summaryrefslogtreecommitdiff
path: root/gcc/tree-vect-generic.c
blob: 6555932a4ccf262e0275cec06c58f50cddc2ec97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
/* Lower vector operations to scalar operations.
   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "tm.h"
#include "langhooks.h"
#include "tree-flow.h"
#include "gimple.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "flags.h"
#include "ggc.h"
#include "diagnostic.h"

/* Need to include rtl.h, expr.h, etc. for optabs.  */
#include "expr.h"
#include "optabs.h"


static void expand_vector_operations_1 (gimple_stmt_iterator *);


/* Build a constant of type TYPE, made of VALUE's bits replicated
   every TYPE_SIZE (INNER_TYPE) bits to fit TYPE's precision.  */
static tree
build_replicated_const (tree type, tree inner_type, HOST_WIDE_INT value)
{
  int width = tree_low_cst (TYPE_SIZE (inner_type), 1);
  int n = HOST_BITS_PER_WIDE_INT / width;
  unsigned HOST_WIDE_INT low, high, mask;
  tree ret;

  gcc_assert (n);

  if (width == HOST_BITS_PER_WIDE_INT)
    low = value;
  else
    {
      mask = ((HOST_WIDE_INT)1 << width) - 1;
      low = (unsigned HOST_WIDE_INT) ~0 / mask * (value & mask);
    }

  if (TYPE_PRECISION (type) < HOST_BITS_PER_WIDE_INT)
    low &= ((HOST_WIDE_INT)1 << TYPE_PRECISION (type)) - 1, high = 0;
  else if (TYPE_PRECISION (type) == HOST_BITS_PER_WIDE_INT)
    high = 0;
  else if (TYPE_PRECISION (type) == 2 * HOST_BITS_PER_WIDE_INT)
    high = low;
  else
    gcc_unreachable ();

  ret = build_int_cst_wide (type, low, high);
  return ret;
}

static GTY(()) tree vector_inner_type;
static GTY(()) tree vector_last_type;
static GTY(()) int vector_last_nunits;

/* Return a suitable vector types made of SUBPARTS units each of mode
   "word_mode" (the global variable).  */
static tree
build_word_mode_vector_type (int nunits)
{
  if (!vector_inner_type)
    vector_inner_type = lang_hooks.types.type_for_mode (word_mode, 1);
  else if (vector_last_nunits == nunits)
    {
      gcc_assert (TREE_CODE (vector_last_type) == VECTOR_TYPE);
      return vector_last_type;
    }

  /* We build a new type, but we canonicalize it nevertheless,
     because it still saves some memory.  */
  vector_last_nunits = nunits;
  vector_last_type = type_hash_canon (nunits,
				      build_vector_type (vector_inner_type,
							 nunits));
  return vector_last_type;
}

typedef tree (*elem_op_func) (gimple_stmt_iterator *,
			      tree, tree, tree, tree, tree, enum tree_code);

static inline tree
tree_vec_extract (gimple_stmt_iterator *gsi, tree type,
		  tree t, tree bitsize, tree bitpos)
{
  if (bitpos)
    return gimplify_build3 (gsi, BIT_FIELD_REF, type, t, bitsize, bitpos);
  else
    return gimplify_build1 (gsi, VIEW_CONVERT_EXPR, type, t);
}

static tree
do_unop (gimple_stmt_iterator *gsi, tree inner_type, tree a,
	 tree b ATTRIBUTE_UNUSED, tree bitpos, tree bitsize,
	 enum tree_code code)
{
  a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  return gimplify_build1 (gsi, code, inner_type, a);
}

static tree
do_binop (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
	  tree bitpos, tree bitsize, enum tree_code code)
{
  if (TREE_CODE (TREE_TYPE (a)) == VECTOR_TYPE)
    a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  if (TREE_CODE (TREE_TYPE (b)) == VECTOR_TYPE)
    b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
  return gimplify_build2 (gsi, code, inner_type, a, b);
}

/* Construct expression (A[BITPOS] code B[BITPOS]) ? -1 : 0

   INNER_TYPE is the type of A and B elements

   returned expression is of signed integer type with the
   size equal to the size of INNER_TYPE.  */
static tree
do_compare (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
	  tree bitpos, tree bitsize, enum tree_code code)
{
  tree comp_type;

  a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);

  comp_type = build_nonstandard_integer_type
		      (GET_MODE_BITSIZE (TYPE_MODE (inner_type)), 0);

  return gimplify_build3 (gsi, COND_EXPR, comp_type,
			  fold_build2 (code, boolean_type_node, a, b),
			  build_int_cst (comp_type, -1),
			  build_int_cst (comp_type, 0));
}

/* Expand vector addition to scalars.  This does bit twiddling
   in order to increase parallelism:

   a + b = (((int) a & 0x7f7f7f7f) + ((int) b & 0x7f7f7f7f)) ^
           (a ^ b) & 0x80808080

   a - b =  (((int) a | 0x80808080) - ((int) b & 0x7f7f7f7f)) ^
            (a ^ ~b) & 0x80808080

   -b = (0x80808080 - ((int) b & 0x7f7f7f7f)) ^ (~b & 0x80808080)

   This optimization should be done only if 4 vector items or more
   fit into a word.  */
static tree
do_plus_minus (gimple_stmt_iterator *gsi, tree word_type, tree a, tree b,
	       tree bitpos ATTRIBUTE_UNUSED, tree bitsize ATTRIBUTE_UNUSED,
	       enum tree_code code)
{
  tree inner_type = TREE_TYPE (TREE_TYPE (a));
  unsigned HOST_WIDE_INT max;
  tree low_bits, high_bits, a_low, b_low, result_low, signs;

  max = GET_MODE_MASK (TYPE_MODE (inner_type));
  low_bits = build_replicated_const (word_type, inner_type, max >> 1);
  high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));

  a = tree_vec_extract (gsi, word_type, a, bitsize, bitpos);
  b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);

  signs = gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, a, b);
  b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
  if (code == PLUS_EXPR)
    a_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, a, low_bits);
  else
    {
      a_low = gimplify_build2 (gsi, BIT_IOR_EXPR, word_type, a, high_bits);
      signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, signs);
    }

  signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
  result_low = gimplify_build2 (gsi, code, word_type, a_low, b_low);
  return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
}

static tree
do_negate (gimple_stmt_iterator *gsi, tree word_type, tree b,
	   tree unused ATTRIBUTE_UNUSED, tree bitpos ATTRIBUTE_UNUSED,
	   tree bitsize ATTRIBUTE_UNUSED,
	   enum tree_code code ATTRIBUTE_UNUSED)
{
  tree inner_type = TREE_TYPE (TREE_TYPE (b));
  HOST_WIDE_INT max;
  tree low_bits, high_bits, b_low, result_low, signs;

  max = GET_MODE_MASK (TYPE_MODE (inner_type));
  low_bits = build_replicated_const (word_type, inner_type, max >> 1);
  high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));

  b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);

  b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
  signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, b);
  signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
  result_low = gimplify_build2 (gsi, MINUS_EXPR, word_type, high_bits, b_low);
  return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
}

/* Expand a vector operation to scalars, by using many operations
   whose type is the vector type's inner type.  */
static tree
expand_vector_piecewise (gimple_stmt_iterator *gsi, elem_op_func f,
			 tree type, tree inner_type,
			 tree a, tree b, enum tree_code code)
{
  VEC(constructor_elt,gc) *v;
  tree part_width = TYPE_SIZE (inner_type);
  tree index = bitsize_int (0);
  int nunits = TYPE_VECTOR_SUBPARTS (type);
  int delta = tree_low_cst (part_width, 1)
	      / tree_low_cst (TYPE_SIZE (TREE_TYPE (type)), 1);
  int i;
  location_t loc = gimple_location (gsi_stmt (*gsi));

  if (types_compatible_p (gimple_expr_type (gsi_stmt (*gsi)), type))
    warning_at (loc, OPT_Wvector_operation_performance,
		"vector operation will be expanded piecewise");
  else
    warning_at (loc, OPT_Wvector_operation_performance,
		"vector operation will be expanded in parallel");

  v = VEC_alloc(constructor_elt, gc, (nunits + delta - 1) / delta);
  for (i = 0; i < nunits;
       i += delta, index = int_const_binop (PLUS_EXPR, index, part_width))
    {
      tree result = f (gsi, inner_type, a, b, index, part_width, code);
      constructor_elt *ce = VEC_quick_push (constructor_elt, v, NULL);
      ce->index = NULL_TREE;
      ce->value = result;
    }

  return build_constructor (type, v);
}

/* Expand a vector operation to scalars with the freedom to use
   a scalar integer type, or to use a different size for the items
   in the vector type.  */
static tree
expand_vector_parallel (gimple_stmt_iterator *gsi, elem_op_func f, tree type,
			tree a, tree b,
			enum tree_code code)
{
  tree result, compute_type;
  enum machine_mode mode;
  int n_words = tree_low_cst (TYPE_SIZE_UNIT (type), 1) / UNITS_PER_WORD;
  location_t loc = gimple_location (gsi_stmt (*gsi));

  /* We have three strategies.  If the type is already correct, just do
     the operation an element at a time.  Else, if the vector is wider than
     one word, do it a word at a time; finally, if the vector is smaller
     than one word, do it as a scalar.  */
  if (TYPE_MODE (TREE_TYPE (type)) == word_mode)
     return expand_vector_piecewise (gsi, f,
				     type, TREE_TYPE (type),
				     a, b, code);
  else if (n_words > 1)
    {
      tree word_type = build_word_mode_vector_type (n_words);
      result = expand_vector_piecewise (gsi, f,
				        word_type, TREE_TYPE (word_type),
					a, b, code);
      result = force_gimple_operand_gsi (gsi, result, true, NULL, true,
                                         GSI_SAME_STMT);
    }
  else
    {
      /* Use a single scalar operation with a mode no wider than word_mode.  */
      mode = mode_for_size (tree_low_cst (TYPE_SIZE (type), 1), MODE_INT, 0);
      compute_type = lang_hooks.types.type_for_mode (mode, 1);
      result = f (gsi, compute_type, a, b, NULL_TREE, NULL_TREE, code);
      warning_at (loc, OPT_Wvector_operation_performance,
	          "vector operation will be expanded with a "
		  "single scalar operation");
    }

  return result;
}

/* Expand a vector operation to scalars; for integer types we can use
   special bit twiddling tricks to do the sums a word at a time, using
   function F_PARALLEL instead of F.  These tricks are done only if
   they can process at least four items, that is, only if the vector
   holds at least four items and if a word can hold four items.  */
static tree
expand_vector_addition (gimple_stmt_iterator *gsi,
			elem_op_func f, elem_op_func f_parallel,
			tree type, tree a, tree b, enum tree_code code)
{
  int parts_per_word = UNITS_PER_WORD
	  	       / tree_low_cst (TYPE_SIZE_UNIT (TREE_TYPE (type)), 1);

  if (INTEGRAL_TYPE_P (TREE_TYPE (type))
      && parts_per_word >= 4
      && TYPE_VECTOR_SUBPARTS (type) >= 4)
    return expand_vector_parallel (gsi, f_parallel,
				   type, a, b, code);
  else
    return expand_vector_piecewise (gsi, f,
				    type, TREE_TYPE (type),
				    a, b, code);
}

/* Check if vector VEC consists of all the equal elements and
   that the number of elements corresponds to the type of VEC.
   The function returns first element of the vector
   or NULL_TREE if the vector is not uniform.  */
static tree
uniform_vector_p (tree vec)
{
  tree first, t, els;
  unsigned i;

  if (vec == NULL_TREE)
    return NULL_TREE;

  if (TREE_CODE (vec) == VECTOR_CST)
    {
      els = TREE_VECTOR_CST_ELTS (vec);
      first = TREE_VALUE (els);
      els = TREE_CHAIN (els);

      for (t = els; t; t = TREE_CHAIN (t))
	if (!operand_equal_p (first, TREE_VALUE (t), 0))
	  return NULL_TREE;

      return first;
    }

  else if (TREE_CODE (vec) == CONSTRUCTOR)
    {
      first = error_mark_node;

      FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
        {
          if (i == 0)
            {
              first = t;
              continue;
            }
	  if (!operand_equal_p (first, t, 0))
	    return NULL_TREE;
        }
      if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
	return NULL_TREE;

      return first;
    }

  return NULL_TREE;
}

/* Try to expand vector comparison expression OP0 CODE OP1 by
   querying optab if the following expression:
	VEC_COND_EXPR< OP0 CODE OP1, {-1,...}, {0,...}>
   can be expanded.  */
static tree
expand_vector_comparison (gimple_stmt_iterator *gsi, tree type, tree op0,
                          tree op1, enum tree_code code)
{
  tree t;
  if (! expand_vec_cond_expr_p (type, TREE_TYPE (op0)))
    t = expand_vector_piecewise (gsi, do_compare, type,
				 TREE_TYPE (TREE_TYPE (op0)), op0, op1, code);
  else
    t = NULL_TREE;

  return t;
}

static tree
expand_vector_operation (gimple_stmt_iterator *gsi, tree type, tree compute_type,
			 gimple assign, enum tree_code code)
{
  enum machine_mode compute_mode = TYPE_MODE (compute_type);

  /* If the compute mode is not a vector mode (hence we are not decomposing
     a BLKmode vector to smaller, hardware-supported vectors), we may want
     to expand the operations in parallel.  */
  if (GET_MODE_CLASS (compute_mode) != MODE_VECTOR_INT
      && GET_MODE_CLASS (compute_mode) != MODE_VECTOR_FLOAT
      && GET_MODE_CLASS (compute_mode) != MODE_VECTOR_FRACT
      && GET_MODE_CLASS (compute_mode) != MODE_VECTOR_UFRACT
      && GET_MODE_CLASS (compute_mode) != MODE_VECTOR_ACCUM
      && GET_MODE_CLASS (compute_mode) != MODE_VECTOR_UACCUM)
    switch (code)
      {
      case PLUS_EXPR:
      case MINUS_EXPR:
        if (!TYPE_OVERFLOW_TRAPS (type))
	  return expand_vector_addition (gsi, do_binop, do_plus_minus, type,
					 gimple_assign_rhs1 (assign),
					 gimple_assign_rhs2 (assign), code);
	break;

      case NEGATE_EXPR:
        if (!TYPE_OVERFLOW_TRAPS (type))
          return expand_vector_addition (gsi, do_unop, do_negate, type,
		      		         gimple_assign_rhs1 (assign),
					 NULL_TREE, code);
	break;

      case BIT_AND_EXPR:
      case BIT_IOR_EXPR:
      case BIT_XOR_EXPR:
        return expand_vector_parallel (gsi, do_binop, type,
		      		       gimple_assign_rhs1 (assign),
				       gimple_assign_rhs2 (assign), code);

      case BIT_NOT_EXPR:
        return expand_vector_parallel (gsi, do_unop, type,
		      		       gimple_assign_rhs1 (assign),
        			       NULL_TREE, code);
      case EQ_EXPR:
      case NE_EXPR:
      case GT_EXPR:
      case LT_EXPR:
      case GE_EXPR:
      case LE_EXPR:
      case UNEQ_EXPR:
      case UNGT_EXPR:
      case UNLT_EXPR:
      case UNGE_EXPR:
      case UNLE_EXPR:
      case LTGT_EXPR:
      case ORDERED_EXPR:
      case UNORDERED_EXPR:
	{
	  tree rhs1 = gimple_assign_rhs1 (assign);
	  tree rhs2 = gimple_assign_rhs2 (assign);

	  return expand_vector_comparison (gsi, type, rhs1, rhs2, code);
	}
      default:
	break;
      }

  if (TREE_CODE_CLASS (code) == tcc_unary)
    return expand_vector_piecewise (gsi, do_unop, type, compute_type,
				    gimple_assign_rhs1 (assign),
				    NULL_TREE, code);
  else
    return expand_vector_piecewise (gsi, do_binop, type, compute_type,
				    gimple_assign_rhs1 (assign),
				    gimple_assign_rhs2 (assign), code);
}

/* Return a type for the widest vector mode whose components are of mode
   INNER_MODE, or NULL_TREE if none is found.
   SATP is true for saturating fixed-point types.  */

static tree
type_for_widest_vector_mode (enum machine_mode inner_mode, optab op, int satp)
{
  enum machine_mode best_mode = VOIDmode, mode;
  int best_nunits = 0;

  if (SCALAR_FLOAT_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_FLOAT;
  else if (SCALAR_FRACT_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_FRACT;
  else if (SCALAR_UFRACT_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_UFRACT;
  else if (SCALAR_ACCUM_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_ACCUM;
  else if (SCALAR_UACCUM_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_UACCUM;
  else
    mode = MIN_MODE_VECTOR_INT;

  for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
    if (GET_MODE_INNER (mode) == inner_mode
        && GET_MODE_NUNITS (mode) > best_nunits
	&& optab_handler (op, mode) != CODE_FOR_nothing)
      best_mode = mode, best_nunits = GET_MODE_NUNITS (mode);

  if (best_mode == VOIDmode)
    return NULL_TREE;
  else
    {
      /* For fixed-point modes, we need to pass satp as the 2nd parameter.  */
      if (ALL_FIXED_POINT_MODE_P (best_mode))
	return lang_hooks.types.type_for_mode (best_mode, satp);

      return lang_hooks.types.type_for_mode (best_mode, 1);
    }
}


/* Build a reference to the element of the vector VECT.  Function
   returns either the element itself, either BIT_FIELD_REF, or an
   ARRAY_REF expression.

   GSI is requred to insert temporary variables while building a
   refernece to the element of the vector VECT.

   PTMPVEC is a pointer to the temporary variable for caching
   purposes.  In case when PTMPVEC is NULL new temporary variable
   will be created.  */
static tree
vector_element (gimple_stmt_iterator *gsi, tree vect, tree idx, tree *ptmpvec)
{
  tree vect_type, vect_elt_type;
  gimple asgn;
  tree tmpvec;
  tree arraytype;
  bool need_asgn = true;
  unsigned int elements;

  vect_type = TREE_TYPE (vect);
  vect_elt_type = TREE_TYPE (vect_type);
  elements = TYPE_VECTOR_SUBPARTS (vect_type);

  if (TREE_CODE (idx) == INTEGER_CST)
    {
      unsigned HOST_WIDE_INT index;

      /* Given that we're about to compute a binary modulus,
	 we don't care about the high bits of the value.  */
      index = TREE_INT_CST_LOW (idx);
      if (!host_integerp (idx, 1) || index >= elements)
	{
	  index &= elements - 1;
	  idx = build_int_cst (TREE_TYPE (idx), index);
	}

      /* When lowering a vector statement sequence do some easy
         simplification by looking through intermediate vector results.  */
      if (TREE_CODE (vect) == SSA_NAME)
	{
	  gimple def_stmt = SSA_NAME_DEF_STMT (vect);
	  if (is_gimple_assign (def_stmt)
	      && (gimple_assign_rhs_code (def_stmt) == VECTOR_CST
		  || gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR))
	    vect = gimple_assign_rhs1 (def_stmt);
	}

      if (TREE_CODE (vect) == VECTOR_CST)
        {
	  unsigned i;
	  tree vals = TREE_VECTOR_CST_ELTS (vect);
	  for (i = 0; vals; vals = TREE_CHAIN (vals), ++i)
	    if (i == index)
	       return TREE_VALUE (vals);
	  return build_zero_cst (vect_elt_type);
        }
      else if (TREE_CODE (vect) == CONSTRUCTOR)
        {
          unsigned i;
          tree elt_i, elt_v;

	  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (vect), i, elt_i, elt_v)
            if (operand_equal_p (elt_i, idx, 0))
              return elt_v;
          return build_zero_cst (vect_elt_type);
        }
      else
        {
	  tree size = TYPE_SIZE (vect_elt_type);
          tree pos = fold_build2 (MULT_EXPR, TREE_TYPE (idx), idx, size);
          return fold_build3 (BIT_FIELD_REF, vect_elt_type, vect, size, pos);
        }
    }

  if (!ptmpvec)
    tmpvec = create_tmp_var (vect_type, "vectmp");
  else if (!*ptmpvec)
    tmpvec = *ptmpvec = create_tmp_var (vect_type, "vectmp");
  else
    {
      tmpvec = *ptmpvec;
      need_asgn = false;
    }

  if (need_asgn)
    {
      TREE_ADDRESSABLE (tmpvec) = 1;
      asgn = gimple_build_assign (tmpvec, vect);
      gsi_insert_before (gsi, asgn, GSI_SAME_STMT);
    }

  arraytype = build_array_type_nelts (vect_elt_type, elements);
  return build4 (ARRAY_REF, vect_elt_type,
                 build1 (VIEW_CONVERT_EXPR, arraytype, tmpvec),
                 idx, NULL_TREE, NULL_TREE);
}

/* Check if VEC_PERM_EXPR within the given setting is supported
   by hardware, or lower it piecewise.

   When VEC_PERM_EXPR has the same first and second operands:
   VEC_PERM_EXPR <v0, v0, mask> the lowered version would be
   {v0[mask[0]], v0[mask[1]], ...}
   MASK and V0 must have the same number of elements.

   Otherwise VEC_PERM_EXPR <v0, v1, mask> is lowered to
   {mask[0] < len(v0) ? v0[mask[0]] : v1[mask[0]], ...}
   V0 and V1 must have the same type.  MASK, V0, V1 must have the
   same number of arguments.  */

static void
lower_vec_perm (gimple_stmt_iterator *gsi)
{
  gimple stmt = gsi_stmt (*gsi);
  tree mask = gimple_assign_rhs3 (stmt);
  tree vec0 = gimple_assign_rhs1 (stmt);
  tree vec1 = gimple_assign_rhs2 (stmt);
  tree vect_type = TREE_TYPE (vec0);
  tree mask_type = TREE_TYPE (mask);
  tree vect_elt_type = TREE_TYPE (vect_type);
  tree mask_elt_type = TREE_TYPE (mask_type);
  unsigned int elements = TYPE_VECTOR_SUBPARTS (vect_type);
  VEC(constructor_elt,gc) *v;
  tree constr, t, si, i_val;
  tree vec0tmp = NULL_TREE, vec1tmp = NULL_TREE, masktmp = NULL_TREE;
  bool two_operand_p = !operand_equal_p (vec0, vec1, 0);
  location_t loc = gimple_location (gsi_stmt (*gsi));
  unsigned i;

  if (TREE_CODE (mask) == VECTOR_CST)
    {
      unsigned char *sel_int = XALLOCAVEC (unsigned char, elements);
      tree vals = TREE_VECTOR_CST_ELTS (mask);

      for (i = 0; i < elements; ++i, vals = TREE_CHAIN (vals))
	sel_int[i] = TREE_INT_CST_LOW (TREE_VALUE (vals));

      if (can_vec_perm_p (TYPE_MODE (vect_type), false, sel_int))
	return;
    }
  else if (can_vec_perm_p (TYPE_MODE (vect_type), true, NULL))
    return;
  
  warning_at (loc, OPT_Wvector_operation_performance,
              "vector shuffling operation will be expanded piecewise");

  v = VEC_alloc (constructor_elt, gc, elements);
  for (i = 0; i < elements; i++)
    {
      si = size_int (i);
      i_val = vector_element (gsi, mask, si, &masktmp);

      if (TREE_CODE (i_val) == INTEGER_CST)
        {
	  unsigned HOST_WIDE_INT index;

	  index = TREE_INT_CST_LOW (i_val);
	  if (!host_integerp (i_val, 1) || index >= elements)
	    i_val = build_int_cst (mask_elt_type, index & (elements - 1));

          if (two_operand_p && (index & elements) != 0)
	    t = vector_element (gsi, vec1, i_val, &vec1tmp);
	  else
	    t = vector_element (gsi, vec0, i_val, &vec0tmp);

          t = force_gimple_operand_gsi (gsi, t, true, NULL_TREE,
					true, GSI_SAME_STMT);
        }
      else
        {
	  tree cond = NULL_TREE, v0_val;

	  if (two_operand_p)
	    {
	      cond = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
			          build_int_cst (mask_elt_type, elements));
	      cond = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
					       true, GSI_SAME_STMT);
	    }

	  i_val = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
			       build_int_cst (mask_elt_type, elements - 1));
	  i_val = force_gimple_operand_gsi (gsi, i_val, true, NULL_TREE,
					    true, GSI_SAME_STMT);

	  v0_val = vector_element (gsi, vec0, i_val, &vec0tmp);
	  v0_val = force_gimple_operand_gsi (gsi, v0_val, true, NULL_TREE,
					     true, GSI_SAME_STMT);

	  if (two_operand_p)
	    {
	      tree v1_val;

	      v1_val = vector_element (gsi, vec1, i_val, &vec1tmp);
	      v1_val = force_gimple_operand_gsi (gsi, v1_val, true, NULL_TREE,
						 true, GSI_SAME_STMT);

	      cond = fold_build2 (EQ_EXPR, boolean_type_node,
				  cond, build_zero_cst (mask_elt_type));
	      cond = fold_build3 (COND_EXPR, vect_elt_type,
				  cond, v0_val, v1_val);
              t = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
					    true, GSI_SAME_STMT);
            }
	  else
	    t = v0_val;
        }

      CONSTRUCTOR_APPEND_ELT (v, si, t);
    }

  constr = build_constructor (vect_type, v);
  gimple_assign_set_rhs_from_tree (gsi, constr);
  update_stmt (gsi_stmt (*gsi));
}

/* Process one statement.  If we identify a vector operation, expand it.  */

static void
expand_vector_operations_1 (gimple_stmt_iterator *gsi)
{
  gimple stmt = gsi_stmt (*gsi);
  tree lhs, rhs1, rhs2 = NULL, type, compute_type;
  enum tree_code code;
  enum machine_mode compute_mode;
  optab op = NULL;
  enum gimple_rhs_class rhs_class;
  tree new_rhs;

  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return;

  code = gimple_assign_rhs_code (stmt);
  rhs_class = get_gimple_rhs_class (code);
  lhs = gimple_assign_lhs (stmt);

  if (code == VEC_PERM_EXPR)
    {
      lower_vec_perm (gsi);
      return;
    }

  if (rhs_class != GIMPLE_UNARY_RHS && rhs_class != GIMPLE_BINARY_RHS)
    return;

  rhs1 = gimple_assign_rhs1 (stmt);
  type = gimple_expr_type (stmt);
  if (rhs_class == GIMPLE_BINARY_RHS)
    rhs2 = gimple_assign_rhs2 (stmt);

  if (TREE_CODE (type) != VECTOR_TYPE)
    return;

  if (code == NOP_EXPR
      || code == FLOAT_EXPR
      || code == FIX_TRUNC_EXPR
      || code == VIEW_CONVERT_EXPR)
    return;

  /* These are only created by the vectorizer, after having queried
     the target support.  It's more than just looking at the optab,
     and there's no need to do it again.  */
  if (code == VEC_INTERLEAVE_HIGH_EXPR
      || code == VEC_INTERLEAVE_LOW_EXPR
      || code == VEC_EXTRACT_EVEN_EXPR
      || code == VEC_EXTRACT_ODD_EXPR)
    return;

  gcc_assert (code != CONVERT_EXPR);

  /* The signedness is determined from input argument.  */
  if (code == VEC_UNPACK_FLOAT_HI_EXPR
      || code == VEC_UNPACK_FLOAT_LO_EXPR)
    type = TREE_TYPE (rhs1);

  /* Choose between vector shift/rotate by vector and vector shift/rotate by
     scalar */
  if (code == LSHIFT_EXPR
      || code == RSHIFT_EXPR
      || code == LROTATE_EXPR
      || code == RROTATE_EXPR)
    {
      /* Check whether we have vector <op> {x,x,x,x} where x
         could be a scalar variable or a constant.  Transform
         vector <op> {x,x,x,x} ==> vector <op> scalar.  */
      if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (rhs2))))
        {
          tree first;
          gimple def_stmt;

          if ((TREE_CODE (rhs2) == VECTOR_CST
	       && (first = uniform_vector_p (rhs2)) != NULL_TREE)
	      || (TREE_CODE (rhs2) == SSA_NAME
		  && (def_stmt = SSA_NAME_DEF_STMT (rhs2))
		  && gimple_assign_single_p (def_stmt)
		  && (first = uniform_vector_p
		      (gimple_assign_rhs1 (def_stmt))) != NULL_TREE))
            {
              gimple_assign_set_rhs2 (stmt, first);
              update_stmt (stmt);
              rhs2 = first;
            }
        }

      if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (rhs2))))
        op = optab_for_tree_code (code, type, optab_vector);
      else
	{
          op = optab_for_tree_code (code, type, optab_scalar);

	  /* The rtl expander will expand vector/scalar as vector/vector
	     if necessary.  Don't bother converting the stmt here.  */
	  if (op == NULL
	      || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
	    op = optab_for_tree_code (code, type, optab_vector);
	}
    }
  else
    op = optab_for_tree_code (code, type, optab_default);

  /* For widening/narrowing vector operations, the relevant type is of the
     arguments, not the widened result.  VEC_UNPACK_FLOAT_*_EXPR is
     calculated in the same way above.  */
  if (code == WIDEN_SUM_EXPR
      || code == VEC_WIDEN_MULT_HI_EXPR
      || code == VEC_WIDEN_MULT_LO_EXPR
      || code == VEC_UNPACK_HI_EXPR
      || code == VEC_UNPACK_LO_EXPR
      || code == VEC_PACK_TRUNC_EXPR
      || code == VEC_PACK_SAT_EXPR
      || code == VEC_PACK_FIX_TRUNC_EXPR
      || code == VEC_WIDEN_LSHIFT_HI_EXPR
      || code == VEC_WIDEN_LSHIFT_LO_EXPR)
    type = TREE_TYPE (rhs1);

  /* Optabs will try converting a negation into a subtraction, so
     look for it as well.  TODO: negation of floating-point vectors
     might be turned into an exclusive OR toggling the sign bit.  */
  if (op == NULL
      && code == NEGATE_EXPR
      && INTEGRAL_TYPE_P (TREE_TYPE (type)))
    op = optab_for_tree_code (MINUS_EXPR, type, optab_default);

  /* For very wide vectors, try using a smaller vector mode.  */
  compute_type = type;
  if (TYPE_MODE (type) == BLKmode && op)
    {
      tree vector_compute_type
        = type_for_widest_vector_mode (TYPE_MODE (TREE_TYPE (type)), op,
				       TYPE_SATURATING (TREE_TYPE (type)));
      if (vector_compute_type != NULL_TREE
	  && (TYPE_VECTOR_SUBPARTS (vector_compute_type)
	      < TYPE_VECTOR_SUBPARTS (compute_type)))
	compute_type = vector_compute_type;
    }

  /* If we are breaking a BLKmode vector into smaller pieces,
     type_for_widest_vector_mode has already looked into the optab,
     so skip these checks.  */
  if (compute_type == type)
    {
      compute_mode = TYPE_MODE (compute_type);
      if (VECTOR_MODE_P (compute_mode)
          && op != NULL
	  && optab_handler (op, compute_mode) != CODE_FOR_nothing)
	return;
      else
	/* There is no operation in hardware, so fall back to scalars.  */
	compute_type = TREE_TYPE (type);
    }

  gcc_assert (code != VEC_LSHIFT_EXPR && code != VEC_RSHIFT_EXPR);
  new_rhs = expand_vector_operation (gsi, type, compute_type, stmt, code);

  /* Leave expression untouched for later expansion.  */
  if (new_rhs == NULL_TREE)
    return;

  if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs)))
    new_rhs = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
                               new_rhs);

  /* NOTE:  We should avoid using gimple_assign_set_rhs_from_tree. One
     way to do it is change expand_vector_operation and its callees to
     return a tree_code, RHS1 and RHS2 instead of a tree. */
  gimple_assign_set_rhs_from_tree (gsi, new_rhs);
  update_stmt (gsi_stmt (*gsi));
}

/* Use this to lower vector operations introduced by the vectorizer,
   if it may need the bit-twiddling tricks implemented in this file.  */

static bool
gate_expand_vector_operations_ssa (void)
{
  return optimize == 0;
}

static unsigned int
expand_vector_operations (void)
{
  gimple_stmt_iterator gsi;
  basic_block bb;
  bool cfg_changed = false;

  FOR_EACH_BB (bb)
    {
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  expand_vector_operations_1 (&gsi);
	  /* ???  If we do not cleanup EH then we will ICE in
	     verification.  But in reality we have created wrong-code
	     as we did not properly transition EH info and edges to
	     the piecewise computations.  */
	  if (maybe_clean_eh_stmt (gsi_stmt (gsi))
	      && gimple_purge_dead_eh_edges (bb))
	    cfg_changed = true;
	}
    }

  return cfg_changed ? TODO_cleanup_cfg : 0;
}

struct gimple_opt_pass pass_lower_vector =
{
 {
  GIMPLE_PASS,
  "veclower",				/* name */
  gate_expand_vector_operations_ssa,    /* gate */
  expand_vector_operations,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_NONE,				/* tv_id */
  PROP_cfg,				/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_update_ssa	                /* todo_flags_finish */
    | TODO_verify_ssa
    | TODO_verify_stmts | TODO_verify_flow
    | TODO_cleanup_cfg
 }
};

struct gimple_opt_pass pass_lower_vector_ssa =
{
 {
  GIMPLE_PASS,
  "veclower2",				/* name */
  0,	                                /* gate */
  expand_vector_operations,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_NONE,				/* tv_id */
  PROP_cfg,				/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_update_ssa	                /* todo_flags_finish */
    | TODO_verify_ssa
    | TODO_verify_stmts | TODO_verify_flow
    | TODO_cleanup_cfg
 }
};

#include "gt-tree-vect-generic.h"