summaryrefslogtreecommitdiff
path: root/gcc/tree-tailcall.c
blob: cca99a487f21a294a940a16b2a1c2eb3f1bb7f43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
/* Tail call optimization on trees.
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "function.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "diagnostic.h"
#include "except.h"
#include "tree-pass.h"
#include "flags.h"
#include "langhooks.h"

/* The file implements the tail recursion elimination.  It is also used to
   analyze the tail calls in general, passing the results to the rtl level
   where they are used for sibcall optimization.

   In addition to the standard tail recursion elimination, we handle the most
   trivial cases of making the call tail recursive by creating accumulators.
   For example the following function

   int sum (int n)
   {
     if (n > 0)
       return n + sum (n - 1);
     else
       return 0;
   }

   is transformed into

   int sum (int n)
   {
     int acc = 0;

     while (n > 0)
       acc += n--;

     return acc;
   }

   To do this, we maintain two accumulators (a_acc and m_acc) that indicate 
   when we reach the return x statement, we should return a_acc + x * m_acc
   instead.  They are initially initialized to 0 and 1, respectively,
   so the semantics of the function is obviously preserved.  If we are
   guaranteed that the value of the accumulator never change, we
   omit the accumulator.

   There are three cases how the function may exit.  The first one is
   handled in adjust_return_value, the other two in adjust_accumulator_values
   (the second case is actually a special case of the third one and we
   present it separately just for clarity):

   1) Just return x, where x is not in any of the remaining special shapes.
      We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
      
   2) return f (...), where f is the current function, is rewritten in a
      classical tail-recursion elimination way, into assignment of arguments
      and jump to the start of the function.  Values of the accumulators
      are unchanged.
	       
   3) return a + m * f(...), where a and m do not depend on call to f.
      To preserve the semantics described before we want this to be rewritten
      in such a way that we finally return

      a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).

      I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
      eliminate the tail call to f.  Special cases when the value is just
      added or just multiplied are obtained by setting a = 0 or m = 1.

   TODO -- it is possible to do similar tricks for other operations.  */

/* A structure that describes the tailcall.  */

struct tailcall
{
  /* The block in that the call occur.  */
  basic_block call_block;

  /* The iterator pointing to the call statement.  */
  block_stmt_iterator call_bsi;

  /* True if it is a call to the current function.  */
  bool tail_recursion;

  /* The return value of the caller is mult * f + add, where f is the return
     value of the call.  */
  tree mult, add;

  /* Next tailcall in the chain.  */
  struct tailcall *next;
};

/* The variables holding the value of multiplicative and additive
   accumulator.  */
static tree m_acc, a_acc;

static bool suitable_for_tail_opt_p (void);
static bool optimize_tail_call (struct tailcall *, bool);
static void eliminate_tail_call (struct tailcall *);
static void find_tail_calls (basic_block, struct tailcall **);

/* Returns false when the function is not suitable for tail call optimization
   from some reason (e.g. if it takes variable number of arguments).  */

static bool
suitable_for_tail_opt_p (void)
{
  int i;

  if (current_function_stdarg)
    return false;

  /* No local variable should be call-clobbered.  We ignore any kind
     of memory tag, as these are not real variables.  */
  for (i = 0; i < (int) VARRAY_ACTIVE_SIZE (referenced_vars); i++)
    {
      tree var = VARRAY_TREE (referenced_vars, i);

      if (!(TREE_STATIC (var) || DECL_EXTERNAL (var))
	  && var_ann (var)->mem_tag_kind == NOT_A_TAG
	  && is_call_clobbered (var))
	return false;
    }

  return true;
}
/* Returns false when the function is not suitable for tail call optimization
   from some reason (e.g. if it takes variable number of arguments).
   This test must pass in addition to suitable_for_tail_opt_p in order to make
   tail call discovery happen.  */

static bool
suitable_for_tail_call_opt_p (void)
{
  tree param;

  /* alloca (until we have stack slot life analysis) inhibits
     sibling call optimizations, but not tail recursion.  */
  if (current_function_calls_alloca)
    return false;

  /* If we are using sjlj exceptions, we may need to add a call to
     _Unwind_SjLj_Unregister at exit of the function.  Which means
     that we cannot do any sibcall transformations.  */
  if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ())
    return false;

  /* Any function that calls setjmp might have longjmp called from
     any called function.  ??? We really should represent this
     properly in the CFG so that this needn't be special cased.  */
  if (current_function_calls_setjmp)
    return false;

  /* ??? It is OK if the argument of a function is taken in some cases,
     but not in all cases.  See PR15387 and PR19616.  Revisit for 4.1.  */
  for (param = DECL_ARGUMENTS (current_function_decl);
       param;
       param = TREE_CHAIN (param))
    if (TREE_ADDRESSABLE (param))
      return false;

  return true;
}

/* Checks whether the expression EXPR in stmt AT is independent of the
   statement pointed by BSI (in a sense that we already know EXPR's value
   at BSI).  We use the fact that we are only called from the chain of
   basic blocks that have only single successor.  Returns the expression
   containing the value of EXPR at BSI.  */

static tree
independent_of_stmt_p (tree expr, tree at, block_stmt_iterator bsi)
{
  basic_block bb, call_bb, at_bb;
  edge e;
  edge_iterator ei;

  if (is_gimple_min_invariant (expr))
    return expr;

  if (TREE_CODE (expr) != SSA_NAME)
    return NULL_TREE;

  /* Mark the blocks in the chain leading to the end.  */
  at_bb = bb_for_stmt (at);
  call_bb = bb_for_stmt (bsi_stmt (bsi));
  for (bb = call_bb; bb != at_bb; bb = EDGE_SUCC (bb, 0)->dest)
    bb->aux = &bb->aux;
  bb->aux = &bb->aux;

  while (1)
    { 
      at = SSA_NAME_DEF_STMT (expr);
      bb = bb_for_stmt (at);

      /* The default definition or defined before the chain.  */
      if (!bb || !bb->aux)
	break;

      if (bb == call_bb)
	{
	  for (; !bsi_end_p (bsi); bsi_next (&bsi))
	    if (bsi_stmt (bsi) == at)
	      break;

	  if (!bsi_end_p (bsi))
	    expr = NULL_TREE;
	  break;
	}

      if (TREE_CODE (at) != PHI_NODE)
	{
	  expr = NULL_TREE;
	  break;
	}

      FOR_EACH_EDGE (e, ei, bb->preds)
	if (e->src->aux)
	  break;
      gcc_assert (e);

      expr = PHI_ARG_DEF_FROM_EDGE (at, e);
      if (TREE_CODE (expr) != SSA_NAME)
	{
	  /* The value is a constant.  */
	  break;
	}
    }

  /* Unmark the blocks.  */
  for (bb = call_bb; bb != at_bb; bb = EDGE_SUCC (bb, 0)->dest)
    bb->aux = NULL;
  bb->aux = NULL;

  return expr;
}

/* Simulates the effect of an assignment of ASS in STMT on the return value
   of the tail recursive CALL passed in ASS_VAR.  M and A are the
   multiplicative and the additive factor for the real return value.  */

static bool
process_assignment (tree ass, tree stmt, block_stmt_iterator call, tree *m,
		    tree *a, tree *ass_var)
{
  tree op0, op1, non_ass_var;
  tree dest = TREE_OPERAND (ass, 0);
  tree src = TREE_OPERAND (ass, 1);
  enum tree_code code = TREE_CODE (src);
  tree src_var = src;

  /* See if this is a simple copy operation of an SSA name to the function
     result.  In that case we may have a simple tail call.  Ignore type
     conversions that can never produce extra code between the function
     call and the function return.  */
  STRIP_NOPS (src_var);
  if (TREE_CODE (src_var) == SSA_NAME)
    {
      if (src_var != *ass_var)
	return false;

      *ass_var = dest;
      return true;
    }

  if (TREE_CODE_CLASS (code) != tcc_binary)
    return false;

  /* Accumulator optimizations will reverse the order of operations.
     We can only do that for floating-point types if we're assuming
     that addition and multiplication are associative.  */
  if (!flag_unsafe_math_optimizations)
    if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
      return false;

  /* We only handle the code like

     x = call ();
     y = m * x;
     z = y + a;
     return z;

     TODO -- Extend it for cases where the linear transformation of the output
     is expressed in a more complicated way.  */

  op0 = TREE_OPERAND (src, 0);
  op1 = TREE_OPERAND (src, 1);

  if (op0 == *ass_var
      && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
    ;
  else if (op1 == *ass_var
	   && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
    ;
  else
    return false;

  switch (code)
    {
    case PLUS_EXPR:
      /* There should be no previous addition.  TODO -- it should be fairly
	 straightforward to lift this restriction -- just allow storing
	 more complicated expressions in *A, and gimplify it in
	 adjust_accumulator_values.  */
      if (*a)
	return false;
      *a = non_ass_var;
      *ass_var = dest;
      return true;

    case MULT_EXPR:
      /* Similar remark applies here.  Handling multiplication after addition
	 is just slightly more complicated -- we need to multiply both *A and
	 *M.  */
      if (*a || *m)
	return false;
      *m = non_ass_var;
      *ass_var = dest;
      return true;

      /* TODO -- Handle other codes (NEGATE_EXPR, MINUS_EXPR).  */

    default:
      return false;
    }
}

/* Propagate VAR through phis on edge E.  */

static tree
propagate_through_phis (tree var, edge e)
{
  basic_block dest = e->dest;
  tree phi;

  for (phi = phi_nodes (dest); phi; phi = PHI_CHAIN (phi))
    if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
      return PHI_RESULT (phi);

  return var;
}

/* Finds tailcalls falling into basic block BB. The list of found tailcalls is
   added to the start of RET.  */

static void
find_tail_calls (basic_block bb, struct tailcall **ret)
{
  tree ass_var, ret_var, stmt, func, param, args, call = NULL_TREE;
  block_stmt_iterator bsi, absi;
  bool tail_recursion;
  struct tailcall *nw;
  edge e;
  tree m, a;
  basic_block abb;
  stmt_ann_t ann;

  if (EDGE_COUNT (bb->succs) > 1)
    return;

  for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
    {
      stmt = bsi_stmt (bsi);

      /* Ignore labels.  */
      if (TREE_CODE (stmt) == LABEL_EXPR)
	continue;

      get_stmt_operands (stmt);

      /* Check for a call.  */
      if (TREE_CODE (stmt) == MODIFY_EXPR)
	{
	  ass_var = TREE_OPERAND (stmt, 0);
	  call = TREE_OPERAND (stmt, 1);
	  if (TREE_CODE (call) == WITH_SIZE_EXPR)
	    call = TREE_OPERAND (call, 0);
	}
      else
	{
	  ass_var = NULL_TREE;
	  call = stmt;
	}

      if (TREE_CODE (call) == CALL_EXPR)
	break;

      /* If the statement has virtual or volatile operands, fail.  */
      ann = stmt_ann (stmt);
      if (NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann))
          || NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann))
	  || NUM_VUSES (VUSE_OPS (ann))
	  || ann->has_volatile_ops)
	return;
    }

  if (bsi_end_p (bsi))
    {
      edge_iterator ei;
      /* Recurse to the predecessors.  */
      FOR_EACH_EDGE (e, ei, bb->preds)
	find_tail_calls (e->src, ret);

      return;
    }

  /* We found the call, check whether it is suitable.  */
  tail_recursion = false;
  func = get_callee_fndecl (call);
  if (func == current_function_decl)
    {
      for (param = DECL_ARGUMENTS (func), args = TREE_OPERAND (call, 1);
	   param && args;
	   param = TREE_CHAIN (param), args = TREE_CHAIN (args))
	{
	  tree arg = TREE_VALUE (args);
	  if (param != arg)
	    {
	      /* Make sure there are no problems with copying.  The parameter
	         have a copyable type and the two arguments must have reasonably
	         equivalent types.  The latter requirement could be relaxed if
	         we emitted a suitable type conversion statement.  */
	      if (!is_gimple_reg_type (TREE_TYPE (param))
		  || !lang_hooks.types_compatible_p (TREE_TYPE (param),
						     TREE_TYPE (arg)))
		break;

	      /* The parameter should be a real operand, so that phi node
		 created for it at the start of the function has the meaning
		 of copying the value.  This test implies is_gimple_reg_type
		 from the previous condition, however this one could be
		 relaxed by being more careful with copying the new value
		 of the parameter (emitting appropriate MODIFY_EXPR and
		 updating the virtual operands).  */
	      if (!is_gimple_reg (param))
		break;
	    }
	}
      if (!args && !param)
	tail_recursion = true;
    }

  /* Now check the statements after the call.  None of them has virtual
     operands, so they may only depend on the call through its return
     value.  The return value should also be dependent on each of them,
     since we are running after dce.  */
  m = NULL_TREE;
  a = NULL_TREE;

  abb = bb;
  absi = bsi;
  while (1)
    {
      bsi_next (&absi);

      while (bsi_end_p (absi))
	{
	  ass_var = propagate_through_phis (ass_var, EDGE_SUCC (abb, 0));
	  abb = EDGE_SUCC (abb, 0)->dest;
	  absi = bsi_start (abb);
	}

      stmt = bsi_stmt (absi);

      if (TREE_CODE (stmt) == LABEL_EXPR)
	continue;

      if (TREE_CODE (stmt) == RETURN_EXPR)
	break;

      if (TREE_CODE (stmt) != MODIFY_EXPR)
	return;

      if (!process_assignment (stmt, stmt, bsi, &m, &a, &ass_var))
	return;
    }

  /* See if this is a tail call we can handle.  */
  ret_var = TREE_OPERAND (stmt, 0);
  if (ret_var
      && TREE_CODE (ret_var) == MODIFY_EXPR)
    {
      tree ret_op = TREE_OPERAND (ret_var, 1);
      STRIP_NOPS (ret_op);
      if (!tail_recursion
	  && TREE_CODE (ret_op) != SSA_NAME)
	return;

      if (!process_assignment (ret_var, stmt, bsi, &m, &a, &ass_var))
	return;
      ret_var = TREE_OPERAND (ret_var, 0);
    }

  /* We may proceed if there either is no return value, or the return value
     is identical to the call's return.  */
  if (ret_var
      && (ret_var != ass_var))
    return;

  /* If this is not a tail recursive call, we cannot handle addends or
     multiplicands.  */
  if (!tail_recursion && (m || a))
    return;

  nw = xmalloc (sizeof (struct tailcall));

  nw->call_block = bb;
  nw->call_bsi = bsi;

  nw->tail_recursion = tail_recursion;

  nw->mult = m;
  nw->add = a;

  nw->next = *ret;
  *ret = nw;
}

/* Adjust the accumulator values according to A and M after BSI, and update
   the phi nodes on edge BACK.  */

static void
adjust_accumulator_values (block_stmt_iterator bsi, tree m, tree a, edge back)
{
  tree stmt, var, phi, tmp;
  tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
  tree a_acc_arg = a_acc, m_acc_arg = m_acc;

  if (a)
    {
      if (m_acc)
	{
	  if (integer_onep (a))
	    var = m_acc;
	  else
	    {
	      stmt = build (MODIFY_EXPR, ret_type, NULL_TREE,
			    build (MULT_EXPR, ret_type, m_acc, a));

	      tmp = create_tmp_var (ret_type, "acc_tmp");
	      add_referenced_tmp_var (tmp);

	      var = make_ssa_name (tmp, stmt);
	      TREE_OPERAND (stmt, 0) = var;
	      bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
	    }
	}
      else
	var = a;

      stmt = build (MODIFY_EXPR, ret_type, NULL_TREE,
		    build (PLUS_EXPR, ret_type, a_acc, var));
      var = make_ssa_name (SSA_NAME_VAR (a_acc), stmt);
      TREE_OPERAND (stmt, 0) = var;
      bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
      a_acc_arg = var;
    }

  if (m)
    {
      stmt = build (MODIFY_EXPR, ret_type, NULL_TREE,
		    build (MULT_EXPR, ret_type, m_acc, m));
      var = make_ssa_name (SSA_NAME_VAR (m_acc), stmt);
      TREE_OPERAND (stmt, 0) = var;
      bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
      m_acc_arg = var;
    }

  if (a_acc)
    {
      for (phi = phi_nodes (back->dest); phi; phi = PHI_CHAIN (phi))
	if (PHI_RESULT (phi) == a_acc)
	  break;

      add_phi_arg (phi, a_acc_arg, back);
    }

  if (m_acc)
    {
      for (phi = phi_nodes (back->dest); phi; phi = PHI_CHAIN (phi))
	if (PHI_RESULT (phi) == m_acc)
	  break;

      add_phi_arg (phi, m_acc_arg, back);
    }
}

/* Adjust value of the return at the end of BB according to M and A
   accumulators.  */

static void
adjust_return_value (basic_block bb, tree m, tree a)
{
  tree ret_stmt = last_stmt (bb), ret_var, var, stmt, tmp;
  tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
  block_stmt_iterator bsi = bsi_last (bb);

  gcc_assert (TREE_CODE (ret_stmt) == RETURN_EXPR);

  ret_var = TREE_OPERAND (ret_stmt, 0);
  if (!ret_var)
    return;

  if (TREE_CODE (ret_var) == MODIFY_EXPR)
    {
      ret_var->common.ann = (tree_ann_t) stmt_ann (ret_stmt);
      bsi_replace (&bsi, ret_var, true);
      SSA_NAME_DEF_STMT (TREE_OPERAND (ret_var, 0)) = ret_var;
      ret_var = TREE_OPERAND (ret_var, 0);
      ret_stmt = build1 (RETURN_EXPR, TREE_TYPE (ret_stmt), ret_var);
      bsi_insert_after (&bsi, ret_stmt, BSI_NEW_STMT);
    }

  if (m)
    {
      stmt = build (MODIFY_EXPR, ret_type, NULL_TREE,
		    build (MULT_EXPR, ret_type, m_acc, ret_var));

      tmp = create_tmp_var (ret_type, "acc_tmp");
      add_referenced_tmp_var (tmp);

      var = make_ssa_name (tmp, stmt);
      TREE_OPERAND (stmt, 0) = var;
      bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
    }
  else
    var = ret_var;

  if (a)
    {
      stmt = build (MODIFY_EXPR, ret_type, NULL_TREE,
		    build (PLUS_EXPR, ret_type, a_acc, var));

      tmp = create_tmp_var (ret_type, "acc_tmp");
      add_referenced_tmp_var (tmp);

      var = make_ssa_name (tmp, stmt);
      TREE_OPERAND (stmt, 0) = var;
      bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
    }

  TREE_OPERAND (ret_stmt, 0) = var;
  modify_stmt (ret_stmt);
}

/* Eliminates tail call described by T.  TMP_VARS is a list of
   temporary variables used to copy the function arguments.  */

static void
eliminate_tail_call (struct tailcall *t)
{
  tree param, stmt, args, rslt, call;
  basic_block bb, first;
  edge e;
  tree phi;
  stmt_ann_t ann;
  v_may_def_optype v_may_defs;
  unsigned i;
  block_stmt_iterator bsi;

  stmt = bsi_stmt (t->call_bsi);
  get_stmt_operands (stmt);
  ann = stmt_ann (stmt);
  bb = t->call_block;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
	       bb->index);
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  if (TREE_CODE (stmt) == MODIFY_EXPR)
    stmt = TREE_OPERAND (stmt, 1);

  first = EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest;

  /* Remove the code after call_bsi that will become unreachable.  The
     possibly unreachable code in other blocks is removed later in
     cfg cleanup.  */
  bsi = t->call_bsi;
  bsi_next (&bsi);
  while (!bsi_end_p (bsi))
    {
      tree t = bsi_stmt (bsi);
      /* Do not remove the return statement, so that redirect_edge_and_branch
	 sees how the block ends.  */
      if (TREE_CODE (t) == RETURN_EXPR)
	break;

      bsi_remove (&bsi);
      release_defs (t);
    }

  /* Replace the call by a jump to the start of function.  */
  e = redirect_edge_and_branch (EDGE_SUCC (t->call_block, 0), first);
  gcc_assert (e);
  PENDING_STMT (e) = NULL_TREE;

  /* Add phi node entries for arguments.  Not every PHI node corresponds to
     a function argument (there may be PHI nodes for virtual definitions of the
     eliminated calls), so we search for a PHI corresponding to each argument
     rather than searching for which argument a PHI node corresponds to.  */
  
  for (param = DECL_ARGUMENTS (current_function_decl),
       args = TREE_OPERAND (stmt, 1);
       param;
       param = TREE_CHAIN (param),
       args = TREE_CHAIN (args))
    {
      
      for (phi = phi_nodes (first); phi; phi = PHI_CHAIN (phi))
	if (param == SSA_NAME_VAR (PHI_RESULT (phi)))
	  break;

      /* The phi node indeed does not have to be there, in case the operand is
	 invariant in the function.  */
      if (!phi)
	continue;

      add_phi_arg (phi, TREE_VALUE (args), e);
    }

  /* Add phi nodes for the call clobbered variables.  */
  v_may_defs = V_MAY_DEF_OPS (ann);
  for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
    {
      param = SSA_NAME_VAR (V_MAY_DEF_RESULT (v_may_defs, i));
      for (phi = phi_nodes (first); phi; phi = PHI_CHAIN (phi))
	if (param == SSA_NAME_VAR (PHI_RESULT (phi)))
	  break;

      if (!phi)
	{
	  tree name = var_ann (param)->default_def;
	  tree new_name;

	  if (!name)
	    {
	      /* It may happen that the tag does not have a default_def in case
		 when all uses of it are dominated by a MUST_DEF.  This however
		 means that it is not necessary to add a phi node for this
		 tag.  */
	      continue;
	    }
	  new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));

	  var_ann (param)->default_def = new_name;
	  phi = create_phi_node (name, first);
	  SSA_NAME_DEF_STMT (name) = phi;
	  add_phi_arg (phi, new_name, EDGE_SUCC (ENTRY_BLOCK_PTR, 0));

	  /* For all calls the same set of variables should be clobbered.  This
	     means that there always should be the appropriate phi node except
	     for the first time we eliminate the call.  */
	  gcc_assert (EDGE_COUNT (first->preds) <= 2);
	}

      add_phi_arg (phi, V_MAY_DEF_OP (v_may_defs, i), e);
    }

  /* Update the values of accumulators.  */
  adjust_accumulator_values (t->call_bsi, t->mult, t->add, e);

  call = bsi_stmt (t->call_bsi);
  if (TREE_CODE (call) == MODIFY_EXPR)
    {
      rslt = TREE_OPERAND (call, 0);

      /* Result of the call will no longer be defined.  So adjust the
	 SSA_NAME_DEF_STMT accordingly.  */
      SSA_NAME_DEF_STMT (rslt) = build_empty_stmt ();
    }

  bsi_remove (&t->call_bsi);
  release_defs (call);
}

/* Optimizes the tailcall described by T.  If OPT_TAILCALLS is true, also
   mark the tailcalls for the sibcall optimization.  */

static bool
optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
{
  if (t->tail_recursion)
    {
      eliminate_tail_call (t);
      return true;
    }

  if (opt_tailcalls)
    {
      tree stmt = bsi_stmt (t->call_bsi);

      stmt = get_call_expr_in (stmt);
      CALL_EXPR_TAILCALL (stmt) = 1;
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
	  fprintf (dump_file, "Found tail call ");
	  print_generic_expr (dump_file, stmt, dump_flags);
	  fprintf (dump_file, " in bb %i\n", t->call_block->index);
	}
    }

  return false;
}

/* Optimizes tail calls in the function, turning the tail recursion
   into iteration.  */

static void
tree_optimize_tail_calls_1 (bool opt_tailcalls)
{
  edge e;
  bool phis_constructed = false;
  struct tailcall *tailcalls = NULL, *act, *next;
  bool changed = false;
  basic_block first = EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest;
  tree stmt, param, ret_type, tmp, phi;
  edge_iterator ei;

  if (!suitable_for_tail_opt_p ())
    return;
  if (opt_tailcalls)
    opt_tailcalls = suitable_for_tail_call_opt_p ();

  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
    {
      /* Only traverse the normal exits, i.e. those that end with return
	 statement.  */
      stmt = last_stmt (e->src);

      if (stmt
	  && TREE_CODE (stmt) == RETURN_EXPR)
	find_tail_calls (e->src, &tailcalls);
    }

  /* Construct the phi nodes and accumulators if necessary.  */
  a_acc = m_acc = NULL_TREE;
  for (act = tailcalls; act; act = act->next)
    {
      if (!act->tail_recursion)
	continue;

      if (!phis_constructed)
	{
	  /* Ensure that there is only one predecessor of the block.  */
	  if (EDGE_COUNT (first->preds) > 1)
	    first = split_edge (EDGE_SUCC (ENTRY_BLOCK_PTR, 0));

	  /* Copy the args if needed.  */
	  for (param = DECL_ARGUMENTS (current_function_decl);
	       param;
	       param = TREE_CHAIN (param))
	    if (is_gimple_reg (param)
		&& var_ann (param)
		/* Also parameters that are only defined but never used need not
		   be copied.  */
		&& (var_ann (param)->default_def
		    && TREE_CODE (var_ann (param)->default_def) == SSA_NAME))
	    {
	      tree name = var_ann (param)->default_def;
	      tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
	      tree phi;

	      var_ann (param)->default_def = new_name;
	      phi = create_phi_node (name, first);
	      SSA_NAME_DEF_STMT (name) = phi;
	      add_phi_arg (phi, new_name, EDGE_PRED (first, 0));
	    }
	  phis_constructed = true;
	}

      if (act->add && !a_acc)
	{
	  ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));

	  tmp = create_tmp_var (ret_type, "add_acc");
	  add_referenced_tmp_var (tmp);

	  phi = create_phi_node (tmp, first);
	  add_phi_arg (phi,
		       /* RET_TYPE can be a float when -ffast-maths is
			  enabled.  */
		       fold_convert (ret_type, integer_zero_node),
		       EDGE_PRED (first, 0));
	  a_acc = PHI_RESULT (phi);
	}

      if (act->mult && !m_acc)
	{
	  ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));

	  tmp = create_tmp_var (ret_type, "mult_acc");
	  add_referenced_tmp_var (tmp);

	  phi = create_phi_node (tmp, first);
	  add_phi_arg (phi,
		       /* RET_TYPE can be a float when -ffast-maths is
			  enabled.  */
		       fold_convert (ret_type, integer_one_node),
		       EDGE_PRED (first, 0));
	  m_acc = PHI_RESULT (phi);
	}
    }

  for (; tailcalls; tailcalls = next)
    {
      next = tailcalls->next;
      changed |= optimize_tail_call (tailcalls, opt_tailcalls);
      free (tailcalls);
    }

  if (a_acc || m_acc)
    {
      /* Modify the remaining return statements.  */
      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
	{
	  stmt = last_stmt (e->src);

	  if (stmt
	      && TREE_CODE (stmt) == RETURN_EXPR)
	    adjust_return_value (e->src, m_acc, a_acc);
	}
    }

  if (changed)
    {
      free_dominance_info (CDI_DOMINATORS);
      cleanup_tree_cfg ();
    }
}

static void
execute_tail_recursion (void)
{
  tree_optimize_tail_calls_1 (false);
}

static bool
gate_tail_calls (void)
{
  return flag_optimize_sibling_calls != 0;
}

static void
execute_tail_calls (void)
{
  tree_optimize_tail_calls_1 (true);
}

struct tree_opt_pass pass_tail_recursion = 
{
  "tailr",				/* name */
  NULL,					/* gate */
  execute_tail_recursion,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func | TODO_verify_ssa,	/* todo_flags_finish */
  0					/* letter */
};

struct tree_opt_pass pass_tail_calls = 
{
  "tailc",				/* name */
  gate_tail_calls,			/* gate */
  execute_tail_calls,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func | TODO_verify_ssa,	/* todo_flags_finish */
  0					/* letter */
};