1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
|
/* Predicate aware uninitialized variable warning.
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2010 Free Software
Foundation, Inc.
Contributed by Xinliang David Li <davidxl@google.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "tm_p.h"
#include "langhooks.h"
#include "basic-block.h"
#include "output.h"
#include "function.h"
#include "gimple-pretty-print.h"
#include "bitmap.h"
#include "pointer-set.h"
#include "tree-flow.h"
#include "gimple.h"
#include "tree-inline.h"
#include "timevar.h"
#include "hashtab.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "toplev.h"
#include "timevar.h"
/* This implements the pass that does predicate aware warning on uses of
possibly uninitialized variables. The pass first collects the set of
possibly uninitialized SSA names. For each such name, it walks through
all its immediate uses. For each immediate use, it rebuilds the condition
expression (the predicate) that guards the use. The predicate is then
examined to see if the variable is always defined under that same condition.
This is done either by pruning the unrealizable paths that lead to the
default definitions or by checking if the predicate set that guards the
defining paths is a superset of the use predicate. */
/* Pointer set of potentially undefined ssa names, i.e.,
ssa names that are defined by phi with operands that
are not defined or potentially undefined. */
static struct pointer_set_t *possibly_undefined_names = 0;
/* Bit mask handling macros. */
#define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
#define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
#define MASK_EMPTY(mask) (mask == 0)
/* Returns the first bit position (starting from LSB)
in mask that is non zero. Returns -1 if the mask is empty. */
static int
get_mask_first_set_bit (unsigned mask)
{
int pos = 0;
if (mask == 0)
return -1;
while ((mask & (1 << pos)) == 0)
pos++;
return pos;
}
#define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
/* Return true if T, an SSA_NAME, has an undefined value. */
bool
ssa_undefined_value_p (tree t)
{
tree var = SSA_NAME_VAR (t);
/* Parameters get their initial value from the function entry. */
if (TREE_CODE (var) == PARM_DECL)
return false;
/* When returning by reference the return address is actually a hidden
parameter. */
if (TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL
&& DECL_BY_REFERENCE (SSA_NAME_VAR (t)))
return false;
/* Hard register variables get their initial value from the ether. */
if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
return false;
/* The value is undefined iff its definition statement is empty. */
return (gimple_nop_p (SSA_NAME_DEF_STMT (t))
|| (possibly_undefined_names
&& pointer_set_contains (possibly_undefined_names, t)));
}
/* Checks if the operand OPND of PHI is defined by
another phi with one operand defined by this PHI,
but the rest operands are all defined. If yes,
returns true to skip this this operand as being
redundant. Can be enhanced to be more general. */
static bool
can_skip_redundant_opnd (tree opnd, gimple phi)
{
gimple op_def;
tree phi_def;
int i, n;
phi_def = gimple_phi_result (phi);
op_def = SSA_NAME_DEF_STMT (opnd);
if (gimple_code (op_def) != GIMPLE_PHI)
return false;
n = gimple_phi_num_args (op_def);
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (op_def, i);
if (TREE_CODE (op) != SSA_NAME)
continue;
if (op != phi_def && ssa_undefined_value_p (op))
return false;
}
return true;
}
/* Returns a bit mask holding the positions of arguments in PHI
that have empty (or possibly empty) definitions. */
static unsigned
compute_uninit_opnds_pos (gimple phi)
{
size_t i, n;
unsigned uninit_opnds = 0;
n = gimple_phi_num_args (phi);
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (phi, i);
if (TREE_CODE (op) == SSA_NAME
&& ssa_undefined_value_p (op)
&& !can_skip_redundant_opnd (op, phi))
MASK_SET_BIT (uninit_opnds, i);
}
return uninit_opnds;
}
/* Find the immediate postdominator PDOM of the specified
basic block BLOCK. */
static inline basic_block
find_pdom (basic_block block)
{
if (block == EXIT_BLOCK_PTR)
return EXIT_BLOCK_PTR;
else
{
basic_block bb
= get_immediate_dominator (CDI_POST_DOMINATORS, block);
if (! bb)
return EXIT_BLOCK_PTR;
return bb;
}
}
/* Find the immediate DOM of the specified
basic block BLOCK. */
static inline basic_block
find_dom (basic_block block)
{
if (block == ENTRY_BLOCK_PTR)
return ENTRY_BLOCK_PTR;
else
{
basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
if (! bb)
return ENTRY_BLOCK_PTR;
return bb;
}
}
/* Returns true if BB1 is postdominating BB2 and BB1 is
not a loop exit bb. The loop exit bb check is simple and does
not cover all cases. */
static bool
is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
{
if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
return false;
if (single_pred_p (bb1) && !single_succ_p (bb2))
return false;
return true;
}
/* Find the closest postdominator of a specified BB, which is control
equivalent to BB. */
static inline basic_block
find_control_equiv_block (basic_block bb)
{
basic_block pdom;
pdom = find_pdom (bb);
/* Skip the postdominating bb that is also loop exit. */
if (!is_non_loop_exit_postdominating (pdom, bb))
return NULL;
if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
return pdom;
return NULL;
}
#define MAX_NUM_CHAINS 8
#define MAX_CHAIN_LEN 5
/* Computes the control dependence chains (paths of edges)
for DEP_BB up to the dominating basic block BB (the head node of a
chain should be dominated by it). CD_CHAINS is pointer to a
dynamic array holding the result chains. CUR_CD_CHAIN is the current
chain being computed. *NUM_CHAINS is total number of chains. The
function returns true if the information is successfully computed,
return false if there is no control dependence or not computed. */
static bool
compute_control_dep_chain (basic_block bb, basic_block dep_bb,
VEC(edge, heap) **cd_chains,
size_t *num_chains,
VEC(edge, heap) **cur_cd_chain)
{
edge_iterator ei;
edge e;
size_t i;
bool found_cd_chain = false;
size_t cur_chain_len = 0;
if (EDGE_COUNT (bb->succs) < 2)
return false;
/* Could use a set instead. */
cur_chain_len = VEC_length (edge, *cur_cd_chain);
if (cur_chain_len > MAX_CHAIN_LEN)
return false;
for (i = 0; i < cur_chain_len; i++)
{
edge e = VEC_index (edge, *cur_cd_chain, i);
/* cycle detected. */
if (e->src == bb)
return false;
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
basic_block cd_bb;
if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
continue;
cd_bb = e->dest;
VEC_safe_push (edge, heap, *cur_cd_chain, e);
while (!is_non_loop_exit_postdominating (cd_bb, bb))
{
if (cd_bb == dep_bb)
{
/* Found a direct control dependence. */
if (*num_chains < MAX_NUM_CHAINS)
{
cd_chains[*num_chains]
= VEC_copy (edge, heap, *cur_cd_chain);
(*num_chains)++;
}
found_cd_chain = true;
/* check path from next edge. */
break;
}
/* Now check if DEP_BB is indirectly control dependent on BB. */
if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
num_chains, cur_cd_chain))
{
found_cd_chain = true;
break;
}
cd_bb = find_pdom (cd_bb);
if (cd_bb == EXIT_BLOCK_PTR)
break;
}
VEC_pop (edge, *cur_cd_chain);
gcc_assert (VEC_length (edge, *cur_cd_chain) == cur_chain_len);
}
gcc_assert (VEC_length (edge, *cur_cd_chain) == cur_chain_len);
return found_cd_chain;
}
typedef struct use_pred_info
{
gimple cond;
bool invert;
} *use_pred_info_t;
DEF_VEC_P(use_pred_info_t);
DEF_VEC_ALLOC_P(use_pred_info_t, heap);
/* Converts the chains of control dependence edges into a set of
predicates. A control dependence chain is represented by a vector
edges. DEP_CHAINS points to an array of dependence chains.
NUM_CHAINS is the size of the chain array. One edge in a dependence
chain is mapped to predicate expression represented by use_pred_info_t
type. One dependence chain is converted to a composite predicate that
is the result of AND operation of use_pred_info_t mapped to each edge.
A composite predicate is presented by a vector of use_pred_info_t. On
return, *PREDS points to the resulting array of composite predicates.
*NUM_PREDS is the number of composite predictes. */
static bool
convert_control_dep_chain_into_preds (VEC(edge, heap) **dep_chains,
size_t num_chains,
VEC(use_pred_info_t, heap) ***preds,
size_t *num_preds)
{
bool has_valid_pred = false;
size_t i, j;
if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
return false;
/* Now convert CD chains into predicates */
has_valid_pred = true;
/* Now convert the control dep chain into a set
of predicates. */
*preds = XCNEWVEC (VEC(use_pred_info_t, heap) *,
num_chains);
*num_preds = num_chains;
for (i = 0; i < num_chains; i++)
{
VEC(edge, heap) *one_cd_chain = dep_chains[i];
for (j = 0; j < VEC_length (edge, one_cd_chain); j++)
{
gimple cond_stmt;
gimple_stmt_iterator gsi;
basic_block guard_bb;
use_pred_info_t one_pred;
edge e;
e = VEC_index (edge, one_cd_chain, j);
guard_bb = e->src;
gsi = gsi_last_bb (guard_bb);
if (gsi_end_p (gsi))
{
has_valid_pred = false;
break;
}
cond_stmt = gsi_stmt (gsi);
if (gimple_code (cond_stmt) == GIMPLE_CALL
&& EDGE_COUNT (e->src->succs) >= 2)
{
/* Ignore EH edge. Can add assertion
on the other edge's flag. */
continue;
}
/* Skip if there is essentially one succesor. */
if (EDGE_COUNT (e->src->succs) == 2)
{
edge e1;
edge_iterator ei1;
bool skip = false;
FOR_EACH_EDGE (e1, ei1, e->src->succs)
{
if (EDGE_COUNT (e1->dest->succs) == 0)
{
skip = true;
break;
}
}
if (skip)
continue;
}
if (gimple_code (cond_stmt) != GIMPLE_COND)
{
has_valid_pred = false;
break;
}
one_pred = XNEW (struct use_pred_info);
one_pred->cond = cond_stmt;
one_pred->invert = !!(e->flags & EDGE_FALSE_VALUE);
VEC_safe_push (use_pred_info_t, heap, (*preds)[i], one_pred);
}
if (!has_valid_pred)
break;
}
return has_valid_pred;
}
/* Computes all control dependence chains for USE_BB. The control
dependence chains are then converted to an array of composite
predicates pointed to by PREDS. PHI_BB is the basic block of
the phi whose result is used in USE_BB. */
static bool
find_predicates (VEC(use_pred_info_t, heap) ***preds,
size_t *num_preds,
basic_block phi_bb,
basic_block use_bb)
{
size_t num_chains = 0, i;
VEC(edge, heap) **dep_chains = 0;
VEC(edge, heap) *cur_chain = 0;
bool has_valid_pred = false;
basic_block cd_root = 0;
dep_chains = XCNEWVEC (VEC(edge, heap) *, MAX_NUM_CHAINS);
/* First find the closest bb that is control equivalent to PHI_BB
that also dominates USE_BB. */
cd_root = phi_bb;
while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
{
basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
cd_root = ctrl_eq_bb;
else
break;
}
compute_control_dep_chain (cd_root, use_bb,
dep_chains, &num_chains,
&cur_chain);
has_valid_pred
= convert_control_dep_chain_into_preds (dep_chains,
num_chains,
preds,
num_preds);
/* Free individual chain */
VEC_free (edge, heap, cur_chain);
for (i = 0; i < num_chains; i++)
VEC_free (edge, heap, dep_chains[i]);
free (dep_chains);
return has_valid_pred;
}
/* Computes the set of incoming edges of PHI that have non empty
definitions of a phi chain. The collection will be done
recursively on operands that are defined by phis. CD_ROOT
is the control dependence root. *EDGES holds the result, and
VISITED_PHIS is a pointer set for detecting cycles. */
static void
collect_phi_def_edges (gimple phi, basic_block cd_root,
VEC(edge, heap) **edges,
struct pointer_set_t *visited_phis)
{
size_t i, n;
edge opnd_edge;
tree opnd;
if (pointer_set_insert (visited_phis, phi))
return;
n = gimple_phi_num_args (phi);
for (i = 0; i < n; i++)
{
opnd_edge = gimple_phi_arg_edge (phi, i);
opnd = gimple_phi_arg_def (phi, i);
if (TREE_CODE (opnd) != SSA_NAME
|| !ssa_undefined_value_p (opnd))
VEC_safe_push (edge, heap, *edges, opnd_edge);
else
{
gimple def = SSA_NAME_DEF_STMT (opnd);
if (gimple_code (def) == GIMPLE_PHI
&& dominated_by_p (CDI_DOMINATORS,
gimple_bb (def), cd_root))
collect_phi_def_edges (def, cd_root, edges,
visited_phis);
}
}
}
/* For each use edge of PHI, computes all control dependence chains.
The control dependence chains are then converted to an array of
composite predicates pointed to by PREDS. */
static bool
find_def_preds (VEC(use_pred_info_t, heap) ***preds,
size_t *num_preds, gimple phi)
{
size_t num_chains = 0, i, n;
VEC(edge, heap) **dep_chains = 0;
VEC(edge, heap) *cur_chain = 0;
VEC(edge, heap) *def_edges = 0;
bool has_valid_pred = false;
basic_block phi_bb, cd_root = 0;
struct pointer_set_t *visited_phis;
dep_chains = XCNEWVEC (VEC(edge, heap) *, MAX_NUM_CHAINS);
phi_bb = gimple_bb (phi);
/* First find the closest dominating bb to be
the control dependence root */
cd_root = find_dom (phi_bb);
if (!cd_root)
return false;
visited_phis = pointer_set_create ();
collect_phi_def_edges (phi, cd_root, &def_edges, visited_phis);
pointer_set_destroy (visited_phis);
n = VEC_length (edge, def_edges);
if (n == 0)
return false;
for (i = 0; i < n; i++)
{
size_t prev_nc, j;
edge opnd_edge;
opnd_edge = VEC_index (edge, def_edges, i);
prev_nc = num_chains;
compute_control_dep_chain (cd_root, opnd_edge->src,
dep_chains, &num_chains,
&cur_chain);
/* Free individual chain */
VEC_free (edge, heap, cur_chain);
cur_chain = 0;
/* Now update the newly added chains with
the phi operand edge: */
if (EDGE_COUNT (opnd_edge->src->succs) > 1)
{
if (prev_nc == num_chains
&& num_chains < MAX_NUM_CHAINS)
num_chains++;
for (j = prev_nc; j < num_chains; j++)
{
VEC_safe_push (edge, heap, dep_chains[j], opnd_edge);
}
}
}
has_valid_pred
= convert_control_dep_chain_into_preds (dep_chains,
num_chains,
preds,
num_preds);
for (i = 0; i < num_chains; i++)
VEC_free (edge, heap, dep_chains[i]);
free (dep_chains);
return has_valid_pred;
}
/* Dumps the predicates (PREDS) for USESTMT. */
static void
dump_predicates (gimple usestmt, size_t num_preds,
VEC(use_pred_info_t, heap) **preds,
const char* msg)
{
size_t i, j;
VEC(use_pred_info_t, heap) *one_pred_chain;
fprintf (dump_file, msg);
print_gimple_stmt (dump_file, usestmt, 0, 0);
fprintf (dump_file, "is guarded by :\n");
/* do some dumping here: */
for (i = 0; i < num_preds; i++)
{
size_t np;
one_pred_chain = preds[i];
np = VEC_length (use_pred_info_t, one_pred_chain);
for (j = 0; j < np; j++)
{
use_pred_info_t one_pred
= VEC_index (use_pred_info_t, one_pred_chain, j);
if (one_pred->invert)
fprintf (dump_file, " (.NOT.) ");
print_gimple_stmt (dump_file, one_pred->cond, 0, 0);
if (j < np - 1)
fprintf (dump_file, "(.AND.)\n");
}
if (i < num_preds - 1)
fprintf (dump_file, "(.OR.)\n");
}
}
/* Destroys the predicate set *PREDS. */
static void
destroy_predicate_vecs (size_t n,
VEC(use_pred_info_t, heap) ** preds)
{
size_t i, j;
for (i = 0; i < n; i++)
{
for (j = 0; j < VEC_length (use_pred_info_t, preds[i]); j++)
free (VEC_index (use_pred_info_t, preds[i], j));
VEC_free (use_pred_info_t, heap, preds[i]);
}
free (preds);
}
/* Computes the 'normalized' conditional code with operand
swapping and condition inversion. */
static enum tree_code
get_cmp_code (enum tree_code orig_cmp_code,
bool swap_cond, bool invert)
{
enum tree_code tc = orig_cmp_code;
if (swap_cond)
tc = swap_tree_comparison (orig_cmp_code);
if (invert)
tc = invert_tree_comparison (tc, false);
switch (tc)
{
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
break;
default:
return ERROR_MARK;
}
return tc;
}
/* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
all values in the range satisfies (x CMPC BOUNDARY) == true. */
static bool
is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
{
bool inverted = false;
bool is_unsigned;
bool result;
/* Only handle integer constant here. */
if (TREE_CODE (val) != INTEGER_CST
|| TREE_CODE (boundary) != INTEGER_CST)
return true;
is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
if (cmpc == GE_EXPR || cmpc == GT_EXPR
|| cmpc == NE_EXPR)
{
cmpc = invert_tree_comparison (cmpc, false);
inverted = true;
}
if (is_unsigned)
{
if (cmpc == EQ_EXPR)
result = tree_int_cst_equal (val, boundary);
else if (cmpc == LT_EXPR)
result = INT_CST_LT_UNSIGNED (val, boundary);
else
{
gcc_assert (cmpc == LE_EXPR);
result = (tree_int_cst_equal (val, boundary)
|| INT_CST_LT_UNSIGNED (val, boundary));
}
}
else
{
if (cmpc == EQ_EXPR)
result = tree_int_cst_equal (val, boundary);
else if (cmpc == LT_EXPR)
result = INT_CST_LT (val, boundary);
else
{
gcc_assert (cmpc == LE_EXPR);
result = (tree_int_cst_equal (val, boundary)
|| INT_CST_LT (val, boundary));
}
}
if (inverted)
result ^= 1;
return result;
}
/* Returns true if PRED is common among all the predicate
chains (PREDS) (and therefore can be factored out).
NUM_PRED_CHAIN is the size of array PREDS. */
static bool
find_matching_predicate_in_rest_chains (use_pred_info_t pred,
VEC(use_pred_info_t, heap) **preds,
size_t num_pred_chains)
{
size_t i, j, n;
/* trival case */
if (num_pred_chains == 1)
return true;
for (i = 1; i < num_pred_chains; i++)
{
bool found = false;
VEC(use_pred_info_t, heap) *one_chain = preds[i];
n = VEC_length (use_pred_info_t, one_chain);
for (j = 0; j < n; j++)
{
use_pred_info_t pred2
= VEC_index (use_pred_info_t, one_chain, j);
/* can relax the condition comparison to not
use address comparison. However, the most common
case is that multiple control dependent paths share
a common path prefix, so address comparison should
be ok. */
if (pred2->cond == pred->cond
&& pred2->invert == pred->invert)
{
found = true;
break;
}
}
if (!found)
return false;
}
return true;
}
/* Forward declaration. */
static bool
is_use_properly_guarded (gimple use_stmt,
basic_block use_bb,
gimple phi,
unsigned uninit_opnds,
struct pointer_set_t *visited_phis);
/* A helper function that determines if the predicate set
of the use is not overlapping with that of the uninit paths.
The most common senario of guarded use is in Example 1:
Example 1:
if (some_cond)
{
x = ...;
flag = true;
}
... some code ...
if (flag)
use (x);
The real world examples are usually more complicated, but similar
and usually result from inlining:
bool init_func (int * x)
{
if (some_cond)
return false;
*x = ..
return true;
}
void foo(..)
{
int x;
if (!init_func(&x))
return;
.. some_code ...
use (x);
}
Another possible use scenario is in the following trivial example:
Example 2:
if (n > 0)
x = 1;
...
if (n > 0)
{
if (m < 2)
.. = x;
}
Predicate analysis needs to compute the composite predicate:
1) 'x' use predicate: (n > 0) .AND. (m < 2)
2) 'x' default value (non-def) predicate: .NOT. (n > 0)
(the predicate chain for phi operand defs can be computed
starting from a bb that is control equivalent to the phi's
bb and is dominating the operand def.)
and check overlapping:
(n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
<==> false
This implementation provides framework that can handle
scenarios. (Note that many simple cases are handled properly
without the predicate analysis -- this is due to jump threading
transformation which eliminates the merge point thus makes
path sensitive analysis unnecessary.)
NUM_PREDS is the number is the number predicate chains, PREDS is
the array of chains, PHI is the phi node whose incoming (undefined)
paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
uninit operand positions. VISITED_PHIS is the pointer set of phi
stmts being checked. */
static bool
use_pred_not_overlap_with_undef_path_pred (
size_t num_preds,
VEC(use_pred_info_t, heap) **preds,
gimple phi, unsigned uninit_opnds,
struct pointer_set_t *visited_phis)
{
unsigned int i, n;
gimple flag_def = 0;
tree boundary_cst = 0;
enum tree_code cmp_code;
bool swap_cond = false;
bool invert = false;
VEC(use_pred_info_t, heap) *the_pred_chain;
gcc_assert (num_preds > 0);
/* Find within the common prefix of multiple predicate chains
a predicate that is a comparison of a flag variable against
a constant. */
the_pred_chain = preds[0];
n = VEC_length (use_pred_info_t, the_pred_chain);
for (i = 0; i < n; i++)
{
gimple cond;
tree cond_lhs, cond_rhs, flag = 0;
use_pred_info_t the_pred
= VEC_index (use_pred_info_t, the_pred_chain, i);
cond = the_pred->cond;
invert = the_pred->invert;
cond_lhs = gimple_cond_lhs (cond);
cond_rhs = gimple_cond_rhs (cond);
cmp_code = gimple_cond_code (cond);
if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
&& cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
{
boundary_cst = cond_rhs;
flag = cond_lhs;
}
else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
&& cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
{
boundary_cst = cond_lhs;
flag = cond_rhs;
swap_cond = true;
}
if (!flag)
continue;
flag_def = SSA_NAME_DEF_STMT (flag);
if (!flag_def)
continue;
if ((gimple_code (flag_def) == GIMPLE_PHI)
&& (gimple_bb (flag_def) == gimple_bb (phi))
&& find_matching_predicate_in_rest_chains (
the_pred, preds, num_preds))
break;
flag_def = 0;
}
if (!flag_def)
return false;
/* Now check all the uninit incoming edge has a constant flag value
that is in conflict with the use guard/predicate. */
cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
if (cmp_code == ERROR_MARK)
return false;
for (i = 0; i < sizeof (unsigned); i++)
{
tree flag_arg;
if (!MASK_TEST_BIT (uninit_opnds, i))
continue;
flag_arg = gimple_phi_arg_def (flag_def, i);
if (!is_gimple_constant (flag_arg))
return false;
/* Now check if the constant is in the guarded range. */
if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
{
tree opnd;
gimple opnd_def;
/* Now that we know that this undefined edge is not
pruned. If the operand is defined by another phi,
we can further prune the incoming edges of that
phi by checking the predicates of this operands. */
opnd = gimple_phi_arg_def (phi, i);
opnd_def = SSA_NAME_DEF_STMT (opnd);
if (gimple_code (opnd_def) == GIMPLE_PHI)
{
edge opnd_edge;
unsigned uninit_opnds2
= compute_uninit_opnds_pos (opnd_def);
gcc_assert (!MASK_EMPTY (uninit_opnds2));
opnd_edge = gimple_phi_arg_edge (phi, i);
if (!is_use_properly_guarded (phi,
opnd_edge->src,
opnd_def,
uninit_opnds2,
visited_phis))
return false;
}
else
return false;
}
}
return true;
}
/* Returns true if TC is AND or OR */
static inline bool
is_and_or_or (enum tree_code tc, tree typ)
{
return (tc == TRUTH_AND_EXPR
|| tc == TRUTH_OR_EXPR
|| tc == BIT_IOR_EXPR
|| (tc == BIT_AND_EXPR
&& (typ == 0 || TREE_CODE (typ) == BOOLEAN_TYPE)));
}
typedef struct norm_cond
{
VEC(gimple, heap) *conds;
enum tree_code cond_code;
bool invert;
} *norm_cond_t;
/* Normalizes gimple condition COND. The normalization follows
UD chains to form larger condition expression trees. NORM_COND
holds the normalized result. COND_CODE is the logical opcode
(AND or OR) of the normalized tree. */
static void
normalize_cond_1 (gimple cond,
norm_cond_t norm_cond,
enum tree_code cond_code)
{
enum gimple_code gc;
enum tree_code cur_cond_code;
tree rhs1, rhs2;
gc = gimple_code (cond);
if (gc != GIMPLE_ASSIGN)
{
VEC_safe_push (gimple, heap, norm_cond->conds, cond);
return;
}
cur_cond_code = gimple_assign_rhs_code (cond);
rhs1 = gimple_assign_rhs1 (cond);
rhs2 = gimple_assign_rhs2 (cond);
if (cur_cond_code == NE_EXPR)
{
if (integer_zerop (rhs2)
&& (TREE_CODE (rhs1) == SSA_NAME))
normalize_cond_1 (
SSA_NAME_DEF_STMT (rhs1),
norm_cond, cond_code);
else if (integer_zerop (rhs1)
&& (TREE_CODE (rhs2) == SSA_NAME))
normalize_cond_1 (
SSA_NAME_DEF_STMT (rhs2),
norm_cond, cond_code);
else
VEC_safe_push (gimple, heap, norm_cond->conds, cond);
return;
}
if (is_and_or_or (cur_cond_code, TREE_TYPE (rhs1))
&& (cond_code == cur_cond_code || cond_code == ERROR_MARK)
&& (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (rhs2) == SSA_NAME))
{
normalize_cond_1 (SSA_NAME_DEF_STMT (rhs1),
norm_cond, cur_cond_code);
normalize_cond_1 (SSA_NAME_DEF_STMT (rhs2),
norm_cond, cur_cond_code);
norm_cond->cond_code = cur_cond_code;
}
else
VEC_safe_push (gimple, heap, norm_cond->conds, cond);
}
/* See normalize_cond_1 for details. INVERT is a flag to indicate
if COND needs to be inverted or not. */
static void
normalize_cond (gimple cond, norm_cond_t norm_cond, bool invert)
{
enum tree_code cond_code;
norm_cond->cond_code = ERROR_MARK;
norm_cond->invert = false;
norm_cond->conds = NULL;
gcc_assert (gimple_code (cond) == GIMPLE_COND);
cond_code = gimple_cond_code (cond);
if (invert)
cond_code = invert_tree_comparison (cond_code, false);
if (cond_code == NE_EXPR)
{
if (integer_zerop (gimple_cond_rhs (cond))
&& (TREE_CODE (gimple_cond_lhs (cond)) == SSA_NAME))
normalize_cond_1 (
SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)),
norm_cond, ERROR_MARK);
else if (integer_zerop (gimple_cond_lhs (cond))
&& (TREE_CODE (gimple_cond_rhs (cond)) == SSA_NAME))
normalize_cond_1 (
SSA_NAME_DEF_STMT (gimple_cond_rhs (cond)),
norm_cond, ERROR_MARK);
else
{
VEC_safe_push (gimple, heap, norm_cond->conds, cond);
norm_cond->invert = invert;
}
}
else
{
VEC_safe_push (gimple, heap, norm_cond->conds, cond);
norm_cond->invert = invert;
}
gcc_assert (VEC_length (gimple, norm_cond->conds) == 1
|| is_and_or_or (norm_cond->cond_code, NULL));
}
/* Returns true if the domain for condition COND1 is a subset of
COND2. REVERSE is a flag. when it is true the function checks
if COND1 is a superset of COND2. INVERT1 and INVERT2 are flags
to indicate if COND1 and COND2 need to be inverted or not. */
static bool
is_gcond_subset_of (gimple cond1, bool invert1,
gimple cond2, bool invert2,
bool reverse)
{
enum gimple_code gc1, gc2;
enum tree_code cond1_code, cond2_code;
gimple tmp;
tree cond1_lhs, cond1_rhs, cond2_lhs, cond2_rhs;
/* Take the short cut. */
if (cond1 == cond2)
return true;
if (reverse)
{
tmp = cond1;
cond1 = cond2;
cond2 = tmp;
}
gc1 = gimple_code (cond1);
gc2 = gimple_code (cond2);
if ((gc1 != GIMPLE_ASSIGN && gc1 != GIMPLE_COND)
|| (gc2 != GIMPLE_ASSIGN && gc2 != GIMPLE_COND))
return cond1 == cond2;
cond1_code = ((gc1 == GIMPLE_ASSIGN)
? gimple_assign_rhs_code (cond1)
: gimple_cond_code (cond1));
cond2_code = ((gc2 == GIMPLE_ASSIGN)
? gimple_assign_rhs_code (cond2)
: gimple_cond_code (cond2));
if (TREE_CODE_CLASS (cond1_code) != tcc_comparison
|| TREE_CODE_CLASS (cond2_code) != tcc_comparison)
return false;
if (invert1)
cond1_code = invert_tree_comparison (cond1_code, false);
if (invert2)
cond2_code = invert_tree_comparison (cond2_code, false);
cond1_lhs = ((gc1 == GIMPLE_ASSIGN)
? gimple_assign_rhs1 (cond1)
: gimple_cond_lhs (cond1));
cond1_rhs = ((gc1 == GIMPLE_ASSIGN)
? gimple_assign_rhs2 (cond1)
: gimple_cond_rhs (cond1));
cond2_lhs = ((gc2 == GIMPLE_ASSIGN)
? gimple_assign_rhs1 (cond2)
: gimple_cond_lhs (cond2));
cond2_rhs = ((gc2 == GIMPLE_ASSIGN)
? gimple_assign_rhs2 (cond2)
: gimple_cond_rhs (cond2));
/* Assuming const operands have been swapped to the
rhs at this point of the analysis. */
if (cond1_lhs != cond2_lhs)
return false;
if (!is_gimple_constant (cond1_rhs)
|| TREE_CODE (cond1_rhs) != INTEGER_CST)
return (cond1_rhs == cond2_rhs);
if (!is_gimple_constant (cond2_rhs)
|| TREE_CODE (cond2_rhs) != INTEGER_CST)
return (cond1_rhs == cond2_rhs);
if (cond1_code == EQ_EXPR)
return is_value_included_in (cond1_rhs,
cond2_rhs, cond2_code);
if (cond1_code == NE_EXPR || cond2_code == EQ_EXPR)
return ((cond2_code == cond1_code)
&& tree_int_cst_equal (cond1_rhs, cond2_rhs));
if (((cond1_code == GE_EXPR || cond1_code == GT_EXPR)
&& (cond2_code == LE_EXPR || cond2_code == LT_EXPR))
|| ((cond1_code == LE_EXPR || cond1_code == LT_EXPR)
&& (cond2_code == GE_EXPR || cond2_code == GT_EXPR)))
return false;
if (cond1_code != GE_EXPR && cond1_code != GT_EXPR
&& cond1_code != LE_EXPR && cond1_code != LT_EXPR)
return false;
if (cond1_code == GT_EXPR)
{
cond1_code = GE_EXPR;
cond1_rhs = fold_binary (PLUS_EXPR, TREE_TYPE (cond1_rhs),
cond1_rhs,
fold_convert (TREE_TYPE (cond1_rhs),
integer_one_node));
}
else if (cond1_code == LT_EXPR)
{
cond1_code = LE_EXPR;
cond1_rhs = fold_binary (MINUS_EXPR, TREE_TYPE (cond1_rhs),
cond1_rhs,
fold_convert (TREE_TYPE (cond1_rhs),
integer_one_node));
}
if (!cond1_rhs)
return false;
gcc_assert (cond1_code == GE_EXPR || cond1_code == LE_EXPR);
if (cond2_code == GE_EXPR || cond2_code == GT_EXPR ||
cond2_code == LE_EXPR || cond2_code == LT_EXPR)
return is_value_included_in (cond1_rhs,
cond2_rhs, cond2_code);
else if (cond2_code == NE_EXPR)
return
(is_value_included_in (cond1_rhs,
cond2_rhs, cond2_code)
&& !is_value_included_in (cond2_rhs,
cond1_rhs, cond1_code));
return false;
}
/* Returns true if the domain of the condition expression
in COND is a subset of any of the sub-conditions
of the normalized condtion NORM_COND. INVERT is a flag
to indicate of the COND needs to be inverted.
REVERSE is a flag. When it is true, the check is reversed --
it returns true if COND is a superset of any of the subconditions
of NORM_COND. */
static bool
is_subset_of_any (gimple cond, bool invert,
norm_cond_t norm_cond, bool reverse)
{
size_t i;
size_t len = VEC_length (gimple, norm_cond->conds);
for (i = 0; i < len; i++)
{
if (is_gcond_subset_of (cond, invert,
VEC_index (gimple, norm_cond->conds, i),
false, reverse))
return true;
}
return false;
}
/* NORM_COND1 and NORM_COND2 are normalized logical/BIT OR
expressions (formed by following UD chains not control
dependence chains). The function returns true of domain
of and expression NORM_COND1 is a subset of NORM_COND2's.
The implementation is conservative, and it returns false if
it the inclusion relationship may not hold. */
static bool
is_or_set_subset_of (norm_cond_t norm_cond1,
norm_cond_t norm_cond2)
{
size_t i;
size_t len = VEC_length (gimple, norm_cond1->conds);
for (i = 0; i < len; i++)
{
if (!is_subset_of_any (VEC_index (gimple, norm_cond1->conds, i),
false, norm_cond2, false))
return false;
}
return true;
}
/* NORM_COND1 and NORM_COND2 are normalized logical AND
expressions (formed by following UD chains not control
dependence chains). The function returns true of domain
of and expression NORM_COND1 is a subset of NORM_COND2's. */
static bool
is_and_set_subset_of (norm_cond_t norm_cond1,
norm_cond_t norm_cond2)
{
size_t i;
size_t len = VEC_length (gimple, norm_cond2->conds);
for (i = 0; i < len; i++)
{
if (!is_subset_of_any (VEC_index (gimple, norm_cond2->conds, i),
false, norm_cond1, true))
return false;
}
return true;
}
/* Returns true of the domain if NORM_COND1 is a subset
of that of NORM_COND2. Returns false if it can not be
proved to be so. */
static bool
is_norm_cond_subset_of (norm_cond_t norm_cond1,
norm_cond_t norm_cond2)
{
size_t i;
enum tree_code code1, code2;
code1 = norm_cond1->cond_code;
code2 = norm_cond2->cond_code;
if (code1 == TRUTH_AND_EXPR || code1 == BIT_AND_EXPR)
{
/* Both conditions are AND expressions. */
if (code2 == TRUTH_AND_EXPR || code2 == BIT_AND_EXPR)
return is_and_set_subset_of (norm_cond1, norm_cond2);
/* NORM_COND1 is an AND expression, and NORM_COND2 is an OR
expression. In this case, returns true if any subexpression
of NORM_COND1 is a subset of any subexpression of NORM_COND2. */
else if (code2 == TRUTH_OR_EXPR || code2 == BIT_IOR_EXPR)
{
size_t len1;
len1 = VEC_length (gimple, norm_cond1->conds);
for (i = 0; i < len1; i++)
{
gimple cond1 = VEC_index (gimple, norm_cond1->conds, i);
if (is_subset_of_any (cond1, false, norm_cond2, false))
return true;
}
return false;
}
else
{
gcc_assert (code2 == ERROR_MARK);
gcc_assert (VEC_length (gimple, norm_cond2->conds) == 1);
return is_subset_of_any (VEC_index (gimple, norm_cond2->conds, 0),
norm_cond2->invert, norm_cond1, true);
}
}
/* NORM_COND1 is an OR expression */
else if (code1 == TRUTH_OR_EXPR || code1 == BIT_IOR_EXPR)
{
if (code2 != code1)
return false;
return is_or_set_subset_of (norm_cond1, norm_cond2);
}
else
{
gcc_assert (code1 == ERROR_MARK);
gcc_assert (VEC_length (gimple, norm_cond1->conds) == 1);
/* Conservatively returns false if NORM_COND1 is non-decomposible
and NORM_COND2 is an AND expression. */
if (code2 == TRUTH_AND_EXPR || code2 == BIT_AND_EXPR)
return false;
if (code2 == TRUTH_OR_EXPR || code2 == BIT_IOR_EXPR)
return is_subset_of_any (VEC_index (gimple, norm_cond1->conds, 0),
norm_cond1->invert, norm_cond2, false);
gcc_assert (code2 == ERROR_MARK);
gcc_assert (VEC_length (gimple, norm_cond2->conds) == 1);
return is_gcond_subset_of (VEC_index (gimple, norm_cond1->conds, 0),
norm_cond1->invert,
VEC_index (gimple, norm_cond2->conds, 0),
norm_cond2->invert, false);
}
}
/* Returns true of the domain of single predicate expression
EXPR1 is a subset of that of EXPR2. Returns false if it
can not be proved. */
static bool
is_pred_expr_subset_of (use_pred_info_t expr1,
use_pred_info_t expr2)
{
gimple cond1, cond2;
enum tree_code code1, code2;
struct norm_cond norm_cond1, norm_cond2;
bool is_subset = false;
cond1 = expr1->cond;
cond2 = expr2->cond;
code1 = gimple_cond_code (cond1);
code2 = gimple_cond_code (cond2);
if (expr1->invert)
code1 = invert_tree_comparison (code1, false);
if (expr2->invert)
code2 = invert_tree_comparison (code2, false);
/* Fast path -- match exactly */
if ((gimple_cond_lhs (cond1) == gimple_cond_lhs (cond2))
&& (gimple_cond_rhs (cond1) == gimple_cond_rhs (cond2))
&& (code1 == code2))
return true;
/* Normalize conditions. To keep NE_EXPR, do not invert
with both need inversion. */
normalize_cond (cond1, &norm_cond1, (expr1->invert));
normalize_cond (cond2, &norm_cond2, (expr2->invert));
is_subset = is_norm_cond_subset_of (&norm_cond1, &norm_cond2);
/* Free memory */
VEC_free (gimple, heap, norm_cond1.conds);
VEC_free (gimple, heap, norm_cond2.conds);
return is_subset ;
}
/* Returns true if the domain of PRED1 is a subset
of that of PRED2. Returns false if it can not be proved so. */
static bool
is_pred_chain_subset_of (VEC(use_pred_info_t, heap) *pred1,
VEC(use_pred_info_t, heap) *pred2)
{
size_t np1, np2, i1, i2;
np1 = VEC_length (use_pred_info_t, pred1);
np2 = VEC_length (use_pred_info_t, pred2);
for (i2 = 0; i2 < np2; i2++)
{
bool found = false;
use_pred_info_t info2
= VEC_index (use_pred_info_t, pred2, i2);
for (i1 = 0; i1 < np1; i1++)
{
use_pred_info_t info1
= VEC_index (use_pred_info_t, pred1, i1);
if (is_pred_expr_subset_of (info1, info2))
{
found = true;
break;
}
}
if (!found)
return false;
}
return true;
}
/* Returns true if the domain defined by
one pred chain ONE_PRED is a subset of the domain
of *PREDS. It returns false if ONE_PRED's domain is
not a subset of any of the sub-domains of PREDS (
corresponding to each individual chains in it), even
though it may be still be a subset of whole domain
of PREDS which is the union (ORed) of all its subdomains.
In other words, the result is conservative. */
static bool
is_included_in (VEC(use_pred_info_t, heap) *one_pred,
VEC(use_pred_info_t, heap) **preds,
size_t n)
{
size_t i;
for (i = 0; i < n; i++)
{
if (is_pred_chain_subset_of (one_pred, preds[i]))
return true;
}
return false;
}
/* compares two predicate sets PREDS1 and PREDS2 and returns
true if the domain defined by PREDS1 is a superset
of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
PREDS2 respectively. The implementation chooses not to build
generic trees (and relying on the folding capability of the
compiler), but instead performs brute force comparison of
individual predicate chains (won't be a compile time problem
as the chains are pretty short). When the function returns
false, it does not necessarily mean *PREDS1 is not a superset
of *PREDS2, but mean it may not be so since the analysis can
not prove it. In such cases, false warnings may still be
emitted. */
static bool
is_superset_of (VEC(use_pred_info_t, heap) **preds1,
size_t n1,
VEC(use_pred_info_t, heap) **preds2,
size_t n2)
{
size_t i;
VEC(use_pred_info_t, heap) *one_pred_chain;
for (i = 0; i < n2; i++)
{
one_pred_chain = preds2[i];
if (!is_included_in (one_pred_chain, preds1, n1))
return false;
}
return true;
}
/* Computes the predicates that guard the use and checks
if the incoming paths that have empty (or possibly
empty) defintion can be pruned/filtered. The function returns
true if it can be determined that the use of PHI's def in
USE_STMT is guarded with a predicate set not overlapping with
predicate sets of all runtime paths that do not have a definition.
Returns false if it is not or it can not be determined. USE_BB is
the bb of the use (for phi operand use, the bb is not the bb of
the phi stmt, but the src bb of the operand edge). UNINIT_OPNDS
is a bit vector. If an operand of PHI is uninitialized, the
correponding bit in the vector is 1. VISIED_PHIS is a pointer
set of phis being visted. */
static bool
is_use_properly_guarded (gimple use_stmt,
basic_block use_bb,
gimple phi,
unsigned uninit_opnds,
struct pointer_set_t *visited_phis)
{
basic_block phi_bb;
VEC(use_pred_info_t, heap) **preds = 0;
VEC(use_pred_info_t, heap) **def_preds = 0;
size_t num_preds = 0, num_def_preds = 0;
bool has_valid_preds = false;
bool is_properly_guarded = false;
if (pointer_set_insert (visited_phis, phi))
return false;
phi_bb = gimple_bb (phi);
if (is_non_loop_exit_postdominating (use_bb, phi_bb))
return false;
has_valid_preds = find_predicates (&preds, &num_preds,
phi_bb, use_bb);
if (!has_valid_preds)
{
destroy_predicate_vecs (num_preds, preds);
return false;
}
if (dump_file)
dump_predicates (use_stmt, num_preds, preds,
"Use in stmt ");
has_valid_preds = find_def_preds (&def_preds,
&num_def_preds, phi);
if (has_valid_preds)
{
if (dump_file)
dump_predicates (phi, num_def_preds, def_preds,
"Operand defs of phi ");
is_properly_guarded =
is_superset_of (def_preds, num_def_preds,
preds, num_preds);
}
/* further prune the dead incoming phi edges. */
if (!is_properly_guarded)
is_properly_guarded
= use_pred_not_overlap_with_undef_path_pred (
num_preds, preds, phi, uninit_opnds, visited_phis);
destroy_predicate_vecs (num_preds, preds);
destroy_predicate_vecs (num_def_preds, def_preds);
return is_properly_guarded;
}
/* Searches through all uses of a potentially
uninitialized variable defined by PHI and returns a use
statement if the use is not properly guarded. It returns
NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
holding the position(s) of uninit PHI operands. WORKLIST
is the vector of candidate phis that may be updated by this
function. ADDED_TO_WORKLIST is the pointer set tracking
if the new phi is already in the worklist. */
static gimple
find_uninit_use (gimple phi, unsigned uninit_opnds,
VEC(gimple, heap) **worklist,
struct pointer_set_t *added_to_worklist)
{
tree phi_result;
use_operand_p use_p;
gimple use_stmt;
imm_use_iterator iter;
phi_result = gimple_phi_result (phi);
FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
{
struct pointer_set_t *visited_phis;
basic_block use_bb;
use_stmt = use_p->loc.stmt;
visited_phis = pointer_set_create ();
use_bb = gimple_bb (use_stmt);
if (gimple_code (use_stmt) == GIMPLE_PHI)
{
unsigned i, n;
n = gimple_phi_num_args (use_stmt);
/* Find the matching phi argument of the use. */
for (i = 0; i < n; ++i)
{
if (gimple_phi_arg_def_ptr (use_stmt, i) == use_p->use)
{
edge e = gimple_phi_arg_edge (use_stmt, i);
use_bb = e->src;
break;
}
}
}
if (is_use_properly_guarded (use_stmt,
use_bb,
phi,
uninit_opnds,
visited_phis))
{
pointer_set_destroy (visited_phis);
continue;
}
pointer_set_destroy (visited_phis);
/* Found one real use, return. */
if (gimple_code (use_stmt) != GIMPLE_PHI)
return use_stmt;
/* Found a phi use that is not guarded,
add the phi to the worklist. */
if (!pointer_set_insert (added_to_worklist,
use_stmt))
{
VEC_safe_push (gimple, heap, *worklist, use_stmt);
pointer_set_insert (possibly_undefined_names,
phi_result);
}
}
return NULL;
}
/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
and gives warning if there exists a runtime path from the entry to a
use of the PHI def that does not contain a definition. In other words,
the warning is on the real use. The more dead paths that can be pruned
by the compiler, the fewer false positives the warning is. WORKLIST
is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
a pointer set tracking if the new phi is added to the worklist or not. */
static void
warn_uninitialized_phi (gimple phi, VEC(gimple, heap) **worklist,
struct pointer_set_t *added_to_worklist)
{
unsigned uninit_opnds;
gimple uninit_use_stmt = 0;
tree uninit_op;
/* Don't look at memory tags. */
if (!is_gimple_reg (gimple_phi_result (phi)))
return;
uninit_opnds = compute_uninit_opnds_pos (phi);
if (MASK_EMPTY (uninit_opnds))
return;
/* Now check if we have any use of the value without proper guard. */
uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
worklist, added_to_worklist);
/* All uses are properly guarded. */
if (!uninit_use_stmt)
return;
uninit_op = gimple_phi_arg_def (phi, MASK_FIRST_SET_BIT (uninit_opnds));
warn_uninit (uninit_op,
"%qD may be used uninitialized in this function",
uninit_use_stmt);
}
/* Entry point to the late uninitialized warning pass. */
static unsigned int
execute_late_warn_uninitialized (void)
{
basic_block bb;
gimple_stmt_iterator gsi;
VEC(gimple, heap) *worklist = 0;
struct pointer_set_t *added_to_worklist;
calculate_dominance_info (CDI_DOMINATORS);
calculate_dominance_info (CDI_POST_DOMINATORS);
/* Re-do the plain uninitialized variable check, as optimization may have
straightened control flow. Do this first so that we don't accidentally
get a "may be" warning when we'd have seen an "is" warning later. */
warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
timevar_push (TV_TREE_UNINIT);
possibly_undefined_names = pointer_set_create ();
added_to_worklist = pointer_set_create ();
/* Initialize worklist */
FOR_EACH_BB (bb)
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
size_t n, i;
n = gimple_phi_num_args (phi);
/* Don't look at memory tags. */
if (!is_gimple_reg (gimple_phi_result (phi)))
continue;
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (phi, i);
if (TREE_CODE (op) == SSA_NAME
&& ssa_undefined_value_p (op))
{
VEC_safe_push (gimple, heap, worklist, phi);
pointer_set_insert (added_to_worklist, phi);
break;
}
}
}
while (VEC_length (gimple, worklist) != 0)
{
gimple cur_phi = 0;
cur_phi = VEC_pop (gimple, worklist);
warn_uninitialized_phi (cur_phi, &worklist, added_to_worklist);
}
VEC_free (gimple, heap, worklist);
pointer_set_destroy (added_to_worklist);
pointer_set_destroy (possibly_undefined_names);
possibly_undefined_names = NULL;
free_dominance_info (CDI_POST_DOMINATORS);
timevar_pop (TV_TREE_UNINIT);
return 0;
}
static bool
gate_warn_uninitialized (void)
{
return warn_uninitialized != 0;
}
struct gimple_opt_pass pass_late_warn_uninitialized =
{
{
GIMPLE_PASS,
"uninit", /* name */
gate_warn_uninitialized, /* gate */
execute_late_warn_uninitialized, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0 /* todo_flags_finish */
}
};
|