case for each copy we get the vector def for the reduction variable
from the vectorized reduction operation generated in the previous iteration.
*/
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
{
single_defuse_cycle = true;
epilog_copies = 1;
}
else
epilog_copies = ncopies;
prev_stmt_info = NULL;
prev_phi_info = NULL;
for (j = 0; j < ncopies; j++)
{
if (j == 0 || !single_defuse_cycle)
{
/* Create the reduction-phi that defines the reduction-operand. */
new_phi = create_phi_node (vec_dest, loop->header);
set_vinfo_for_stmt (new_phi, new_stmt_vec_info (new_phi, loop_vinfo));
}
/* Handle uses. */
if (j == 0)
{
loop_vec_def0 = vect_get_vec_def_for_operand (ops[0], stmt, NULL);
if (op_type == ternary_op)
{
loop_vec_def1 = vect_get_vec_def_for_operand (ops[1], stmt, NULL);
}
/* Get the vector def for the reduction variable from the phi node */
reduc_def = PHI_RESULT (new_phi);
first_phi = new_phi;
}
else
{
enum vect_def_type dt = vect_unknown_def_type; /* Dummy */
loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def0);
if (op_type == ternary_op)
loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def1);
if (single_defuse_cycle)
reduc_def = gimple_assign_lhs (new_stmt);
else
reduc_def = PHI_RESULT (new_phi);
STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
}
/* Arguments are ready. create the new vector stmt. */
if (op_type == binary_op)
expr = build2 (code, vectype, loop_vec_def0, reduc_def);
else
expr = build3 (code, vectype, loop_vec_def0, loop_vec_def1,
reduc_def);
new_stmt = gimple_build_assign (vec_dest, expr);
new_temp = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, new_temp);
vect_finish_stmt_generation (stmt, new_stmt, gsi);
if (j == 0)
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
else
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
prev_stmt_info = vinfo_for_stmt (new_stmt);
prev_phi_info = vinfo_for_stmt (new_phi);
}
/* Finalize the reduction-phi (set its arguments) and create the
epilog reduction code. */
if (!single_defuse_cycle)
new_temp = gimple_assign_lhs (*vec_stmt);
vect_create_epilog_for_reduction (new_temp, stmt, epilog_copies,
epilog_reduc_code, first_phi);
return true;
}
/* Function vect_min_worthwhile_factor.
For a loop where we could vectorize the operation indicated by CODE,
return the minimum vectorization factor that makes it worthwhile
to use generic vectors. */
int
vect_min_worthwhile_factor (enum tree_code code)
{
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
case NEGATE_EXPR:
return 4;
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_NOT_EXPR:
return 2;
default:
return INT_MAX;
}
}
/* Function vectorizable_induction
Check if PHI performs an induction computation that can be vectorized.
If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
phi to replace it, put it in VEC_STMT, and add it to the same basic block.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
bool
vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
gimple *vec_stmt)
{
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
tree vec_def;
gcc_assert (ncopies >= 1);
/* FORNOW. This restriction should be relaxed. */
if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "multiple types in nested loop.");
return false;
}
if (!STMT_VINFO_RELEVANT_P (stmt_info))
return false;
/* FORNOW: SLP not supported. */
if (STMT_SLP_TYPE (stmt_info))
return false;
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
if (gimple_code (phi) != GIMPLE_PHI)
return false;
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== vectorizable_induction ===");
vect_model_induction_cost (stmt_info, ncopies);
return true;
}
/** Transform. **/
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "transform induction phi.");
vec_def = get_initial_def_for_induction (phi);
*vec_stmt = SSA_NAME_DEF_STMT (vec_def);
return true;
}
/* Function vectorizable_live_operation.
STMT computes a value that is used outside the loop. Check if
it can be supported. */
bool
vectorizable_live_operation (gimple stmt,
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
gimple *vec_stmt ATTRIBUTE_UNUSED)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int i;
int op_type;
tree op;
tree def;
gimple def_stmt;
enum vect_def_type dt;
enum tree_code code;
enum gimple_rhs_class rhs_class;
gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
return false;
if (!is_gimple_assign (stmt))
return false;
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
return false;
/* FORNOW. CHECKME. */
if (nested_in_vect_loop_p (loop, stmt))
return false;
code = gimple_assign_rhs_code (stmt);
op_type = TREE_CODE_LENGTH (code);
rhs_class = get_gimple_rhs_class (code);
gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
/* FORNOW: support only if all uses are invariant. This means
that the scalar operations can remain in place, unvectorized.
The original last scalar value that they compute will be used. */
for (i = 0; i < op_type; i++)
{
if (rhs_class == GIMPLE_SINGLE_RHS)
op = TREE_OPERAND (gimple_op (stmt, 1), i);
else
op = gimple_op (stmt, i + 1);
if (op && !vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "use not simple.");
return false;
}
if (dt != vect_external_def && dt != vect_constant_def)
return false;
}
/* No transformation is required for the cases we currently support. */
return true;
}
/* Function vect_transform_loop.
The analysis phase has determined that the loop is vectorizable.
Vectorize the loop - created vectorized stmts to replace the scalar
stmts in the loop, and update the loop exit condition. */
void
vect_transform_loop (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
gimple_stmt_iterator si;
int i;
tree ratio = NULL;
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
bool strided_store;
bool slp_scheduled = false;
unsigned int nunits;
tree cond_expr = NULL_TREE;
gimple_seq cond_expr_stmt_list = NULL;
bool do_peeling_for_loop_bound;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== vec_transform_loop ===");
/* Peel the loop if there are data refs with unknown alignment.
Only one data ref with unknown store is allowed. */
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
vect_do_peeling_for_alignment (loop_vinfo);
do_peeling_for_loop_bound
= (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0));
if (VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
|| VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
vect_loop_versioning (loop_vinfo,
!do_peeling_for_loop_bound,
&cond_expr, &cond_expr_stmt_list);
/* CHECKME: we wouldn't need this if we called update_ssa once
for all loops. */
bitmap_zero (vect_memsyms_to_rename);
/* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
compile time constant), or it is a constant that doesn't divide by the
vectorization factor, then an epilog loop needs to be created.
We therefore duplicate the loop: the original loop will be vectorized,
and will compute the first (n/VF) iterations. The second copy of the loop
will remain scalar and will compute the remaining (n%VF) iterations.
(VF is the vectorization factor). */
if (do_peeling_for_loop_bound)
vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
cond_expr, cond_expr_stmt_list);
else
ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
/* 1) Make sure the loop header has exactly two entries
2) Make sure we have a preheader basic block. */
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
split_edge (loop_preheader_edge (loop));
/* FORNOW: the vectorizer supports only loops which body consist
of one basic block (header + empty latch). When the vectorizer will
support more involved loop forms, the order by which the BBs are
traversed need to be reconsidered. */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
stmt_vec_info stmt_info;
gimple phi;
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
phi = gsi_stmt (si);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "------>vectorizing phi: ");
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
}
stmt_info = vinfo_for_stmt (phi);
if (!stmt_info)
continue;
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
continue;
if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
!= (unsigned HOST_WIDE_INT) vectorization_factor)
&& vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "multiple-types.");
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "transform phi.");
vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
}
}
for (si = gsi_start_bb (bb); !gsi_end_p (si);)
{
gimple stmt = gsi_stmt (si);
bool is_store;
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "------>vectorizing statement: ");
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
}
stmt_info = vinfo_for_stmt (stmt);
/* vector stmts created in the outer-loop during vectorization of
stmts in an inner-loop may not have a stmt_info, and do not
need to be vectorized. */
if (!stmt_info)
{
gsi_next (&si);
continue;
}
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
{
gsi_next (&si);
continue;
}
gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
nunits =
(unsigned int) TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
if (!STMT_SLP_TYPE (stmt_info)
&& nunits != (unsigned int) vectorization_factor
&& vect_print_dump_info (REPORT_DETAILS))
/* For SLP VF is set according to unrolling factor, and not to
vector size, hence for SLP this print is not valid. */
fprintf (vect_dump, "multiple-types.");
/* SLP. Schedule all the SLP instances when the first SLP stmt is
reached. */
if (STMT_SLP_TYPE (stmt_info))
{
if (!slp_scheduled)
{
slp_scheduled = true;
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== scheduling SLP instances ===");
vect_schedule_slp (loop_vinfo);
}
/* Hybrid SLP stmts must be vectorized in addition to SLP. */
if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
{
gsi_next (&si);
continue;
}
}
/* -------- vectorize statement ------------ */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "transform statement.");
strided_store = false;
is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
if (is_store)
{
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
{
/* Interleaving. If IS_STORE is TRUE, the vectorization of the
interleaving chain was completed - free all the stores in
the chain. */
vect_remove_stores (DR_GROUP_FIRST_DR (stmt_info));
gsi_remove (&si, true);
continue;
}
else
{
/* Free the attached stmt_vec_info and remove the stmt. */
free_stmt_vec_info (stmt);
gsi_remove (&si, true);
continue;
}
}
gsi_next (&si);
} /* stmts in BB */
} /* BBs in loop */
slpeel_make_loop_iterate_ntimes (loop, ratio);
mark_set_for_renaming (vect_memsyms_to_rename);
/* The memory tags and pointers in vectorized statements need to
have their SSA forms updated. FIXME, why can't this be delayed
until all the loops have been transformed? */
update_ssa (TODO_update_ssa);
if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
fprintf (vect_dump, "LOOP VECTORIZED.");
if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
fprintf (vect_dump, "OUTER LOOP VECTORIZED.");
}
|