summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-structalias.c
blob: fd96c3ab7971d00f38de95f9be75ee36324392eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
/* Tree based points-to analysis
   Copyright (C) 2005-2016 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dberlin@dberlin.org>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   GCC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "tree-pretty-print.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "stmt.h"
#include "gimple-iterator.h"
#include "tree-into-ssa.h"
#include "tree-dfa.h"
#include "params.h"
#include "gimple-walk.h"

/* The idea behind this analyzer is to generate set constraints from the
   program, then solve the resulting constraints in order to generate the
   points-to sets.

   Set constraints are a way of modeling program analysis problems that
   involve sets.  They consist of an inclusion constraint language,
   describing the variables (each variable is a set) and operations that
   are involved on the variables, and a set of rules that derive facts
   from these operations.  To solve a system of set constraints, you derive
   all possible facts under the rules, which gives you the correct sets
   as a consequence.

   See  "Efficient Field-sensitive pointer analysis for C" by "David
   J. Pearce and Paul H. J. Kelly and Chris Hankin, at
   http://citeseer.ist.psu.edu/pearce04efficient.html

   Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
   of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
   http://citeseer.ist.psu.edu/heintze01ultrafast.html

   There are three types of real constraint expressions, DEREF,
   ADDRESSOF, and SCALAR.  Each constraint expression consists
   of a constraint type, a variable, and an offset.

   SCALAR is a constraint expression type used to represent x, whether
   it appears on the LHS or the RHS of a statement.
   DEREF is a constraint expression type used to represent *x, whether
   it appears on the LHS or the RHS of a statement.
   ADDRESSOF is a constraint expression used to represent &x, whether
   it appears on the LHS or the RHS of a statement.

   Each pointer variable in the program is assigned an integer id, and
   each field of a structure variable is assigned an integer id as well.

   Structure variables are linked to their list of fields through a "next
   field" in each variable that points to the next field in offset
   order.
   Each variable for a structure field has

   1. "size", that tells the size in bits of that field.
   2. "fullsize, that tells the size in bits of the entire structure.
   3. "offset", that tells the offset in bits from the beginning of the
   structure to this field.

   Thus,
   struct f
   {
     int a;
     int b;
   } foo;
   int *bar;

   looks like

   foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
   foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
   bar -> id 3, size 32, offset 0, fullsize 32, next NULL


  In order to solve the system of set constraints, the following is
  done:

  1. Each constraint variable x has a solution set associated with it,
  Sol(x).

  2. Constraints are separated into direct, copy, and complex.
  Direct constraints are ADDRESSOF constraints that require no extra
  processing, such as P = &Q
  Copy constraints are those of the form P = Q.
  Complex constraints are all the constraints involving dereferences
  and offsets (including offsetted copies).

  3. All direct constraints of the form P = &Q are processed, such
  that Q is added to Sol(P)

  4. All complex constraints for a given constraint variable are stored in a
  linked list attached to that variable's node.

  5. A directed graph is built out of the copy constraints. Each
  constraint variable is a node in the graph, and an edge from
  Q to P is added for each copy constraint of the form P = Q

  6. The graph is then walked, and solution sets are
  propagated along the copy edges, such that an edge from Q to P
  causes Sol(P) <- Sol(P) union Sol(Q).

  7.  As we visit each node, all complex constraints associated with
  that node are processed by adding appropriate copy edges to the graph, or the
  appropriate variables to the solution set.

  8. The process of walking the graph is iterated until no solution
  sets change.

  Prior to walking the graph in steps 6 and 7, We perform static
  cycle elimination on the constraint graph, as well
  as off-line variable substitution.

  TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
  on and turned into anything), but isn't.  You can just see what offset
  inside the pointed-to struct it's going to access.

  TODO: Constant bounded arrays can be handled as if they were structs of the
  same number of elements.

  TODO: Modeling heap and incoming pointers becomes much better if we
  add fields to them as we discover them, which we could do.

  TODO: We could handle unions, but to be honest, it's probably not
  worth the pain or slowdown.  */

/* IPA-PTA optimizations possible.

   When the indirect function called is ANYTHING we can add disambiguation
   based on the function signatures (or simply the parameter count which
   is the varinfo size).  We also do not need to consider functions that
   do not have their address taken.

   The is_global_var bit which marks escape points is overly conservative
   in IPA mode.  Split it to is_escape_point and is_global_var - only
   externally visible globals are escape points in IPA mode.
   There is now is_ipa_escape_point but this is only used in a few
   selected places.

   The way we introduce DECL_PT_UID to avoid fixing up all points-to
   sets in the translation unit when we copy a DECL during inlining
   pessimizes precision.  The advantage is that the DECL_PT_UID keeps
   compile-time and memory usage overhead low - the points-to sets
   do not grow or get unshared as they would during a fixup phase.
   An alternative solution is to delay IPA PTA until after all
   inlining transformations have been applied.

   The way we propagate clobber/use information isn't optimized.
   It should use a new complex constraint that properly filters
   out local variables of the callee (though that would make
   the sets invalid after inlining).  OTOH we might as well
   admit defeat to WHOPR and simply do all the clobber/use analysis
   and propagation after PTA finished but before we threw away
   points-to information for memory variables.  WHOPR and PTA
   do not play along well anyway - the whole constraint solving
   would need to be done in WPA phase and it will be very interesting
   to apply the results to local SSA names during LTRANS phase.

   We probably should compute a per-function unit-ESCAPE solution
   propagating it simply like the clobber / uses solutions.  The
   solution can go alongside the non-IPA espaced solution and be
   used to query which vars escape the unit through a function.
   This is also required to make the escaped-HEAP trick work in IPA mode.

   We never put function decls in points-to sets so we do not
   keep the set of called functions for indirect calls.

   And probably more.  */

static bool use_field_sensitive = true;
static int in_ipa_mode = 0;

/* Used for predecessor bitmaps. */
static bitmap_obstack predbitmap_obstack;

/* Used for points-to sets.  */
static bitmap_obstack pta_obstack;

/* Used for oldsolution members of variables. */
static bitmap_obstack oldpta_obstack;

/* Used for per-solver-iteration bitmaps.  */
static bitmap_obstack iteration_obstack;

static unsigned int create_variable_info_for (tree, const char *, bool);
typedef struct constraint_graph *constraint_graph_t;
static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);

struct constraint;
typedef struct constraint *constraint_t;


#define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d)	\
  if (a)						\
    EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)

static struct constraint_stats
{
  unsigned int total_vars;
  unsigned int nonpointer_vars;
  unsigned int unified_vars_static;
  unsigned int unified_vars_dynamic;
  unsigned int iterations;
  unsigned int num_edges;
  unsigned int num_implicit_edges;
  unsigned int points_to_sets_created;
} stats;

struct variable_info
{
  /* ID of this variable  */
  unsigned int id;

  /* True if this is a variable created by the constraint analysis, such as
     heap variables and constraints we had to break up.  */
  unsigned int is_artificial_var : 1;

  /* True if this is a special variable whose solution set should not be
     changed.  */
  unsigned int is_special_var : 1;

  /* True for variables whose size is not known or variable.  */
  unsigned int is_unknown_size_var : 1;

  /* True for (sub-)fields that represent a whole variable.  */
  unsigned int is_full_var : 1;

  /* True if this is a heap variable.  */
  unsigned int is_heap_var : 1;

  /* True if this field may contain pointers.  */
  unsigned int may_have_pointers : 1;

  /* True if this field has only restrict qualified pointers.  */
  unsigned int only_restrict_pointers : 1;

  /* True if this represents a heap var created for a restrict qualified
     pointer.  */
  unsigned int is_restrict_var : 1;

  /* True if this represents a global variable.  */
  unsigned int is_global_var : 1;

  /* True if this represents a module escape point for IPA analysis.  */
  unsigned int is_ipa_escape_point : 1;

  /* True if this represents a IPA function info.  */
  unsigned int is_fn_info : 1;

  /* ???  Store somewhere better.  */
  unsigned short ruid;

  /* The ID of the variable for the next field in this structure
     or zero for the last field in this structure.  */
  unsigned next;

  /* The ID of the variable for the first field in this structure.  */
  unsigned head;

  /* Offset of this variable, in bits, from the base variable  */
  unsigned HOST_WIDE_INT offset;

  /* Size of the variable, in bits.  */
  unsigned HOST_WIDE_INT size;

  /* Full size of the base variable, in bits.  */
  unsigned HOST_WIDE_INT fullsize;

  /* Name of this variable */
  const char *name;

  /* Tree that this variable is associated with.  */
  tree decl;

  /* Points-to set for this variable.  */
  bitmap solution;

  /* Old points-to set for this variable.  */
  bitmap oldsolution;
};
typedef struct variable_info *varinfo_t;

static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
						   unsigned HOST_WIDE_INT);
static varinfo_t lookup_vi_for_tree (tree);
static inline bool type_can_have_subvars (const_tree);
static void make_param_constraints (varinfo_t);

/* Pool of variable info structures.  */
static object_allocator<variable_info> variable_info_pool
  ("Variable info pool");

/* Map varinfo to final pt_solution.  */
static hash_map<varinfo_t, pt_solution *> *final_solutions;
struct obstack final_solutions_obstack;

/* Table of variable info structures for constraint variables.
   Indexed directly by variable info id.  */
static vec<varinfo_t> varmap;

/* Return the varmap element N */

static inline varinfo_t
get_varinfo (unsigned int n)
{
  return varmap[n];
}

/* Return the next variable in the list of sub-variables of VI
   or NULL if VI is the last sub-variable.  */

static inline varinfo_t
vi_next (varinfo_t vi)
{
  return get_varinfo (vi->next);
}

/* Static IDs for the special variables.  Variable ID zero is unused
   and used as terminator for the sub-variable chain.  */
enum { nothing_id = 1, anything_id = 2, string_id = 3,
       escaped_id = 4, nonlocal_id = 5,
       storedanything_id = 6, integer_id = 7 };

/* Return a new variable info structure consisting for a variable
   named NAME, and using constraint graph node NODE.  Append it
   to the vector of variable info structures.  */

static varinfo_t
new_var_info (tree t, const char *name, bool add_id)
{
  unsigned index = varmap.length ();
  varinfo_t ret = variable_info_pool.allocate ();

  if (dump_file && add_id)
    {
      char *tempname = xasprintf ("%s(%d)", name, index);
      name = ggc_strdup (tempname);
      free (tempname);
    }

  ret->id = index;
  ret->name = name;
  ret->decl = t;
  /* Vars without decl are artificial and do not have sub-variables.  */
  ret->is_artificial_var = (t == NULL_TREE);
  ret->is_special_var = false;
  ret->is_unknown_size_var = false;
  ret->is_full_var = (t == NULL_TREE);
  ret->is_heap_var = false;
  ret->may_have_pointers = true;
  ret->only_restrict_pointers = false;
  ret->is_restrict_var = false;
  ret->ruid = 0;
  ret->is_global_var = (t == NULL_TREE);
  ret->is_ipa_escape_point = false;
  ret->is_fn_info = false;
  if (t && DECL_P (t))
    ret->is_global_var = (is_global_var (t)
			  /* We have to treat even local register variables
			     as escape points.  */
			  || (TREE_CODE (t) == VAR_DECL
			      && DECL_HARD_REGISTER (t)));
  ret->solution = BITMAP_ALLOC (&pta_obstack);
  ret->oldsolution = NULL;
  ret->next = 0;
  ret->head = ret->id;

  stats.total_vars++;

  varmap.safe_push (ret);

  return ret;
}

/* A map mapping call statements to per-stmt variables for uses
   and clobbers specific to the call.  */
static hash_map<gimple *, varinfo_t> *call_stmt_vars;

/* Lookup or create the variable for the call statement CALL.  */

static varinfo_t
get_call_vi (gcall *call)
{
  varinfo_t vi, vi2;

  bool existed;
  varinfo_t *slot_p = &call_stmt_vars->get_or_insert (call, &existed);
  if (existed)
    return *slot_p;

  vi = new_var_info (NULL_TREE, "CALLUSED", true);
  vi->offset = 0;
  vi->size = 1;
  vi->fullsize = 2;
  vi->is_full_var = true;

  vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED", true);
  vi2->offset = 1;
  vi2->size = 1;
  vi2->fullsize = 2;
  vi2->is_full_var = true;

  vi->next = vi2->id;

  *slot_p = vi;
  return vi;
}

/* Lookup the variable for the call statement CALL representing
   the uses.  Returns NULL if there is nothing special about this call.  */

static varinfo_t
lookup_call_use_vi (gcall *call)
{
  varinfo_t *slot_p = call_stmt_vars->get (call);
  if (slot_p)
    return *slot_p;

  return NULL;
}

/* Lookup the variable for the call statement CALL representing
   the clobbers.  Returns NULL if there is nothing special about this call.  */

static varinfo_t
lookup_call_clobber_vi (gcall *call)
{
  varinfo_t uses = lookup_call_use_vi (call);
  if (!uses)
    return NULL;

  return vi_next (uses);
}

/* Lookup or create the variable for the call statement CALL representing
   the uses.  */

static varinfo_t
get_call_use_vi (gcall *call)
{
  return get_call_vi (call);
}

/* Lookup or create the variable for the call statement CALL representing
   the clobbers.  */

static varinfo_t ATTRIBUTE_UNUSED
get_call_clobber_vi (gcall *call)
{
  return vi_next (get_call_vi (call));
}


enum constraint_expr_type {SCALAR, DEREF, ADDRESSOF};

/* An expression that appears in a constraint.  */

struct constraint_expr
{
  /* Constraint type.  */
  constraint_expr_type type;

  /* Variable we are referring to in the constraint.  */
  unsigned int var;

  /* Offset, in bits, of this constraint from the beginning of
     variables it ends up referring to.

     IOW, in a deref constraint, we would deref, get the result set,
     then add OFFSET to each member.   */
  HOST_WIDE_INT offset;
};

/* Use 0x8000... as special unknown offset.  */
#define UNKNOWN_OFFSET HOST_WIDE_INT_MIN

typedef struct constraint_expr ce_s;
static void get_constraint_for_1 (tree, vec<ce_s> *, bool, bool);
static void get_constraint_for (tree, vec<ce_s> *);
static void get_constraint_for_rhs (tree, vec<ce_s> *);
static void do_deref (vec<ce_s> *);

/* Our set constraints are made up of two constraint expressions, one
   LHS, and one RHS.

   As described in the introduction, our set constraints each represent an
   operation between set valued variables.
*/
struct constraint
{
  struct constraint_expr lhs;
  struct constraint_expr rhs;
};

/* List of constraints that we use to build the constraint graph from.  */

static vec<constraint_t> constraints;
static object_allocator<constraint> constraint_pool ("Constraint pool");

/* The constraint graph is represented as an array of bitmaps
   containing successor nodes.  */

struct constraint_graph
{
  /* Size of this graph, which may be different than the number of
     nodes in the variable map.  */
  unsigned int size;

  /* Explicit successors of each node. */
  bitmap *succs;

  /* Implicit predecessors of each node (Used for variable
     substitution). */
  bitmap *implicit_preds;

  /* Explicit predecessors of each node (Used for variable substitution).  */
  bitmap *preds;

  /* Indirect cycle representatives, or -1 if the node has no indirect
     cycles.  */
  int *indirect_cycles;

  /* Representative node for a node.  rep[a] == a unless the node has
     been unified. */
  unsigned int *rep;

  /* Equivalence class representative for a label.  This is used for
     variable substitution.  */
  int *eq_rep;

  /* Pointer equivalence label for a node.  All nodes with the same
     pointer equivalence label can be unified together at some point
     (either during constraint optimization or after the constraint
     graph is built).  */
  unsigned int *pe;

  /* Pointer equivalence representative for a label.  This is used to
     handle nodes that are pointer equivalent but not location
     equivalent.  We can unite these once the addressof constraints
     are transformed into initial points-to sets.  */
  int *pe_rep;

  /* Pointer equivalence label for each node, used during variable
     substitution.  */
  unsigned int *pointer_label;

  /* Location equivalence label for each node, used during location
     equivalence finding.  */
  unsigned int *loc_label;

  /* Pointed-by set for each node, used during location equivalence
     finding.  This is pointed-by rather than pointed-to, because it
     is constructed using the predecessor graph.  */
  bitmap *pointed_by;

  /* Points to sets for pointer equivalence.  This is *not* the actual
     points-to sets for nodes.  */
  bitmap *points_to;

  /* Bitmap of nodes where the bit is set if the node is a direct
     node.  Used for variable substitution.  */
  sbitmap direct_nodes;

  /* Bitmap of nodes where the bit is set if the node is address
     taken.  Used for variable substitution.  */
  bitmap address_taken;

  /* Vector of complex constraints for each graph node.  Complex
     constraints are those involving dereferences or offsets that are
     not 0.  */
  vec<constraint_t> *complex;
};

static constraint_graph_t graph;

/* During variable substitution and the offline version of indirect
   cycle finding, we create nodes to represent dereferences and
   address taken constraints.  These represent where these start and
   end.  */
#define FIRST_REF_NODE (varmap).length ()
#define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))

/* Return the representative node for NODE, if NODE has been unioned
   with another NODE.
   This function performs path compression along the way to finding
   the representative.  */

static unsigned int
find (unsigned int node)
{
  gcc_checking_assert (node < graph->size);
  if (graph->rep[node] != node)
    return graph->rep[node] = find (graph->rep[node]);
  return node;
}

/* Union the TO and FROM nodes to the TO nodes.
   Note that at some point in the future, we may want to do
   union-by-rank, in which case we are going to have to return the
   node we unified to.  */

static bool
unite (unsigned int to, unsigned int from)
{
  gcc_checking_assert (to < graph->size && from < graph->size);
  if (to != from && graph->rep[from] != to)
    {
      graph->rep[from] = to;
      return true;
    }
  return false;
}

/* Create a new constraint consisting of LHS and RHS expressions.  */

static constraint_t
new_constraint (const struct constraint_expr lhs,
		const struct constraint_expr rhs)
{
  constraint_t ret = constraint_pool.allocate ();
  ret->lhs = lhs;
  ret->rhs = rhs;
  return ret;
}

/* Print out constraint C to FILE.  */

static void
dump_constraint (FILE *file, constraint_t c)
{
  if (c->lhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->lhs.type == DEREF)
    fprintf (file, "*");
  fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
  if (c->lhs.offset == UNKNOWN_OFFSET)
    fprintf (file, " + UNKNOWN");
  else if (c->lhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
  fprintf (file, " = ");
  if (c->rhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->rhs.type == DEREF)
    fprintf (file, "*");
  fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
  if (c->rhs.offset == UNKNOWN_OFFSET)
    fprintf (file, " + UNKNOWN");
  else if (c->rhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
}


void debug_constraint (constraint_t);
void debug_constraints (void);
void debug_constraint_graph (void);
void debug_solution_for_var (unsigned int);
void debug_sa_points_to_info (void);
void debug_varinfo (varinfo_t);
void debug_varmap (void);

/* Print out constraint C to stderr.  */

DEBUG_FUNCTION void
debug_constraint (constraint_t c)
{
  dump_constraint (stderr, c);
  fprintf (stderr, "\n");
}

/* Print out all constraints to FILE */

static void
dump_constraints (FILE *file, int from)
{
  int i;
  constraint_t c;
  for (i = from; constraints.iterate (i, &c); i++)
    if (c)
      {
	dump_constraint (file, c);
	fprintf (file, "\n");
      }
}

/* Print out all constraints to stderr.  */

DEBUG_FUNCTION void
debug_constraints (void)
{
  dump_constraints (stderr, 0);
}

/* Print the constraint graph in dot format.  */

static void
dump_constraint_graph (FILE *file)
{
  unsigned int i;

  /* Only print the graph if it has already been initialized:  */
  if (!graph)
    return;

  /* Prints the header of the dot file:  */
  fprintf (file, "strict digraph {\n");
  fprintf (file, "  node [\n    shape = box\n  ]\n");
  fprintf (file, "  edge [\n    fontsize = \"12\"\n  ]\n");
  fprintf (file, "\n  // List of nodes and complex constraints in "
	   "the constraint graph:\n");

  /* The next lines print the nodes in the graph together with the
     complex constraints attached to them.  */
  for (i = 1; i < graph->size; i++)
    {
      if (i == FIRST_REF_NODE)
	continue;
      if (find (i) != i)
	continue;
      if (i < FIRST_REF_NODE)
	fprintf (file, "\"%s\"", get_varinfo (i)->name);
      else
	fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
      if (graph->complex[i].exists ())
	{
	  unsigned j;
	  constraint_t c;
	  fprintf (file, " [label=\"\\N\\n");
	  for (j = 0; graph->complex[i].iterate (j, &c); ++j)
	    {
	      dump_constraint (file, c);
	      fprintf (file, "\\l");
	    }
	  fprintf (file, "\"]");
	}
      fprintf (file, ";\n");
    }

  /* Go over the edges.  */
  fprintf (file, "\n  // Edges in the constraint graph:\n");
  for (i = 1; i < graph->size; i++)
    {
      unsigned j;
      bitmap_iterator bi;
      if (find (i) != i)
	continue;
      EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
	{
	  unsigned to = find (j);
	  if (i == to)
	    continue;
	  if (i < FIRST_REF_NODE)
	    fprintf (file, "\"%s\"", get_varinfo (i)->name);
	  else
	    fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
	  fprintf (file, " -> ");
	  if (to < FIRST_REF_NODE)
	    fprintf (file, "\"%s\"", get_varinfo (to)->name);
	  else
	    fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name);
	  fprintf (file, ";\n");
	}
    }

  /* Prints the tail of the dot file.  */
  fprintf (file, "}\n");
}

/* Print out the constraint graph to stderr.  */

DEBUG_FUNCTION void
debug_constraint_graph (void)
{
  dump_constraint_graph (stderr);
}

/* SOLVER FUNCTIONS

   The solver is a simple worklist solver, that works on the following
   algorithm:

   sbitmap changed_nodes = all zeroes;
   changed_count = 0;
   For each node that is not already collapsed:
       changed_count++;
       set bit in changed nodes

   while (changed_count > 0)
   {
     compute topological ordering for constraint graph

     find and collapse cycles in the constraint graph (updating
     changed if necessary)

     for each node (n) in the graph in topological order:
       changed_count--;

       Process each complex constraint associated with the node,
       updating changed if necessary.

       For each outgoing edge from n, propagate the solution from n to
       the destination of the edge, updating changed as necessary.

   }  */

/* Return true if two constraint expressions A and B are equal.  */

static bool
constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
{
  return a.type == b.type && a.var == b.var && a.offset == b.offset;
}

/* Return true if constraint expression A is less than constraint expression
   B.  This is just arbitrary, but consistent, in order to give them an
   ordering.  */

static bool
constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
{
  if (a.type == b.type)
    {
      if (a.var == b.var)
	return a.offset < b.offset;
      else
	return a.var < b.var;
    }
  else
    return a.type < b.type;
}

/* Return true if constraint A is less than constraint B.  This is just
   arbitrary, but consistent, in order to give them an ordering.  */

static bool
constraint_less (const constraint_t &a, const constraint_t &b)
{
  if (constraint_expr_less (a->lhs, b->lhs))
    return true;
  else if (constraint_expr_less (b->lhs, a->lhs))
    return false;
  else
    return constraint_expr_less (a->rhs, b->rhs);
}

/* Return true if two constraints A and B are equal.  */

static bool
constraint_equal (struct constraint a, struct constraint b)
{
  return constraint_expr_equal (a.lhs, b.lhs)
    && constraint_expr_equal (a.rhs, b.rhs);
}


/* Find a constraint LOOKFOR in the sorted constraint vector VEC */

static constraint_t
constraint_vec_find (vec<constraint_t> vec,
		     struct constraint lookfor)
{
  unsigned int place;
  constraint_t found;

  if (!vec.exists ())
    return NULL;

  place = vec.lower_bound (&lookfor, constraint_less);
  if (place >= vec.length ())
    return NULL;
  found = vec[place];
  if (!constraint_equal (*found, lookfor))
    return NULL;
  return found;
}

/* Union two constraint vectors, TO and FROM.  Put the result in TO. 
   Returns true of TO set is changed.  */

static bool
constraint_set_union (vec<constraint_t> *to,
		      vec<constraint_t> *from)
{
  int i;
  constraint_t c;
  bool any_change = false;

  FOR_EACH_VEC_ELT (*from, i, c)
    {
      if (constraint_vec_find (*to, *c) == NULL)
	{
	  unsigned int place = to->lower_bound (c, constraint_less);
	  to->safe_insert (place, c);
          any_change = true;
	}
    }
  return any_change;
}

/* Expands the solution in SET to all sub-fields of variables included.  */

static bitmap
solution_set_expand (bitmap set, bitmap *expanded)
{
  bitmap_iterator bi;
  unsigned j;

  if (*expanded)
    return *expanded;

  *expanded = BITMAP_ALLOC (&iteration_obstack);

  /* In a first pass expand to the head of the variables we need to
     add all sub-fields off.  This avoids quadratic behavior.  */
  EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
    {
      varinfo_t v = get_varinfo (j);
      if (v->is_artificial_var
	  || v->is_full_var)
	continue;
      bitmap_set_bit (*expanded, v->head);
    }

  /* In the second pass now expand all head variables with subfields.  */
  EXECUTE_IF_SET_IN_BITMAP (*expanded, 0, j, bi)
    {
      varinfo_t v = get_varinfo (j);
      if (v->head != j)
	continue;
      for (v = vi_next (v); v != NULL; v = vi_next (v))
	bitmap_set_bit (*expanded, v->id);
    }

  /* And finally set the rest of the bits from SET.  */
  bitmap_ior_into (*expanded, set);

  return *expanded;
}

/* Union solution sets TO and DELTA, and add INC to each member of DELTA in the
   process.  */

static bool
set_union_with_increment  (bitmap to, bitmap delta, HOST_WIDE_INT inc,
			   bitmap *expanded_delta)
{
  bool changed = false;
  bitmap_iterator bi;
  unsigned int i;

  /* If the solution of DELTA contains anything it is good enough to transfer
     this to TO.  */
  if (bitmap_bit_p (delta, anything_id))
    return bitmap_set_bit (to, anything_id);

  /* If the offset is unknown we have to expand the solution to
     all subfields.  */
  if (inc == UNKNOWN_OFFSET)
    {
      delta = solution_set_expand (delta, expanded_delta);
      changed |= bitmap_ior_into (to, delta);
      return changed;
    }

  /* For non-zero offset union the offsetted solution into the destination.  */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      /* If this is a variable with just one field just set its bit
         in the result.  */
      if (vi->is_artificial_var
	  || vi->is_unknown_size_var
	  || vi->is_full_var)
	changed |= bitmap_set_bit (to, i);
      else
	{
	  HOST_WIDE_INT fieldoffset = vi->offset + inc;
	  unsigned HOST_WIDE_INT size = vi->size;

	  /* If the offset makes the pointer point to before the
	     variable use offset zero for the field lookup.  */
	  if (fieldoffset < 0)
	    vi = get_varinfo (vi->head);
	  else
	    vi = first_or_preceding_vi_for_offset (vi, fieldoffset);

	  do
	    {
	      changed |= bitmap_set_bit (to, vi->id);
	      if (vi->is_full_var
		  || vi->next == 0)
		break;

	      /* We have to include all fields that overlap the current field
	         shifted by inc.  */
	      vi = vi_next (vi);
	    }
	  while (vi->offset < fieldoffset + size);
	}
    }

  return changed;
}

/* Insert constraint C into the list of complex constraints for graph
   node VAR.  */

static void
insert_into_complex (constraint_graph_t graph,
		     unsigned int var, constraint_t c)
{
  vec<constraint_t> complex = graph->complex[var];
  unsigned int place = complex.lower_bound (c, constraint_less);

  /* Only insert constraints that do not already exist.  */
  if (place >= complex.length ()
      || !constraint_equal (*c, *complex[place]))
    graph->complex[var].safe_insert (place, c);
}


/* Condense two variable nodes into a single variable node, by moving
   all associated info from FROM to TO. Returns true if TO node's 
   constraint set changes after the merge.  */

static bool
merge_node_constraints (constraint_graph_t graph, unsigned int to,
			unsigned int from)
{
  unsigned int i;
  constraint_t c;
  bool any_change = false;

  gcc_checking_assert (find (from) == to);

  /* Move all complex constraints from src node into to node  */
  FOR_EACH_VEC_ELT (graph->complex[from], i, c)
    {
      /* In complex constraints for node FROM, we may have either
	 a = *FROM, and *FROM = a, or an offseted constraint which are
	 always added to the rhs node's constraints.  */

      if (c->rhs.type == DEREF)
	c->rhs.var = to;
      else if (c->lhs.type == DEREF)
	c->lhs.var = to;
      else
	c->rhs.var = to;

    }
  any_change = constraint_set_union (&graph->complex[to],
				     &graph->complex[from]);
  graph->complex[from].release ();
  return any_change;
}


/* Remove edges involving NODE from GRAPH.  */

static void
clear_edges_for_node (constraint_graph_t graph, unsigned int node)
{
  if (graph->succs[node])
    BITMAP_FREE (graph->succs[node]);
}

/* Merge GRAPH nodes FROM and TO into node TO.  */

static void
merge_graph_nodes (constraint_graph_t graph, unsigned int to,
		   unsigned int from)
{
  if (graph->indirect_cycles[from] != -1)
    {
      /* If we have indirect cycles with the from node, and we have
	 none on the to node, the to node has indirect cycles from the
	 from node now that they are unified.
	 If indirect cycles exist on both, unify the nodes that they
	 are in a cycle with, since we know they are in a cycle with
	 each other.  */
      if (graph->indirect_cycles[to] == -1)
	graph->indirect_cycles[to] = graph->indirect_cycles[from];
    }

  /* Merge all the successor edges.  */
  if (graph->succs[from])
    {
      if (!graph->succs[to])
	graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
      bitmap_ior_into (graph->succs[to],
		       graph->succs[from]);
    }

  clear_edges_for_node (graph, from);
}


/* Add an indirect graph edge to GRAPH, going from TO to FROM if
   it doesn't exist in the graph already.  */

static void
add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
			 unsigned int from)
{
  if (to == from)
    return;

  if (!graph->implicit_preds[to])
    graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);

  if (bitmap_set_bit (graph->implicit_preds[to], from))
    stats.num_implicit_edges++;
}

/* Add a predecessor graph edge to GRAPH, going from TO to FROM if
   it doesn't exist in the graph already.
   Return false if the edge already existed, true otherwise.  */

static void
add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
		     unsigned int from)
{
  if (!graph->preds[to])
    graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
  bitmap_set_bit (graph->preds[to], from);
}

/* Add a graph edge to GRAPH, going from FROM to TO if
   it doesn't exist in the graph already.
   Return false if the edge already existed, true otherwise.  */

static bool
add_graph_edge (constraint_graph_t graph, unsigned int to,
		unsigned int from)
{
  if (to == from)
    {
      return false;
    }
  else
    {
      bool r = false;

      if (!graph->succs[from])
	graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
      if (bitmap_set_bit (graph->succs[from], to))
	{
	  r = true;
	  if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
	    stats.num_edges++;
	}
      return r;
    }
}


/* Initialize the constraint graph structure to contain SIZE nodes.  */

static void
init_graph (unsigned int size)
{
  unsigned int j;

  graph = XCNEW (struct constraint_graph);
  graph->size = size;
  graph->succs = XCNEWVEC (bitmap, graph->size);
  graph->indirect_cycles = XNEWVEC (int, graph->size);
  graph->rep = XNEWVEC (unsigned int, graph->size);
  /* ??? Macros do not support template types with multiple arguments,
     so we use a typedef to work around it.  */
  typedef vec<constraint_t> vec_constraint_t_heap;
  graph->complex = XCNEWVEC (vec_constraint_t_heap, size);
  graph->pe = XCNEWVEC (unsigned int, graph->size);
  graph->pe_rep = XNEWVEC (int, graph->size);

  for (j = 0; j < graph->size; j++)
    {
      graph->rep[j] = j;
      graph->pe_rep[j] = -1;
      graph->indirect_cycles[j] = -1;
    }
}

/* Build the constraint graph, adding only predecessor edges right now.  */

static void
build_pred_graph (void)
{
  int i;
  constraint_t c;
  unsigned int j;

  graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
  graph->preds = XCNEWVEC (bitmap, graph->size);
  graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
  graph->loc_label = XCNEWVEC (unsigned int, graph->size);
  graph->pointed_by = XCNEWVEC (bitmap, graph->size);
  graph->points_to = XCNEWVEC (bitmap, graph->size);
  graph->eq_rep = XNEWVEC (int, graph->size);
  graph->direct_nodes = sbitmap_alloc (graph->size);
  graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
  bitmap_clear (graph->direct_nodes);

  for (j = 1; j < FIRST_REF_NODE; j++)
    {
      if (!get_varinfo (j)->is_special_var)
	bitmap_set_bit (graph->direct_nodes, j);
    }

  for (j = 0; j < graph->size; j++)
    graph->eq_rep[j] = -1;

  for (j = 0; j < varmap.length (); j++)
    graph->indirect_cycles[j] = -1;

  FOR_EACH_VEC_ELT (constraints, i, c)
    {
      struct constraint_expr lhs = c->lhs;
      struct constraint_expr rhs = c->rhs;
      unsigned int lhsvar = lhs.var;
      unsigned int rhsvar = rhs.var;

      if (lhs.type == DEREF)
	{
	  /* *x = y.  */
	  if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
	    add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
	}
      else if (rhs.type == DEREF)
	{
	  /* x = *y */
	  if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
	    add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
	  else
	    bitmap_clear_bit (graph->direct_nodes, lhsvar);
	}
      else if (rhs.type == ADDRESSOF)
	{
	  varinfo_t v;

	  /* x = &y */
	  if (graph->points_to[lhsvar] == NULL)
	    graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
	  bitmap_set_bit (graph->points_to[lhsvar], rhsvar);

	  if (graph->pointed_by[rhsvar] == NULL)
	    graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
	  bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);

	  /* Implicitly, *x = y */
	  add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);

	  /* All related variables are no longer direct nodes.  */
	  bitmap_clear_bit (graph->direct_nodes, rhsvar);
          v = get_varinfo (rhsvar);
          if (!v->is_full_var)
            {
              v = get_varinfo (v->head);
              do
                {
                  bitmap_clear_bit (graph->direct_nodes, v->id);
                  v = vi_next (v);
                }
              while (v != NULL);
            }
	  bitmap_set_bit (graph->address_taken, rhsvar);
	}
      else if (lhsvar > anything_id
	       && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
	{
	  /* x = y */
	  add_pred_graph_edge (graph, lhsvar, rhsvar);
	  /* Implicitly, *x = *y */
	  add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
				   FIRST_REF_NODE + rhsvar);
	}
      else if (lhs.offset != 0 || rhs.offset != 0)
	{
	  if (rhs.offset != 0)
	    bitmap_clear_bit (graph->direct_nodes, lhs.var);
	  else if (lhs.offset != 0)
	    bitmap_clear_bit (graph->direct_nodes, rhs.var);
	}
    }
}

/* Build the constraint graph, adding successor edges.  */

static void
build_succ_graph (void)
{
  unsigned i, t;
  constraint_t c;

  FOR_EACH_VEC_ELT (constraints, i, c)
    {
      struct constraint_expr lhs;
      struct constraint_expr rhs;
      unsigned int lhsvar;
      unsigned int rhsvar;

      if (!c)
	continue;

      lhs = c->lhs;
      rhs = c->rhs;
      lhsvar = find (lhs.var);
      rhsvar = find (rhs.var);

      if (lhs.type == DEREF)
	{
	  if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
	    add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
	}
      else if (rhs.type == DEREF)
	{
	  if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
	    add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
	}
      else if (rhs.type == ADDRESSOF)
	{
	  /* x = &y */
	  gcc_checking_assert (find (rhs.var) == rhs.var);
	  bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
	}
      else if (lhsvar > anything_id
	       && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
	{
	  add_graph_edge (graph, lhsvar, rhsvar);
	}
    }

  /* Add edges from STOREDANYTHING to all non-direct nodes that can
     receive pointers.  */
  t = find (storedanything_id);
  for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
    {
      if (!bitmap_bit_p (graph->direct_nodes, i)
	  && get_varinfo (i)->may_have_pointers)
	add_graph_edge (graph, find (i), t);
    }

  /* Everything stored to ANYTHING also potentially escapes.  */
  add_graph_edge (graph, find (escaped_id), t);
}


/* Changed variables on the last iteration.  */
static bitmap changed;

/* Strongly Connected Component visitation info.  */

struct scc_info
{
  scc_info (size_t size);
  ~scc_info ();

  auto_sbitmap visited;
  auto_sbitmap deleted;
  unsigned int *dfs;
  unsigned int *node_mapping;
  int current_index;
  auto_vec<unsigned> scc_stack;
};


/* Recursive routine to find strongly connected components in GRAPH.
   SI is the SCC info to store the information in, and N is the id of current
   graph node we are processing.

   This is Tarjan's strongly connected component finding algorithm, as
   modified by Nuutila to keep only non-root nodes on the stack.
   The algorithm can be found in "On finding the strongly connected
   connected components in a directed graph" by Esko Nuutila and Eljas
   Soisalon-Soininen, in Information Processing Letters volume 49,
   number 1, pages 9-14.  */

static void
scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  unsigned int i;
  bitmap_iterator bi;
  unsigned int my_dfs;

  bitmap_set_bit (si->visited, n);
  si->dfs[n] = si->current_index ++;
  my_dfs = si->dfs[n];

  /* Visit all the successors.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
    {
      unsigned int w;

      if (i > LAST_REF_NODE)
	break;

      w = find (i);
      if (bitmap_bit_p (si->deleted, w))
	continue;

      if (!bitmap_bit_p (si->visited, w))
	scc_visit (graph, si, w);

      unsigned int t = find (w);
      gcc_checking_assert (find (n) == n);
      if (si->dfs[t] < si->dfs[n])
	si->dfs[n] = si->dfs[t];
    }

  /* See if any components have been identified.  */
  if (si->dfs[n] == my_dfs)
    {
      if (si->scc_stack.length () > 0
	  && si->dfs[si->scc_stack.last ()] >= my_dfs)
	{
	  bitmap scc = BITMAP_ALLOC (NULL);
	  unsigned int lowest_node;
	  bitmap_iterator bi;

	  bitmap_set_bit (scc, n);

	  while (si->scc_stack.length () != 0
		 && si->dfs[si->scc_stack.last ()] >= my_dfs)
	    {
	      unsigned int w = si->scc_stack.pop ();

	      bitmap_set_bit (scc, w);
	    }

	  lowest_node = bitmap_first_set_bit (scc);
	  gcc_assert (lowest_node < FIRST_REF_NODE);

	  /* Collapse the SCC nodes into a single node, and mark the
	     indirect cycles.  */
	  EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
	    {
	      if (i < FIRST_REF_NODE)
		{
		  if (unite (lowest_node, i))
		    unify_nodes (graph, lowest_node, i, false);
		}
	      else
		{
		  unite (lowest_node, i);
		  graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
		}
	    }
	}
      bitmap_set_bit (si->deleted, n);
    }
  else
    si->scc_stack.safe_push (n);
}

/* Unify node FROM into node TO, updating the changed count if
   necessary when UPDATE_CHANGED is true.  */

static void
unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
	     bool update_changed)
{
  gcc_checking_assert (to != from && find (to) == to);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Unifying %s to %s\n",
	     get_varinfo (from)->name,
	     get_varinfo (to)->name);

  if (update_changed)
    stats.unified_vars_dynamic++;
  else
    stats.unified_vars_static++;

  merge_graph_nodes (graph, to, from);
  if (merge_node_constraints (graph, to, from))
    {
      if (update_changed)
	bitmap_set_bit (changed, to);
    }

  /* Mark TO as changed if FROM was changed. If TO was already marked
     as changed, decrease the changed count.  */

  if (update_changed
      && bitmap_clear_bit (changed, from))
    bitmap_set_bit (changed, to);
  varinfo_t fromvi = get_varinfo (from);
  if (fromvi->solution)
    {
      /* If the solution changes because of the merging, we need to mark
	 the variable as changed.  */
      varinfo_t tovi = get_varinfo (to);
      if (bitmap_ior_into (tovi->solution, fromvi->solution))
	{
	  if (update_changed)
	    bitmap_set_bit (changed, to);
	}

      BITMAP_FREE (fromvi->solution);
      if (fromvi->oldsolution)
	BITMAP_FREE (fromvi->oldsolution);

      if (stats.iterations > 0
	  && tovi->oldsolution)
	BITMAP_FREE (tovi->oldsolution);
    }
  if (graph->succs[to])
    bitmap_clear_bit (graph->succs[to], to);
}

/* Information needed to compute the topological ordering of a graph.  */

struct topo_info
{
  /* sbitmap of visited nodes.  */
  sbitmap visited;
  /* Array that stores the topological order of the graph, *in
     reverse*.  */
  vec<unsigned> topo_order;
};


/* Initialize and return a topological info structure.  */

static struct topo_info *
init_topo_info (void)
{
  size_t size = graph->size;
  struct topo_info *ti = XNEW (struct topo_info);
  ti->visited = sbitmap_alloc (size);
  bitmap_clear (ti->visited);
  ti->topo_order.create (1);
  return ti;
}


/* Free the topological sort info pointed to by TI.  */

static void
free_topo_info (struct topo_info *ti)
{
  sbitmap_free (ti->visited);
  ti->topo_order.release ();
  free (ti);
}

/* Visit the graph in topological order, and store the order in the
   topo_info structure.  */

static void
topo_visit (constraint_graph_t graph, struct topo_info *ti,
	    unsigned int n)
{
  bitmap_iterator bi;
  unsigned int j;

  bitmap_set_bit (ti->visited, n);

  if (graph->succs[n])
    EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
      {
	if (!bitmap_bit_p (ti->visited, j))
	  topo_visit (graph, ti, j);
      }

  ti->topo_order.safe_push (n);
}

/* Process a constraint C that represents x = *(y + off), using DELTA as the
   starting solution for y.  */

static void
do_sd_constraint (constraint_graph_t graph, constraint_t c,
		  bitmap delta, bitmap *expanded_delta)
{
  unsigned int lhs = c->lhs.var;
  bool flag = false;
  bitmap sol = get_varinfo (lhs)->solution;
  unsigned int j;
  bitmap_iterator bi;
  HOST_WIDE_INT roffset = c->rhs.offset;

  /* Our IL does not allow this.  */
  gcc_checking_assert (c->lhs.offset == 0);

  /* If the solution of Y contains anything it is good enough to transfer
     this to the LHS.  */
  if (bitmap_bit_p (delta, anything_id))
    {
      flag |= bitmap_set_bit (sol, anything_id);
      goto done;
    }

  /* If we do not know at with offset the rhs is dereferenced compute
     the reachability set of DELTA, conservatively assuming it is
     dereferenced at all valid offsets.  */
  if (roffset == UNKNOWN_OFFSET)
    {
      delta = solution_set_expand (delta, expanded_delta);
      /* No further offset processing is necessary.  */
      roffset = 0;
    }

  /* For each variable j in delta (Sol(y)), add
     an edge in the graph from j to x, and union Sol(j) into Sol(x).  */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      varinfo_t v = get_varinfo (j);
      HOST_WIDE_INT fieldoffset = v->offset + roffset;
      unsigned HOST_WIDE_INT size = v->size;
      unsigned int t;

      if (v->is_full_var)
	;
      else if (roffset != 0)
	{
	  if (fieldoffset < 0)
	    v = get_varinfo (v->head);
	  else
	    v = first_or_preceding_vi_for_offset (v, fieldoffset);
	}

      /* We have to include all fields that overlap the current field
	 shifted by roffset.  */
      do
	{
	  t = find (v->id);

	  /* Adding edges from the special vars is pointless.
	     They don't have sets that can change.  */
	  if (get_varinfo (t)->is_special_var)
	    flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
	  /* Merging the solution from ESCAPED needlessly increases
	     the set.  Use ESCAPED as representative instead.  */
	  else if (v->id == escaped_id)
	    flag |= bitmap_set_bit (sol, escaped_id);
	  else if (v->may_have_pointers
		   && add_graph_edge (graph, lhs, t))
	    flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);

	  if (v->is_full_var
	      || v->next == 0)
	    break;

	  v = vi_next (v);
	}
      while (v->offset < fieldoffset + size);
    }

done:
  /* If the LHS solution changed, mark the var as changed.  */
  if (flag)
    {
      get_varinfo (lhs)->solution = sol;
      bitmap_set_bit (changed, lhs);
    }
}

/* Process a constraint C that represents *(x + off) = y using DELTA
   as the starting solution for x.  */

static void
do_ds_constraint (constraint_t c, bitmap delta, bitmap *expanded_delta)
{
  unsigned int rhs = c->rhs.var;
  bitmap sol = get_varinfo (rhs)->solution;
  unsigned int j;
  bitmap_iterator bi;
  HOST_WIDE_INT loff = c->lhs.offset;
  bool escaped_p = false;

  /* Our IL does not allow this.  */
  gcc_checking_assert (c->rhs.offset == 0);

  /* If the solution of y contains ANYTHING simply use the ANYTHING
     solution.  This avoids needlessly increasing the points-to sets.  */
  if (bitmap_bit_p (sol, anything_id))
    sol = get_varinfo (find (anything_id))->solution;

  /* If the solution for x contains ANYTHING we have to merge the
     solution of y into all pointer variables which we do via
     STOREDANYTHING.  */
  if (bitmap_bit_p (delta, anything_id))
    {
      unsigned t = find (storedanything_id);
      if (add_graph_edge (graph, t, rhs))
	{
	  if (bitmap_ior_into (get_varinfo (t)->solution, sol))
	    bitmap_set_bit (changed, t);
	}
      return;
    }

  /* If we do not know at with offset the rhs is dereferenced compute
     the reachability set of DELTA, conservatively assuming it is
     dereferenced at all valid offsets.  */
  if (loff == UNKNOWN_OFFSET)
    {
      delta = solution_set_expand (delta, expanded_delta);
      loff = 0;
    }

  /* For each member j of delta (Sol(x)), add an edge from y to j and
     union Sol(y) into Sol(j) */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      varinfo_t v = get_varinfo (j);
      unsigned int t;
      HOST_WIDE_INT fieldoffset = v->offset + loff;
      unsigned HOST_WIDE_INT size = v->size;

      if (v->is_full_var)
	;
      else if (loff != 0)
	{
	  if (fieldoffset < 0)
	    v = get_varinfo (v->head);
	  else
	    v = first_or_preceding_vi_for_offset (v, fieldoffset);
	}

      /* We have to include all fields that overlap the current field
	 shifted by loff.  */
      do
	{
	  if (v->may_have_pointers)
	    {
	      /* If v is a global variable then this is an escape point.  */
	      if (v->is_global_var
		  && !escaped_p)
		{
		  t = find (escaped_id);
		  if (add_graph_edge (graph, t, rhs)
		      && bitmap_ior_into (get_varinfo (t)->solution, sol))
		    bitmap_set_bit (changed, t);
		  /* Enough to let rhs escape once.  */
		  escaped_p = true;
		}

	      if (v->is_special_var)
		break;

	      t = find (v->id);
	      if (add_graph_edge (graph, t, rhs)
		  && bitmap_ior_into (get_varinfo (t)->solution, sol))
		bitmap_set_bit (changed, t);
	    }

	  if (v->is_full_var
	      || v->next == 0)
	    break;

	  v = vi_next (v);
	}
      while (v->offset < fieldoffset + size);
    }
}

/* Handle a non-simple (simple meaning requires no iteration),
   constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved).  */

static void
do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta,
		       bitmap *expanded_delta)
{
  if (c->lhs.type == DEREF)
    {
      if (c->rhs.type == ADDRESSOF)
	{
	  gcc_unreachable ();
	}
      else
	{
	  /* *x = y */
	  do_ds_constraint (c, delta, expanded_delta);
	}
    }
  else if (c->rhs.type == DEREF)
    {
      /* x = *y */
      if (!(get_varinfo (c->lhs.var)->is_special_var))
	do_sd_constraint (graph, c, delta, expanded_delta);
    }
  else
    {
      bitmap tmp;
      bool flag = false;

      gcc_checking_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR
			   && c->rhs.offset != 0 && c->lhs.offset == 0);
      tmp = get_varinfo (c->lhs.var)->solution;

      flag = set_union_with_increment (tmp, delta, c->rhs.offset,
				       expanded_delta);

      if (flag)
	bitmap_set_bit (changed, c->lhs.var);
    }
}

/* Initialize and return a new SCC info structure.  */

scc_info::scc_info (size_t size) :
  visited (size), deleted (size), current_index (0), scc_stack (1)
{
  bitmap_clear (visited);
  bitmap_clear (deleted);
  node_mapping = XNEWVEC (unsigned int, size);
  dfs = XCNEWVEC (unsigned int, size);

  for (size_t i = 0; i < size; i++)
    node_mapping[i] = i;
}

/* Free an SCC info structure pointed to by SI */

scc_info::~scc_info ()
{
  free (node_mapping);
  free (dfs);
}


/* Find indirect cycles in GRAPH that occur, using strongly connected
   components, and note them in the indirect cycles map.

   This technique comes from Ben Hardekopf and Calvin Lin,
   "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
   Lines of Code", submitted to PLDI 2007.  */

static void
find_indirect_cycles (constraint_graph_t graph)
{
  unsigned int i;
  unsigned int size = graph->size;
  scc_info si (size);

  for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
    if (!bitmap_bit_p (si.visited, i) && find (i) == i)
      scc_visit (graph, &si, i);
}

/* Compute a topological ordering for GRAPH, and store the result in the
   topo_info structure TI.  */

static void
compute_topo_order (constraint_graph_t graph,
		    struct topo_info *ti)
{
  unsigned int i;
  unsigned int size = graph->size;

  for (i = 0; i != size; ++i)
    if (!bitmap_bit_p (ti->visited, i) && find (i) == i)
      topo_visit (graph, ti, i);
}

/* Structure used to for hash value numbering of pointer equivalence
   classes.  */

typedef struct equiv_class_label
{
  hashval_t hashcode;
  unsigned int equivalence_class;
  bitmap labels;
} *equiv_class_label_t;
typedef const struct equiv_class_label *const_equiv_class_label_t;

/* Equiv_class_label hashtable helpers.  */

struct equiv_class_hasher : free_ptr_hash <equiv_class_label>
{
  static inline hashval_t hash (const equiv_class_label *);
  static inline bool equal (const equiv_class_label *,
			    const equiv_class_label *);
};

/* Hash function for a equiv_class_label_t */

inline hashval_t
equiv_class_hasher::hash (const equiv_class_label *ecl)
{
  return ecl->hashcode;
}

/* Equality function for two equiv_class_label_t's.  */

inline bool
equiv_class_hasher::equal (const equiv_class_label *eql1,
			   const equiv_class_label *eql2)
{
  return (eql1->hashcode == eql2->hashcode
	  && bitmap_equal_p (eql1->labels, eql2->labels));
}

/* A hashtable for mapping a bitmap of labels->pointer equivalence
   classes.  */
static hash_table<equiv_class_hasher> *pointer_equiv_class_table;

/* A hashtable for mapping a bitmap of labels->location equivalence
   classes.  */
static hash_table<equiv_class_hasher> *location_equiv_class_table;

/* Lookup a equivalence class in TABLE by the bitmap of LABELS with
   hash HAS it contains.  Sets *REF_LABELS to the bitmap LABELS
   is equivalent to.  */

static equiv_class_label *
equiv_class_lookup_or_add (hash_table<equiv_class_hasher> *table,
			   bitmap labels)
{
  equiv_class_label **slot;
  equiv_class_label ecl;

  ecl.labels = labels;
  ecl.hashcode = bitmap_hash (labels);
  slot = table->find_slot (&ecl, INSERT);
  if (!*slot)
    {
      *slot = XNEW (struct equiv_class_label);
      (*slot)->labels = labels;
      (*slot)->hashcode = ecl.hashcode;
      (*slot)->equivalence_class = 0;
    }

  return *slot;
}

/* Perform offline variable substitution.

   This is a worst case quadratic time way of identifying variables
   that must have equivalent points-to sets, including those caused by
   static cycles, and single entry subgraphs, in the constraint graph.

   The technique is described in "Exploiting Pointer and Location
   Equivalence to Optimize Pointer Analysis. In the 14th International
   Static Analysis Symposium (SAS), August 2007."  It is known as the
   "HU" algorithm, and is equivalent to value numbering the collapsed
   constraint graph including evaluating unions.

   The general method of finding equivalence classes is as follows:
   Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
   Initialize all non-REF nodes to be direct nodes.
   For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
   variable}
   For each constraint containing the dereference, we also do the same
   thing.

   We then compute SCC's in the graph and unify nodes in the same SCC,
   including pts sets.

   For each non-collapsed node x:
    Visit all unvisited explicit incoming edges.
    Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
    where y->x.
    Lookup the equivalence class for pts(x).
     If we found one, equivalence_class(x) = found class.
     Otherwise, equivalence_class(x) = new class, and new_class is
    added to the lookup table.

   All direct nodes with the same equivalence class can be replaced
   with a single representative node.
   All unlabeled nodes (label == 0) are not pointers and all edges
   involving them can be eliminated.
   We perform these optimizations during rewrite_constraints

   In addition to pointer equivalence class finding, we also perform
   location equivalence class finding.  This is the set of variables
   that always appear together in points-to sets.  We use this to
   compress the size of the points-to sets.  */

/* Current maximum pointer equivalence class id.  */
static int pointer_equiv_class;

/* Current maximum location equivalence class id.  */
static int location_equiv_class;

/* Recursive routine to find strongly connected components in GRAPH,
   and label it's nodes with DFS numbers.  */

static void
condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  unsigned int i;
  bitmap_iterator bi;
  unsigned int my_dfs;

  gcc_checking_assert (si->node_mapping[n] == n);
  bitmap_set_bit (si->visited, n);
  si->dfs[n] = si->current_index ++;
  my_dfs = si->dfs[n];

  /* Visit all the successors.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
    {
      unsigned int w = si->node_mapping[i];

      if (bitmap_bit_p (si->deleted, w))
	continue;

      if (!bitmap_bit_p (si->visited, w))
	condense_visit (graph, si, w);

      unsigned int t = si->node_mapping[w];
      gcc_checking_assert (si->node_mapping[n] == n);
      if (si->dfs[t] < si->dfs[n])
	si->dfs[n] = si->dfs[t];
    }

  /* Visit all the implicit predecessors.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
    {
      unsigned int w = si->node_mapping[i];

      if (bitmap_bit_p (si->deleted, w))
	continue;

      if (!bitmap_bit_p (si->visited, w))
	condense_visit (graph, si, w);

      unsigned int t = si->node_mapping[w];
      gcc_assert (si->node_mapping[n] == n);
      if (si->dfs[t] < si->dfs[n])
	si->dfs[n] = si->dfs[t];
    }

  /* See if any components have been identified.  */
  if (si->dfs[n] == my_dfs)
    {
      while (si->scc_stack.length () != 0
	     && si->dfs[si->scc_stack.last ()] >= my_dfs)
	{
	  unsigned int w = si->scc_stack.pop ();
	  si->node_mapping[w] = n;

	  if (!bitmap_bit_p (graph->direct_nodes, w))
	    bitmap_clear_bit (graph->direct_nodes, n);

	  /* Unify our nodes.  */
	  if (graph->preds[w])
	    {
	      if (!graph->preds[n])
		graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
	      bitmap_ior_into (graph->preds[n], graph->preds[w]);
	    }
	  if (graph->implicit_preds[w])
	    {
	      if (!graph->implicit_preds[n])
		graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
	      bitmap_ior_into (graph->implicit_preds[n],
			       graph->implicit_preds[w]);
	    }
	  if (graph->points_to[w])
	    {
	      if (!graph->points_to[n])
		graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
	      bitmap_ior_into (graph->points_to[n],
			       graph->points_to[w]);
	    }
	}
      bitmap_set_bit (si->deleted, n);
    }
  else
    si->scc_stack.safe_push (n);
}

/* Label pointer equivalences.

   This performs a value numbering of the constraint graph to
   discover which variables will always have the same points-to sets
   under the current set of constraints.

   The way it value numbers is to store the set of points-to bits
   generated by the constraints and graph edges.  This is just used as a
   hash and equality comparison.  The *actual set of points-to bits* is
   completely irrelevant, in that we don't care about being able to
   extract them later.

   The equality values (currently bitmaps) just have to satisfy a few
   constraints, the main ones being:
   1. The combining operation must be order independent.
   2. The end result of a given set of operations must be unique iff the
      combination of input values is unique
   3. Hashable.  */

static void
label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  unsigned int i, first_pred;
  bitmap_iterator bi;

  bitmap_set_bit (si->visited, n);

  /* Label and union our incoming edges's points to sets.  */
  first_pred = -1U;
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
    {
      unsigned int w = si->node_mapping[i];
      if (!bitmap_bit_p (si->visited, w))
	label_visit (graph, si, w);

      /* Skip unused edges  */
      if (w == n || graph->pointer_label[w] == 0)
	continue;

      if (graph->points_to[w])
	{
	  if (!graph->points_to[n])
	    {
	      if (first_pred == -1U)
		first_pred = w;
	      else
		{
		  graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
		  bitmap_ior (graph->points_to[n],
			      graph->points_to[first_pred],
			      graph->points_to[w]);
		}
	    }
	  else
	    bitmap_ior_into (graph->points_to[n], graph->points_to[w]);
	}
    }

  /* Indirect nodes get fresh variables and a new pointer equiv class.  */
  if (!bitmap_bit_p (graph->direct_nodes, n))
    {
      if (!graph->points_to[n])
	{
	  graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
	  if (first_pred != -1U)
	    bitmap_copy (graph->points_to[n], graph->points_to[first_pred]);
	}
      bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
      graph->pointer_label[n] = pointer_equiv_class++;
      equiv_class_label_t ecl;
      ecl = equiv_class_lookup_or_add (pointer_equiv_class_table,
				       graph->points_to[n]);
      ecl->equivalence_class = graph->pointer_label[n];
      return;
    }

  /* If there was only a single non-empty predecessor the pointer equiv
     class is the same.  */
  if (!graph->points_to[n])
    {
      if (first_pred != -1U)
	{
	  graph->pointer_label[n] = graph->pointer_label[first_pred];
	  graph->points_to[n] = graph->points_to[first_pred];
	}
      return;
    }

  if (!bitmap_empty_p (graph->points_to[n]))
    {
      equiv_class_label_t ecl;
      ecl = equiv_class_lookup_or_add (pointer_equiv_class_table,
				       graph->points_to[n]);
      if (ecl->equivalence_class == 0)
	ecl->equivalence_class = pointer_equiv_class++;
      else
	{
	  BITMAP_FREE (graph->points_to[n]);
	  graph->points_to[n] = ecl->labels;
	}
      graph->pointer_label[n] = ecl->equivalence_class;
    }
}

/* Print the pred graph in dot format.  */

static void
dump_pred_graph (struct scc_info *si, FILE *file)
{
  unsigned int i;

  /* Only print the graph if it has already been initialized:  */
  if (!graph)
    return;

  /* Prints the header of the dot file:  */
  fprintf (file, "strict digraph {\n");
  fprintf (file, "  node [\n    shape = box\n  ]\n");
  fprintf (file, "  edge [\n    fontsize = \"12\"\n  ]\n");
  fprintf (file, "\n  // List of nodes and complex constraints in "
	   "the constraint graph:\n");

  /* The next lines print the nodes in the graph together with the
     complex constraints attached to them.  */
  for (i = 1; i < graph->size; i++)
    {
      if (i == FIRST_REF_NODE)
	continue;
      if (si->node_mapping[i] != i)
	continue;
      if (i < FIRST_REF_NODE)
	fprintf (file, "\"%s\"", get_varinfo (i)->name);
      else
	fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
      if (graph->points_to[i]
	  && !bitmap_empty_p (graph->points_to[i]))
	{
	  if (i < FIRST_REF_NODE)
	    fprintf (file, "[label=\"%s = {", get_varinfo (i)->name);
	  else
	    fprintf (file, "[label=\"*%s = {",
		     get_varinfo (i - FIRST_REF_NODE)->name);
	  unsigned j;
	  bitmap_iterator bi;
	  EXECUTE_IF_SET_IN_BITMAP (graph->points_to[i], 0, j, bi)
	    fprintf (file, " %d", j);
	  fprintf (file, " }\"]");
	}
      fprintf (file, ";\n");
    }

  /* Go over the edges.  */
  fprintf (file, "\n  // Edges in the constraint graph:\n");
  for (i = 1; i < graph->size; i++)
    {
      unsigned j;
      bitmap_iterator bi;
      if (si->node_mapping[i] != i)
	continue;
      EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[i], 0, j, bi)
	{
	  unsigned from = si->node_mapping[j];
	  if (from < FIRST_REF_NODE)
	    fprintf (file, "\"%s\"", get_varinfo (from)->name);
	  else
	    fprintf (file, "\"*%s\"", get_varinfo (from - FIRST_REF_NODE)->name);
	  fprintf (file, " -> ");
	  if (i < FIRST_REF_NODE)
	    fprintf (file, "\"%s\"", get_varinfo (i)->name);
	  else
	    fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
	  fprintf (file, ";\n");
	}
    }

  /* Prints the tail of the dot file.  */
  fprintf (file, "}\n");
}

/* Perform offline variable substitution, discovering equivalence
   classes, and eliminating non-pointer variables.  */

static struct scc_info *
perform_var_substitution (constraint_graph_t graph)
{
  unsigned int i;
  unsigned int size = graph->size;
  scc_info *si = new scc_info (size);

  bitmap_obstack_initialize (&iteration_obstack);
  pointer_equiv_class_table = new hash_table<equiv_class_hasher> (511);
  location_equiv_class_table
    = new hash_table<equiv_class_hasher> (511);
  pointer_equiv_class = 1;
  location_equiv_class = 1;

  /* Condense the nodes, which means to find SCC's, count incoming
     predecessors, and unite nodes in SCC's.  */
  for (i = 1; i < FIRST_REF_NODE; i++)
    if (!bitmap_bit_p (si->visited, si->node_mapping[i]))
      condense_visit (graph, si, si->node_mapping[i]);

  if (dump_file && (dump_flags & TDF_GRAPH))
    {
      fprintf (dump_file, "\n\n// The constraint graph before var-substitution "
	       "in dot format:\n");
      dump_pred_graph (si, dump_file);
      fprintf (dump_file, "\n\n");
    }

  bitmap_clear (si->visited);
  /* Actually the label the nodes for pointer equivalences  */
  for (i = 1; i < FIRST_REF_NODE; i++)
    if (!bitmap_bit_p (si->visited, si->node_mapping[i]))
      label_visit (graph, si, si->node_mapping[i]);

  /* Calculate location equivalence labels.  */
  for (i = 1; i < FIRST_REF_NODE; i++)
    {
      bitmap pointed_by;
      bitmap_iterator bi;
      unsigned int j;

      if (!graph->pointed_by[i])
	continue;
      pointed_by = BITMAP_ALLOC (&iteration_obstack);

      /* Translate the pointed-by mapping for pointer equivalence
	 labels.  */
      EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
	{
	  bitmap_set_bit (pointed_by,
			  graph->pointer_label[si->node_mapping[j]]);
	}
      /* The original pointed_by is now dead.  */
      BITMAP_FREE (graph->pointed_by[i]);

      /* Look up the location equivalence label if one exists, or make
	 one otherwise.  */
      equiv_class_label_t ecl;
      ecl = equiv_class_lookup_or_add (location_equiv_class_table, pointed_by);
      if (ecl->equivalence_class == 0)
	ecl->equivalence_class = location_equiv_class++;
      else
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Found location equivalence for node %s\n",
		     get_varinfo (i)->name);
	  BITMAP_FREE (pointed_by);
	}
      graph->loc_label[i] = ecl->equivalence_class;

    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    for (i = 1; i < FIRST_REF_NODE; i++)
      {
	unsigned j = si->node_mapping[i];
	if (j != i)
	  {
	    fprintf (dump_file, "%s node id %d ",
		     bitmap_bit_p (graph->direct_nodes, i)
		     ? "Direct" : "Indirect", i);
	    if (i < FIRST_REF_NODE)
	      fprintf (dump_file, "\"%s\"", get_varinfo (i)->name);
	    else
	      fprintf (dump_file, "\"*%s\"",
		       get_varinfo (i - FIRST_REF_NODE)->name);
	    fprintf (dump_file, " mapped to SCC leader node id %d ", j);
	    if (j < FIRST_REF_NODE)
	      fprintf (dump_file, "\"%s\"\n", get_varinfo (j)->name);
	    else
	      fprintf (dump_file, "\"*%s\"\n",
		       get_varinfo (j - FIRST_REF_NODE)->name);
	  }
	else
	  {
	    fprintf (dump_file,
		     "Equivalence classes for %s node id %d ",
		     bitmap_bit_p (graph->direct_nodes, i)
		     ? "direct" : "indirect", i);
	    if (i < FIRST_REF_NODE)
	      fprintf (dump_file, "\"%s\"", get_varinfo (i)->name);
	    else
	      fprintf (dump_file, "\"*%s\"",
		       get_varinfo (i - FIRST_REF_NODE)->name);
	    fprintf (dump_file,
		     ": pointer %d, location %d\n",
		     graph->pointer_label[i], graph->loc_label[i]);
	  }
      }

  /* Quickly eliminate our non-pointer variables.  */

  for (i = 1; i < FIRST_REF_NODE; i++)
    {
      unsigned int node = si->node_mapping[i];

      if (graph->pointer_label[node] == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "%s is a non-pointer variable, eliminating edges.\n",
		     get_varinfo (node)->name);
	  stats.nonpointer_vars++;
	  clear_edges_for_node (graph, node);
	}
    }

  return si;
}

/* Free information that was only necessary for variable
   substitution.  */

static void
free_var_substitution_info (struct scc_info *si)
{
  delete si;
  free (graph->pointer_label);
  free (graph->loc_label);
  free (graph->pointed_by);
  free (graph->points_to);
  free (graph->eq_rep);
  sbitmap_free (graph->direct_nodes);
  delete pointer_equiv_class_table;
  pointer_equiv_class_table = NULL;
  delete location_equiv_class_table;
  location_equiv_class_table = NULL;
  bitmap_obstack_release (&iteration_obstack);
}

/* Return an existing node that is equivalent to NODE, which has
   equivalence class LABEL, if one exists.  Return NODE otherwise.  */

static unsigned int
find_equivalent_node (constraint_graph_t graph,
		      unsigned int node, unsigned int label)
{
  /* If the address version of this variable is unused, we can
     substitute it for anything else with the same label.
     Otherwise, we know the pointers are equivalent, but not the
     locations, and we can unite them later.  */

  if (!bitmap_bit_p (graph->address_taken, node))
    {
      gcc_checking_assert (label < graph->size);

      if (graph->eq_rep[label] != -1)
	{
	  /* Unify the two variables since we know they are equivalent.  */
	  if (unite (graph->eq_rep[label], node))
	    unify_nodes (graph, graph->eq_rep[label], node, false);
	  return graph->eq_rep[label];
	}
      else
	{
	  graph->eq_rep[label] = node;
	  graph->pe_rep[label] = node;
	}
    }
  else
    {
      gcc_checking_assert (label < graph->size);
      graph->pe[node] = label;
      if (graph->pe_rep[label] == -1)
	graph->pe_rep[label] = node;
    }

  return node;
}

/* Unite pointer equivalent but not location equivalent nodes in
   GRAPH.  This may only be performed once variable substitution is
   finished.  */

static void
unite_pointer_equivalences (constraint_graph_t graph)
{
  unsigned int i;

  /* Go through the pointer equivalences and unite them to their
     representative, if they aren't already.  */
  for (i = 1; i < FIRST_REF_NODE; i++)
    {
      unsigned int label = graph->pe[i];
      if (label)
	{
	  int label_rep = graph->pe_rep[label];

	  if (label_rep == -1)
	    continue;

	  label_rep = find (label_rep);
	  if (label_rep >= 0 && unite (label_rep, find (i)))
	    unify_nodes (graph, label_rep, i, false);
	}
    }
}

/* Move complex constraints to the GRAPH nodes they belong to.  */

static void
move_complex_constraints (constraint_graph_t graph)
{
  int i;
  constraint_t c;

  FOR_EACH_VEC_ELT (constraints, i, c)
    {
      if (c)
	{
	  struct constraint_expr lhs = c->lhs;
	  struct constraint_expr rhs = c->rhs;

	  if (lhs.type == DEREF)
	    {
	      insert_into_complex (graph, lhs.var, c);
	    }
	  else if (rhs.type == DEREF)
	    {
	      if (!(get_varinfo (lhs.var)->is_special_var))
		insert_into_complex (graph, rhs.var, c);
	    }
	  else if (rhs.type != ADDRESSOF && lhs.var > anything_id
		   && (lhs.offset != 0 || rhs.offset != 0))
	    {
	      insert_into_complex (graph, rhs.var, c);
	    }
	}
    }
}


/* Optimize and rewrite complex constraints while performing
   collapsing of equivalent nodes.  SI is the SCC_INFO that is the
   result of perform_variable_substitution.  */

static void
rewrite_constraints (constraint_graph_t graph,
		     struct scc_info *si)
{
  int i;
  constraint_t c;

  if (flag_checking)
    {
      for (unsigned int j = 0; j < graph->size; j++)
	gcc_assert (find (j) == j);
    }

  FOR_EACH_VEC_ELT (constraints, i, c)
    {
      struct constraint_expr lhs = c->lhs;
      struct constraint_expr rhs = c->rhs;
      unsigned int lhsvar = find (lhs.var);
      unsigned int rhsvar = find (rhs.var);
      unsigned int lhsnode, rhsnode;
      unsigned int lhslabel, rhslabel;

      lhsnode = si->node_mapping[lhsvar];
      rhsnode = si->node_mapping[rhsvar];
      lhslabel = graph->pointer_label[lhsnode];
      rhslabel = graph->pointer_label[rhsnode];

      /* See if it is really a non-pointer variable, and if so, ignore
	 the constraint.  */
      if (lhslabel == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {

	      fprintf (dump_file, "%s is a non-pointer variable,"
		       "ignoring constraint:",
		       get_varinfo (lhs.var)->name);
	      dump_constraint (dump_file, c);
	      fprintf (dump_file, "\n");
	    }
	  constraints[i] = NULL;
	  continue;
	}

      if (rhslabel == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {

	      fprintf (dump_file, "%s is a non-pointer variable,"
		       "ignoring constraint:",
		       get_varinfo (rhs.var)->name);
	      dump_constraint (dump_file, c);
	      fprintf (dump_file, "\n");
	    }
	  constraints[i] = NULL;
	  continue;
	}

      lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
      rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
      c->lhs.var = lhsvar;
      c->rhs.var = rhsvar;
    }
}

/* Eliminate indirect cycles involving NODE.  Return true if NODE was
   part of an SCC, false otherwise.  */

static bool
eliminate_indirect_cycles (unsigned int node)
{
  if (graph->indirect_cycles[node] != -1
      && !bitmap_empty_p (get_varinfo (node)->solution))
    {
      unsigned int i;
      auto_vec<unsigned> queue;
      int queuepos;
      unsigned int to = find (graph->indirect_cycles[node]);
      bitmap_iterator bi;

      /* We can't touch the solution set and call unify_nodes
	 at the same time, because unify_nodes is going to do
	 bitmap unions into it. */

      EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
	{
	  if (find (i) == i && i != to)
	    {
	      if (unite (to, i))
		queue.safe_push (i);
	    }
	}

      for (queuepos = 0;
	   queue.iterate (queuepos, &i);
	   queuepos++)
	{
	  unify_nodes (graph, to, i, true);
	}
      return true;
    }
  return false;
}

/* Solve the constraint graph GRAPH using our worklist solver.
   This is based on the PW* family of solvers from the "Efficient Field
   Sensitive Pointer Analysis for C" paper.
   It works by iterating over all the graph nodes, processing the complex
   constraints and propagating the copy constraints, until everything stops
   changed.  This corresponds to steps 6-8 in the solving list given above.  */

static void
solve_graph (constraint_graph_t graph)
{
  unsigned int size = graph->size;
  unsigned int i;
  bitmap pts;

  changed = BITMAP_ALLOC (NULL);

  /* Mark all initial non-collapsed nodes as changed.  */
  for (i = 1; i < size; i++)
    {
      varinfo_t ivi = get_varinfo (i);
      if (find (i) == i && !bitmap_empty_p (ivi->solution)
	  && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
	      || graph->complex[i].length () > 0))
	bitmap_set_bit (changed, i);
    }

  /* Allocate a bitmap to be used to store the changed bits.  */
  pts = BITMAP_ALLOC (&pta_obstack);

  while (!bitmap_empty_p (changed))
    {
      unsigned int i;
      struct topo_info *ti = init_topo_info ();
      stats.iterations++;

      bitmap_obstack_initialize (&iteration_obstack);

      compute_topo_order (graph, ti);

      while (ti->topo_order.length () != 0)
	{

	  i = ti->topo_order.pop ();

	  /* If this variable is not a representative, skip it.  */
	  if (find (i) != i)
	    continue;

	  /* In certain indirect cycle cases, we may merge this
	     variable to another.  */
	  if (eliminate_indirect_cycles (i) && find (i) != i)
	    continue;

	  /* If the node has changed, we need to process the
	     complex constraints and outgoing edges again.  */
	  if (bitmap_clear_bit (changed, i))
	    {
	      unsigned int j;
	      constraint_t c;
	      bitmap solution;
	      vec<constraint_t> complex = graph->complex[i];
	      varinfo_t vi = get_varinfo (i);
	      bool solution_empty;

	      /* Compute the changed set of solution bits.  If anything
	         is in the solution just propagate that.  */
	      if (bitmap_bit_p (vi->solution, anything_id))
		{
		  /* If anything is also in the old solution there is
		     nothing to do.
		     ???  But we shouldn't ended up with "changed" set ...  */
		  if (vi->oldsolution
		      && bitmap_bit_p (vi->oldsolution, anything_id))
		    continue;
		  bitmap_copy (pts, get_varinfo (find (anything_id))->solution);
		}
	      else if (vi->oldsolution)
		bitmap_and_compl (pts, vi->solution, vi->oldsolution);
	      else
		bitmap_copy (pts, vi->solution);

	      if (bitmap_empty_p (pts))
		continue;

	      if (vi->oldsolution)
		bitmap_ior_into (vi->oldsolution, pts);
	      else
		{
		  vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
		  bitmap_copy (vi->oldsolution, pts);
		}

	      solution = vi->solution;
	      solution_empty = bitmap_empty_p (solution);

	      /* Process the complex constraints */
	      bitmap expanded_pts = NULL;
	      FOR_EACH_VEC_ELT (complex, j, c)
		{
		  /* XXX: This is going to unsort the constraints in
		     some cases, which will occasionally add duplicate
		     constraints during unification.  This does not
		     affect correctness.  */
		  c->lhs.var = find (c->lhs.var);
		  c->rhs.var = find (c->rhs.var);

		  /* The only complex constraint that can change our
		     solution to non-empty, given an empty solution,
		     is a constraint where the lhs side is receiving
		     some set from elsewhere.  */
		  if (!solution_empty || c->lhs.type != DEREF)
		    do_complex_constraint (graph, c, pts, &expanded_pts);
		}
	      BITMAP_FREE (expanded_pts);

	      solution_empty = bitmap_empty_p (solution);

	      if (!solution_empty)
		{
		  bitmap_iterator bi;
		  unsigned eff_escaped_id = find (escaped_id);

		  /* Propagate solution to all successors.  */
		  EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
						0, j, bi)
		    {
		      bitmap tmp;
		      bool flag;

		      unsigned int to = find (j);
		      tmp = get_varinfo (to)->solution;
		      flag = false;

		      /* Don't try to propagate to ourselves.  */
		      if (to == i)
			continue;

		      /* If we propagate from ESCAPED use ESCAPED as
		         placeholder.  */
		      if (i == eff_escaped_id)
			flag = bitmap_set_bit (tmp, escaped_id);
		      else
			flag = bitmap_ior_into (tmp, pts);

		      if (flag)
			bitmap_set_bit (changed, to);
		    }
		}
	    }
	}
      free_topo_info (ti);
      bitmap_obstack_release (&iteration_obstack);
    }

  BITMAP_FREE (pts);
  BITMAP_FREE (changed);
  bitmap_obstack_release (&oldpta_obstack);
}

/* Map from trees to variable infos.  */
static hash_map<tree, varinfo_t> *vi_for_tree;


/* Insert ID as the variable id for tree T in the vi_for_tree map.  */

static void
insert_vi_for_tree (tree t, varinfo_t vi)
{
  gcc_assert (vi);
  gcc_assert (!vi_for_tree->put (t, vi));
}

/* Find the variable info for tree T in VI_FOR_TREE.  If T does not
   exist in the map, return NULL, otherwise, return the varinfo we found.  */

static varinfo_t
lookup_vi_for_tree (tree t)
{
  varinfo_t *slot = vi_for_tree->get (t);
  if (slot == NULL)
    return NULL;

  return *slot;
}

/* Return a printable name for DECL  */

static const char *
alias_get_name (tree decl)
{
  const char *res = NULL;
  char *temp;
  int num_printed = 0;

  if (!dump_file)
    return "NULL";

  if (TREE_CODE (decl) == SSA_NAME)
    {
      res = get_name (decl);
      if (res)
	num_printed = asprintf (&temp, "%s_%u", res, SSA_NAME_VERSION (decl));
      else
	num_printed = asprintf (&temp, "_%u", SSA_NAME_VERSION (decl));
      if (num_printed > 0)
	{
	  res = ggc_strdup (temp);
	  free (temp);
	}
    }
  else if (DECL_P (decl))
    {
      if (DECL_ASSEMBLER_NAME_SET_P (decl))
	res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
      else
	{
	  res = get_name (decl);
	  if (!res)
	    {
	      num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
	      if (num_printed > 0)
		{
		  res = ggc_strdup (temp);
		  free (temp);
		}
	    }
	}
    }
  if (res != NULL)
    return res;

  return "NULL";
}

/* Find the variable id for tree T in the map.
   If T doesn't exist in the map, create an entry for it and return it.  */

static varinfo_t
get_vi_for_tree (tree t)
{
  varinfo_t *slot = vi_for_tree->get (t);
  if (slot == NULL)
    {
      unsigned int id = create_variable_info_for (t, alias_get_name (t), false);
      return get_varinfo (id);
    }

  return *slot;
}

/* Get a scalar constraint expression for a new temporary variable.  */

static struct constraint_expr
new_scalar_tmp_constraint_exp (const char *name, bool add_id)
{
  struct constraint_expr tmp;
  varinfo_t vi;

  vi = new_var_info (NULL_TREE, name, add_id);
  vi->offset = 0;
  vi->size = -1;
  vi->fullsize = -1;
  vi->is_full_var = 1;

  tmp.var = vi->id;
  tmp.type = SCALAR;
  tmp.offset = 0;

  return tmp;
}

/* Get a constraint expression vector from an SSA_VAR_P node.
   If address_p is true, the result will be taken its address of.  */

static void
get_constraint_for_ssa_var (tree t, vec<ce_s> *results, bool address_p)
{
  struct constraint_expr cexpr;
  varinfo_t vi;

  /* We allow FUNCTION_DECLs here even though it doesn't make much sense.  */
  gcc_assert (TREE_CODE (t) == SSA_NAME || DECL_P (t));

  /* For parameters, get at the points-to set for the actual parm
     decl.  */
  if (TREE_CODE (t) == SSA_NAME
      && SSA_NAME_IS_DEFAULT_DEF (t)
      && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
	  || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL))
    {
      get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
      return;
    }

  /* For global variables resort to the alias target.  */
  if (TREE_CODE (t) == VAR_DECL
      && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
    {
      varpool_node *node = varpool_node::get (t);
      if (node && node->alias && node->analyzed)
	{
	  node = node->ultimate_alias_target ();
	  /* Canonicalize the PT uid of all aliases to the ultimate target.
	     ???  Hopefully the set of aliases can't change in a way that
	     changes the ultimate alias target.  */
	  gcc_assert ((! DECL_PT_UID_SET_P (node->decl)
		       || DECL_PT_UID (node->decl) == DECL_UID (node->decl))
		      && (! DECL_PT_UID_SET_P (t)
			  || DECL_PT_UID (t) == DECL_UID (node->decl)));
	  DECL_PT_UID (t) = DECL_UID (node->decl);
	  t = node->decl;
	}
    }

  vi = get_vi_for_tree (t);
  cexpr.var = vi->id;
  cexpr.type = SCALAR;
  cexpr.offset = 0;

  /* If we are not taking the address of the constraint expr, add all
     sub-fiels of the variable as well.  */
  if (!address_p
      && !vi->is_full_var)
    {
      for (; vi; vi = vi_next (vi))
	{
	  cexpr.var = vi->id;
	  results->safe_push (cexpr);
	}
      return;
    }

  results->safe_push (cexpr);
}

/* Process constraint T, performing various simplifications and then
   adding it to our list of overall constraints.  */

static void
process_constraint (constraint_t t)
{
  struct constraint_expr rhs = t->rhs;
  struct constraint_expr lhs = t->lhs;

  gcc_assert (rhs.var < varmap.length ());
  gcc_assert (lhs.var < varmap.length ());

  /* If we didn't get any useful constraint from the lhs we get
     &ANYTHING as fallback from get_constraint_for.  Deal with
     it here by turning it into *ANYTHING.  */
  if (lhs.type == ADDRESSOF
      && lhs.var == anything_id)
    lhs.type = DEREF;

  /* ADDRESSOF on the lhs is invalid.  */
  gcc_assert (lhs.type != ADDRESSOF);

  /* We shouldn't add constraints from things that cannot have pointers.
     It's not completely trivial to avoid in the callers, so do it here.  */
  if (rhs.type != ADDRESSOF
      && !get_varinfo (rhs.var)->may_have_pointers)
    return;

  /* Likewise adding to the solution of a non-pointer var isn't useful.  */
  if (!get_varinfo (lhs.var)->may_have_pointers)
    return;

  /* This can happen in our IR with things like n->a = *p */
  if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
    {
      /* Split into tmp = *rhs, *lhs = tmp */
      struct constraint_expr tmplhs;
      tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp", true);
      process_constraint (new_constraint (tmplhs, rhs));
      process_constraint (new_constraint (lhs, tmplhs));
    }
  else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
    {
      /* Split into tmp = &rhs, *lhs = tmp */
      struct constraint_expr tmplhs;
      tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp", true);
      process_constraint (new_constraint (tmplhs, rhs));
      process_constraint (new_constraint (lhs, tmplhs));
    }
  else
    {
      gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
      constraints.safe_push (t);
    }
}


/* Return the position, in bits, of FIELD_DECL from the beginning of its
   structure.  */

static HOST_WIDE_INT
bitpos_of_field (const tree fdecl)
{
  if (!tree_fits_shwi_p (DECL_FIELD_OFFSET (fdecl))
      || !tree_fits_shwi_p (DECL_FIELD_BIT_OFFSET (fdecl)))
    return -1;

  return (tree_to_shwi (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT
	  + tree_to_shwi (DECL_FIELD_BIT_OFFSET (fdecl)));
}


/* Get constraint expressions for offsetting PTR by OFFSET.  Stores the
   resulting constraint expressions in *RESULTS.  */

static void
get_constraint_for_ptr_offset (tree ptr, tree offset,
			       vec<ce_s> *results)
{
  struct constraint_expr c;
  unsigned int j, n;
  HOST_WIDE_INT rhsoffset;

  /* If we do not do field-sensitive PTA adding offsets to pointers
     does not change the points-to solution.  */
  if (!use_field_sensitive)
    {
      get_constraint_for_rhs (ptr, results);
      return;
    }

  /* If the offset is not a non-negative integer constant that fits
     in a HOST_WIDE_INT, we have to fall back to a conservative
     solution which includes all sub-fields of all pointed-to
     variables of ptr.  */
  if (offset == NULL_TREE
      || TREE_CODE (offset) != INTEGER_CST)
    rhsoffset = UNKNOWN_OFFSET;
  else
    {
      /* Sign-extend the offset.  */
      offset_int soffset = offset_int::from (offset, SIGNED);
      if (!wi::fits_shwi_p (soffset))
	rhsoffset = UNKNOWN_OFFSET;
      else
	{
	  /* Make sure the bit-offset also fits.  */
	  HOST_WIDE_INT rhsunitoffset = soffset.to_shwi ();
	  rhsoffset = rhsunitoffset * BITS_PER_UNIT;
	  if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
	    rhsoffset = UNKNOWN_OFFSET;
	}
    }

  get_constraint_for_rhs (ptr, results);
  if (rhsoffset == 0)
    return;

  /* As we are eventually appending to the solution do not use
     vec::iterate here.  */
  n = results->length ();
  for (j = 0; j < n; j++)
    {
      varinfo_t curr;
      c = (*results)[j];
      curr = get_varinfo (c.var);

      if (c.type == ADDRESSOF
	  /* If this varinfo represents a full variable just use it.  */
	  && curr->is_full_var)
	;
      else if (c.type == ADDRESSOF
	       /* If we do not know the offset add all subfields.  */
	       && rhsoffset == UNKNOWN_OFFSET)
	{
	  varinfo_t temp = get_varinfo (curr->head);
	  do
	    {
	      struct constraint_expr c2;
	      c2.var = temp->id;
	      c2.type = ADDRESSOF;
	      c2.offset = 0;
	      if (c2.var != c.var)
		results->safe_push (c2);
	      temp = vi_next (temp);
	    }
	  while (temp);
	}
      else if (c.type == ADDRESSOF)
	{
	  varinfo_t temp;
	  unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;

	  /* If curr->offset + rhsoffset is less than zero adjust it.  */
	  if (rhsoffset < 0
	      && curr->offset < offset)
	    offset = 0;

	  /* We have to include all fields that overlap the current
	     field shifted by rhsoffset.  And we include at least
	     the last or the first field of the variable to represent
	     reachability of off-bound addresses, in particular &object + 1,
	     conservatively correct.  */
	  temp = first_or_preceding_vi_for_offset (curr, offset);
	  c.var = temp->id;
	  c.offset = 0;
	  temp = vi_next (temp);
	  while (temp
		 && temp->offset < offset + curr->size)
	    {
	      struct constraint_expr c2;
	      c2.var = temp->id;
	      c2.type = ADDRESSOF;
	      c2.offset = 0;
	      results->safe_push (c2);
	      temp = vi_next (temp);
	    }
	}
      else if (c.type == SCALAR)
	{
	  gcc_assert (c.offset == 0);
	  c.offset = rhsoffset;
	}
      else
	/* We shouldn't get any DEREFs here.  */
	gcc_unreachable ();

      (*results)[j] = c;
    }
}


/* Given a COMPONENT_REF T, return the constraint_expr vector for it.
   If address_p is true the result will be taken its address of.
   If lhs_p is true then the constraint expression is assumed to be used
   as the lhs.  */

static void
get_constraint_for_component_ref (tree t, vec<ce_s> *results,
				  bool address_p, bool lhs_p)
{
  tree orig_t = t;
  HOST_WIDE_INT bitsize = -1;
  HOST_WIDE_INT bitmaxsize = -1;
  HOST_WIDE_INT bitpos;
  bool reverse;
  tree forzero;

  /* Some people like to do cute things like take the address of
     &0->a.b */
  forzero = t;
  while (handled_component_p (forzero)
	 || INDIRECT_REF_P (forzero)
	 || TREE_CODE (forzero) == MEM_REF)
    forzero = TREE_OPERAND (forzero, 0);

  if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
    {
      struct constraint_expr temp;

      temp.offset = 0;
      temp.var = integer_id;
      temp.type = SCALAR;
      results->safe_push (temp);
      return;
    }

  t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize, &reverse);

  /* We can end up here for component references on a
     VIEW_CONVERT_EXPR <>(&foobar) or things like a
     BIT_FIELD_REF <&MEM[(void *)&b + 4B], ...>.  So for
     symbolic constants simply give up.  */
  if (TREE_CODE (t) == ADDR_EXPR)
    {
      constraint_expr result;
      result.type = SCALAR;
      result.var = anything_id;
      result.offset = 0;
      results->safe_push (result);
      return;
    }

  /* Pretend to take the address of the base, we'll take care of
     adding the required subset of sub-fields below.  */
  get_constraint_for_1 (t, results, true, lhs_p);
  gcc_assert (results->length () == 1);
  struct constraint_expr &result = results->last ();

  if (result.type == SCALAR
      && get_varinfo (result.var)->is_full_var)
    /* For single-field vars do not bother about the offset.  */
    result.offset = 0;
  else if (result.type == SCALAR)
    {
      /* In languages like C, you can access one past the end of an
	 array.  You aren't allowed to dereference it, so we can
	 ignore this constraint. When we handle pointer subtraction,
	 we may have to do something cute here.  */

      if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result.var)->fullsize
	  && bitmaxsize != 0)
	{
	  /* It's also not true that the constraint will actually start at the
	     right offset, it may start in some padding.  We only care about
	     setting the constraint to the first actual field it touches, so
	     walk to find it.  */
	  struct constraint_expr cexpr = result;
	  varinfo_t curr;
	  results->pop ();
	  cexpr.offset = 0;
	  for (curr = get_varinfo (cexpr.var); curr; curr = vi_next (curr))
	    {
	      if (ranges_overlap_p (curr->offset, curr->size,
				    bitpos, bitmaxsize))
		{
		  cexpr.var = curr->id;
		  results->safe_push (cexpr);
		  if (address_p)
		    break;
		}
	    }
	  /* If we are going to take the address of this field then
	     to be able to compute reachability correctly add at least
	     the last field of the variable.  */
	  if (address_p && results->length () == 0)
	    {
	      curr = get_varinfo (cexpr.var);
	      while (curr->next != 0)
		curr = vi_next (curr);
	      cexpr.var = curr->id;
	      results->safe_push (cexpr);
	    }
	  else if (results->length () == 0)
	    /* Assert that we found *some* field there. The user couldn't be
	       accessing *only* padding.  */
	    /* Still the user could access one past the end of an array
	       embedded in a struct resulting in accessing *only* padding.  */
	    /* Or accessing only padding via type-punning to a type
	       that has a filed just in padding space.  */
	    {
	      cexpr.type = SCALAR;
	      cexpr.var = anything_id;
	      cexpr.offset = 0;
	      results->safe_push (cexpr);
	    }
	}
      else if (bitmaxsize == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Access to zero-sized part of variable,"
		     "ignoring\n");
	}
      else
	if (dump_file && (dump_flags & TDF_DETAILS))
	  fprintf (dump_file, "Access to past the end of variable, ignoring\n");
    }
  else if (result.type == DEREF)
    {
      /* If we do not know exactly where the access goes say so.  Note
	 that only for non-structure accesses we know that we access
	 at most one subfiled of any variable.  */
      if (bitpos == -1
	  || bitsize != bitmaxsize
	  || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
	  || result.offset == UNKNOWN_OFFSET)
	result.offset = UNKNOWN_OFFSET;
      else
	result.offset += bitpos;
    }
  else if (result.type == ADDRESSOF)
    {
      /* We can end up here for component references on constants like
	 VIEW_CONVERT_EXPR <>({ 0, 1, 2, 3 })[i].  */
      result.type = SCALAR;
      result.var = anything_id;
      result.offset = 0;
    }
  else
    gcc_unreachable ();
}


/* Dereference the constraint expression CONS, and return the result.
   DEREF (ADDRESSOF) = SCALAR
   DEREF (SCALAR) = DEREF
   DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
   This is needed so that we can handle dereferencing DEREF constraints.  */

static void
do_deref (vec<ce_s> *constraints)
{
  struct constraint_expr *c;
  unsigned int i = 0;

  FOR_EACH_VEC_ELT (*constraints, i, c)
    {
      if (c->type == SCALAR)
	c->type = DEREF;
      else if (c->type == ADDRESSOF)
	c->type = SCALAR;
      else if (c->type == DEREF)
	{
	  struct constraint_expr tmplhs;
	  tmplhs = new_scalar_tmp_constraint_exp ("dereftmp", true);
	  process_constraint (new_constraint (tmplhs, *c));
	  c->var = tmplhs.var;
	}
      else
	gcc_unreachable ();
    }
}

/* Given a tree T, return the constraint expression for taking the
   address of it.  */

static void
get_constraint_for_address_of (tree t, vec<ce_s> *results)
{
  struct constraint_expr *c;
  unsigned int i;

  get_constraint_for_1 (t, results, true, true);

  FOR_EACH_VEC_ELT (*results, i, c)
    {
      if (c->type == DEREF)
	c->type = SCALAR;
      else
	c->type = ADDRESSOF;
    }
}

/* Given a tree T, return the constraint expression for it.  */

static void
get_constraint_for_1 (tree t, vec<ce_s> *results, bool address_p,
		      bool lhs_p)
{
  struct constraint_expr temp;

  /* x = integer is all glommed to a single variable, which doesn't
     point to anything by itself.  That is, of course, unless it is an
     integer constant being treated as a pointer, in which case, we
     will return that this is really the addressof anything.  This
     happens below, since it will fall into the default case. The only
     case we know something about an integer treated like a pointer is
     when it is the NULL pointer, and then we just say it points to
     NULL.

     Do not do that if -fno-delete-null-pointer-checks though, because
     in that case *NULL does not fail, so it _should_ alias *anything.
     It is not worth adding a new option or renaming the existing one,
     since this case is relatively obscure.  */
  if ((TREE_CODE (t) == INTEGER_CST
       && integer_zerop (t))
      /* The only valid CONSTRUCTORs in gimple with pointer typed
	 elements are zero-initializer.  But in IPA mode we also
	 process global initializers, so verify at least.  */
      || (TREE_CODE (t) == CONSTRUCTOR
	  && CONSTRUCTOR_NELTS (t) == 0))
    {
      if (flag_delete_null_pointer_checks)
	temp.var = nothing_id;
      else
	temp.var = nonlocal_id;
      temp.type = ADDRESSOF;
      temp.offset = 0;
      results->safe_push (temp);
      return;
    }

  /* String constants are read-only, ideally we'd have a CONST_DECL
     for those.  */
  if (TREE_CODE (t) == STRING_CST)
    {
      temp.var = string_id;
      temp.type = SCALAR;
      temp.offset = 0;
      results->safe_push (temp);
      return;
    }

  switch (TREE_CODE_CLASS (TREE_CODE (t)))
    {
    case tcc_expression:
      {
	switch (TREE_CODE (t))
	  {
	  case ADDR_EXPR:
	    get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
	    return;
	  default:;
	  }
	break;
      }
    case tcc_reference:
      {
	switch (TREE_CODE (t))
	  {
	  case MEM_REF:
	    {
	      struct constraint_expr cs;
	      varinfo_t vi, curr;
	      get_constraint_for_ptr_offset (TREE_OPERAND (t, 0),
					     TREE_OPERAND (t, 1), results);
	      do_deref (results);

	      /* If we are not taking the address then make sure to process
		 all subvariables we might access.  */
	      if (address_p)
		return;

	      cs = results->last ();
	      if (cs.type == DEREF
		  && type_can_have_subvars (TREE_TYPE (t)))
		{
		  /* For dereferences this means we have to defer it
		     to solving time.  */
		  results->last ().offset = UNKNOWN_OFFSET;
		  return;
		}
	      if (cs.type != SCALAR)
		return;

	      vi = get_varinfo (cs.var);
	      curr = vi_next (vi);
	      if (!vi->is_full_var
		  && curr)
		{
		  unsigned HOST_WIDE_INT size;
		  if (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (t))))
		    size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t)));
		  else
		    size = -1;
		  for (; curr; curr = vi_next (curr))
		    {
		      if (curr->offset - vi->offset < size)
			{
			  cs.var = curr->id;
			  results->safe_push (cs);
			}
		      else
			break;
		    }
		}
	      return;
	    }
	  case ARRAY_REF:
	  case ARRAY_RANGE_REF:
	  case COMPONENT_REF:
	  case IMAGPART_EXPR:
	  case REALPART_EXPR:
	  case BIT_FIELD_REF:
	    get_constraint_for_component_ref (t, results, address_p, lhs_p);
	    return;
	  case VIEW_CONVERT_EXPR:
	    get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
				  lhs_p);
	    return;
	  /* We are missing handling for TARGET_MEM_REF here.  */
	  default:;
	  }
	break;
      }
    case tcc_exceptional:
      {
	switch (TREE_CODE (t))
	  {
	  case SSA_NAME:
	    {
	      get_constraint_for_ssa_var (t, results, address_p);
	      return;
	    }
	  case CONSTRUCTOR:
	    {
	      unsigned int i;
	      tree val;
	      auto_vec<ce_s> tmp;
	      FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
		{
		  struct constraint_expr *rhsp;
		  unsigned j;
		  get_constraint_for_1 (val, &tmp, address_p, lhs_p);
		  FOR_EACH_VEC_ELT (tmp, j, rhsp)
		    results->safe_push (*rhsp);
		  tmp.truncate (0);
		}
	      /* We do not know whether the constructor was complete,
	         so technically we have to add &NOTHING or &ANYTHING
		 like we do for an empty constructor as well.  */
	      return;
	    }
	  default:;
	  }
	break;
      }
    case tcc_declaration:
      {
	get_constraint_for_ssa_var (t, results, address_p);
	return;
      }
    case tcc_constant:
      {
	/* We cannot refer to automatic variables through constants.  */ 
	temp.type = ADDRESSOF;
	temp.var = nonlocal_id;
	temp.offset = 0;
	results->safe_push (temp);
	return;
      }
    default:;
    }

  /* The default fallback is a constraint from anything.  */
  temp.type = ADDRESSOF;
  temp.var = anything_id;
  temp.offset = 0;
  results->safe_push (temp);
}

/* Given a gimple tree T, return the constraint expression vector for it.  */

static void
get_constraint_for (tree t, vec<ce_s> *results)
{
  gcc_assert (results->length () == 0);

  get_constraint_for_1 (t, results, false, true);
}

/* Given a gimple tree T, return the constraint expression vector for it
   to be used as the rhs of a constraint.  */

static void
get_constraint_for_rhs (tree t, vec<ce_s> *results)
{
  gcc_assert (results->length () == 0);

  get_constraint_for_1 (t, results, false, false);
}


/* Efficiently generates constraints from all entries in *RHSC to all
   entries in *LHSC.  */

static void
process_all_all_constraints (vec<ce_s> lhsc,
			     vec<ce_s> rhsc)
{
  struct constraint_expr *lhsp, *rhsp;
  unsigned i, j;

  if (lhsc.length () <= 1 || rhsc.length () <= 1)
    {
      FOR_EACH_VEC_ELT (lhsc, i, lhsp)
	FOR_EACH_VEC_ELT (rhsc, j, rhsp)
	  process_constraint (new_constraint (*lhsp, *rhsp));
    }
  else
    {
      struct constraint_expr tmp;
      tmp = new_scalar_tmp_constraint_exp ("allalltmp", true);
      FOR_EACH_VEC_ELT (rhsc, i, rhsp)
	process_constraint (new_constraint (tmp, *rhsp));
      FOR_EACH_VEC_ELT (lhsc, i, lhsp)
	process_constraint (new_constraint (*lhsp, tmp));
    }
}

/* Handle aggregate copies by expanding into copies of the respective
   fields of the structures.  */

static void
do_structure_copy (tree lhsop, tree rhsop)
{
  struct constraint_expr *lhsp, *rhsp;
  auto_vec<ce_s> lhsc;
  auto_vec<ce_s> rhsc;
  unsigned j;

  get_constraint_for (lhsop, &lhsc);
  get_constraint_for_rhs (rhsop, &rhsc);
  lhsp = &lhsc[0];
  rhsp = &rhsc[0];
  if (lhsp->type == DEREF
      || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
      || rhsp->type == DEREF)
    {
      if (lhsp->type == DEREF)
	{
	  gcc_assert (lhsc.length () == 1);
	  lhsp->offset = UNKNOWN_OFFSET;
	}
      if (rhsp->type == DEREF)
	{
	  gcc_assert (rhsc.length () == 1);
	  rhsp->offset = UNKNOWN_OFFSET;
	}
      process_all_all_constraints (lhsc, rhsc);
    }
  else if (lhsp->type == SCALAR
	   && (rhsp->type == SCALAR
	       || rhsp->type == ADDRESSOF))
    {
      HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
      HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
      bool reverse;
      unsigned k = 0;
      get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize,
			       &reverse);
      get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize,
			       &reverse);
      for (j = 0; lhsc.iterate (j, &lhsp);)
	{
	  varinfo_t lhsv, rhsv;
	  rhsp = &rhsc[k];
	  lhsv = get_varinfo (lhsp->var);
	  rhsv = get_varinfo (rhsp->var);
	  if (lhsv->may_have_pointers
	      && (lhsv->is_full_var
		  || rhsv->is_full_var
		  || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
				       rhsv->offset + lhsoffset, rhsv->size)))
	    process_constraint (new_constraint (*lhsp, *rhsp));
	  if (!rhsv->is_full_var
	      && (lhsv->is_full_var
		  || (lhsv->offset + rhsoffset + lhsv->size
		      > rhsv->offset + lhsoffset + rhsv->size)))
	    {
	      ++k;
	      if (k >= rhsc.length ())
		break;
	    }
	  else
	    ++j;
	}
    }
  else
    gcc_unreachable ();
}

/* Create constraints ID = { rhsc }.  */

static void
make_constraints_to (unsigned id, vec<ce_s> rhsc)
{
  struct constraint_expr *c;
  struct constraint_expr includes;
  unsigned int j;

  includes.var = id;
  includes.offset = 0;
  includes.type = SCALAR;

  FOR_EACH_VEC_ELT (rhsc, j, c)
    process_constraint (new_constraint (includes, *c));
}

/* Create a constraint ID = OP.  */

static void
make_constraint_to (unsigned id, tree op)
{
  auto_vec<ce_s> rhsc;
  get_constraint_for_rhs (op, &rhsc);
  make_constraints_to (id, rhsc);
}

/* Create a constraint ID = &FROM.  */

static void
make_constraint_from (varinfo_t vi, int from)
{
  struct constraint_expr lhs, rhs;

  lhs.var = vi->id;
  lhs.offset = 0;
  lhs.type = SCALAR;

  rhs.var = from;
  rhs.offset = 0;
  rhs.type = ADDRESSOF;
  process_constraint (new_constraint (lhs, rhs));
}

/* Create a constraint ID = FROM.  */

static void
make_copy_constraint (varinfo_t vi, int from)
{
  struct constraint_expr lhs, rhs;

  lhs.var = vi->id;
  lhs.offset = 0;
  lhs.type = SCALAR;

  rhs.var = from;
  rhs.offset = 0;
  rhs.type = SCALAR;
  process_constraint (new_constraint (lhs, rhs));
}

/* Make constraints necessary to make OP escape.  */

static void
make_escape_constraint (tree op)
{
  make_constraint_to (escaped_id, op);
}

/* Add constraints to that the solution of VI is transitively closed.  */

static void
make_transitive_closure_constraints (varinfo_t vi)
{
  struct constraint_expr lhs, rhs;

  /* VAR = *VAR;  */
  lhs.type = SCALAR;
  lhs.var = vi->id;
  lhs.offset = 0;
  rhs.type = DEREF;
  rhs.var = vi->id;
  rhs.offset = UNKNOWN_OFFSET;
  process_constraint (new_constraint (lhs, rhs));
}

/* Temporary storage for fake var decls.  */
struct obstack fake_var_decl_obstack;

/* Build a fake VAR_DECL acting as referrer to a DECL_UID.  */

static tree
build_fake_var_decl (tree type)
{
  tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl);
  memset (decl, 0, sizeof (struct tree_var_decl));
  TREE_SET_CODE (decl, VAR_DECL);
  TREE_TYPE (decl) = type;
  DECL_UID (decl) = allocate_decl_uid ();
  SET_DECL_PT_UID (decl, -1);
  layout_decl (decl, 0);
  return decl;
}

/* Create a new artificial heap variable with NAME.
   Return the created variable.  */

static varinfo_t
make_heapvar (const char *name, bool add_id)
{
  varinfo_t vi;
  tree heapvar;
  
  heapvar = build_fake_var_decl (ptr_type_node);
  DECL_EXTERNAL (heapvar) = 1;

  vi = new_var_info (heapvar, name, add_id);
  vi->is_artificial_var = true;
  vi->is_heap_var = true;
  vi->is_unknown_size_var = true;
  vi->offset = 0;
  vi->fullsize = ~0;
  vi->size = ~0;
  vi->is_full_var = true;
  insert_vi_for_tree (heapvar, vi);

  return vi;
}

/* Create a new artificial heap variable with NAME and make a
   constraint from it to LHS.  Set flags according to a tag used
   for tracking restrict pointers.  */

static varinfo_t
make_constraint_from_restrict (varinfo_t lhs, const char *name, bool add_id)
{
  varinfo_t vi = make_heapvar (name, add_id);
  vi->is_restrict_var = 1;
  vi->is_global_var = 1;
  vi->may_have_pointers = 1;
  make_constraint_from (lhs, vi->id);
  return vi;
}

/* Create a new artificial heap variable with NAME and make a
   constraint from it to LHS.  Set flags according to a tag used
   for tracking restrict pointers and make the artificial heap
   point to global memory.  */

static varinfo_t
make_constraint_from_global_restrict (varinfo_t lhs, const char *name,
				      bool add_id)
{
  varinfo_t vi = make_constraint_from_restrict (lhs, name, add_id);
  make_copy_constraint (vi, nonlocal_id);
  return vi;
}

/* In IPA mode there are varinfos for different aspects of reach
   function designator.  One for the points-to set of the return
   value, one for the variables that are clobbered by the function,
   one for its uses and one for each parameter (including a single
   glob for remaining variadic arguments).  */

enum { fi_clobbers = 1, fi_uses = 2,
       fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };

/* Get a constraint for the requested part of a function designator FI
   when operating in IPA mode.  */

static struct constraint_expr
get_function_part_constraint (varinfo_t fi, unsigned part)
{
  struct constraint_expr c;

  gcc_assert (in_ipa_mode);

  if (fi->id == anything_id)
    {
      /* ???  We probably should have a ANYFN special variable.  */
      c.var = anything_id;
      c.offset = 0;
      c.type = SCALAR;
    }
  else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
    {
      varinfo_t ai = first_vi_for_offset (fi, part);
      if (ai)
	c.var = ai->id;
      else
	c.var = anything_id;
      c.offset = 0;
      c.type = SCALAR;
    }
  else
    {
      c.var = fi->id;
      c.offset = part;
      c.type = DEREF;
    }

  return c;
}

/* For non-IPA mode, generate constraints necessary for a call on the
   RHS.  */

static void
handle_rhs_call (gcall *stmt, vec<ce_s> *results)
{
  struct constraint_expr rhsc;
  unsigned i;
  bool returns_uses = false;

  for (i = 0; i < gimple_call_num_args (stmt); ++i)
    {
      tree arg = gimple_call_arg (stmt, i);
      int flags = gimple_call_arg_flags (stmt, i);

      /* If the argument is not used we can ignore it.  */
      if (flags & EAF_UNUSED)
	continue;

      /* As we compute ESCAPED context-insensitive we do not gain
         any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
	 set.  The argument would still get clobbered through the
	 escape solution.  */
      if ((flags & EAF_NOCLOBBER)
	   && (flags & EAF_NOESCAPE))
	{
	  varinfo_t uses = get_call_use_vi (stmt);
	  if (!(flags & EAF_DIRECT))
	    {
	      varinfo_t tem = new_var_info (NULL_TREE, "callarg", true);
	      make_constraint_to (tem->id, arg);
	      make_transitive_closure_constraints (tem);
	      make_copy_constraint (uses, tem->id);
	    }
	  else
	    make_constraint_to (uses->id, arg);
	  returns_uses = true;
	}
      else if (flags & EAF_NOESCAPE)
	{
	  struct constraint_expr lhs, rhs;
	  varinfo_t uses = get_call_use_vi (stmt);
	  varinfo_t clobbers = get_call_clobber_vi (stmt);
	  varinfo_t tem = new_var_info (NULL_TREE, "callarg", true);
	  make_constraint_to (tem->id, arg);
	  if (!(flags & EAF_DIRECT))
	    make_transitive_closure_constraints (tem);
	  make_copy_constraint (uses, tem->id);
	  make_copy_constraint (clobbers, tem->id);
	  /* Add *tem = nonlocal, do not add *tem = callused as
	     EAF_NOESCAPE parameters do not escape to other parameters
	     and all other uses appear in NONLOCAL as well.  */
	  lhs.type = DEREF;
	  lhs.var = tem->id;
	  lhs.offset = 0;
	  rhs.type = SCALAR;
	  rhs.var = nonlocal_id;
	  rhs.offset = 0;
	  process_constraint (new_constraint (lhs, rhs));
	  returns_uses = true;
	}
      else
	make_escape_constraint (arg);
    }

  /* If we added to the calls uses solution make sure we account for
     pointers to it to be returned.  */
  if (returns_uses)
    {
      rhsc.var = get_call_use_vi (stmt)->id;
      rhsc.offset = 0;
      rhsc.type = SCALAR;
      results->safe_push (rhsc);
    }

  /* The static chain escapes as well.  */
  if (gimple_call_chain (stmt))
    make_escape_constraint (gimple_call_chain (stmt));

  /* And if we applied NRV the address of the return slot escapes as well.  */
  if (gimple_call_return_slot_opt_p (stmt)
      && gimple_call_lhs (stmt) != NULL_TREE
      && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
    {
      auto_vec<ce_s> tmpc;
      struct constraint_expr lhsc, *c;
      get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
      lhsc.var = escaped_id;
      lhsc.offset = 0;
      lhsc.type = SCALAR;
      FOR_EACH_VEC_ELT (tmpc, i, c)
	process_constraint (new_constraint (lhsc, *c));
    }

  /* Regular functions return nonlocal memory.  */
  rhsc.var = nonlocal_id;
  rhsc.offset = 0;
  rhsc.type = SCALAR;
  results->safe_push (rhsc);
}

/* For non-IPA mode, generate constraints necessary for a call
   that returns a pointer and assigns it to LHS.  This simply makes
   the LHS point to global and escaped variables.  */

static void
handle_lhs_call (gcall *stmt, tree lhs, int flags, vec<ce_s> rhsc,
		 tree fndecl)
{
  auto_vec<ce_s> lhsc;

  get_constraint_for (lhs, &lhsc);
  /* If the store is to a global decl make sure to
     add proper escape constraints.  */
  lhs = get_base_address (lhs);
  if (lhs
      && DECL_P (lhs)
      && is_global_var (lhs))
    {
      struct constraint_expr tmpc;
      tmpc.var = escaped_id;
      tmpc.offset = 0;
      tmpc.type = SCALAR;
      lhsc.safe_push (tmpc);
    }

  /* If the call returns an argument unmodified override the rhs
     constraints.  */
  if (flags & ERF_RETURNS_ARG
      && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
    {
      tree arg;
      rhsc.create (0);
      arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
      get_constraint_for (arg, &rhsc);
      process_all_all_constraints (lhsc, rhsc);
      rhsc.release ();
    }
  else if (flags & ERF_NOALIAS)
    {
      varinfo_t vi;
      struct constraint_expr tmpc;
      rhsc.create (0);
      vi = make_heapvar ("HEAP", true);
      /* We are marking allocated storage local, we deal with it becoming
         global by escaping and setting of vars_contains_escaped_heap.  */
      DECL_EXTERNAL (vi->decl) = 0;
      vi->is_global_var = 0;
      /* If this is not a real malloc call assume the memory was
	 initialized and thus may point to global memory.  All
	 builtin functions with the malloc attribute behave in a sane way.  */
      if (!fndecl
	  || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
	make_constraint_from (vi, nonlocal_id);
      tmpc.var = vi->id;
      tmpc.offset = 0;
      tmpc.type = ADDRESSOF;
      rhsc.safe_push (tmpc);
      process_all_all_constraints (lhsc, rhsc);
      rhsc.release ();
    }
  else
    process_all_all_constraints (lhsc, rhsc);
}

/* For non-IPA mode, generate constraints necessary for a call of a
   const function that returns a pointer in the statement STMT.  */

static void
handle_const_call (gcall *stmt, vec<ce_s> *results)
{
  struct constraint_expr rhsc;
  unsigned int k;

  /* Treat nested const functions the same as pure functions as far
     as the static chain is concerned.  */
  if (gimple_call_chain (stmt))
    {
      varinfo_t uses = get_call_use_vi (stmt);
      make_transitive_closure_constraints (uses);
      make_constraint_to (uses->id, gimple_call_chain (stmt));
      rhsc.var = uses->id;
      rhsc.offset = 0;
      rhsc.type = SCALAR;
      results->safe_push (rhsc);
    }

  /* May return arguments.  */
  for (k = 0; k < gimple_call_num_args (stmt); ++k)
    {
      tree arg = gimple_call_arg (stmt, k);
      auto_vec<ce_s> argc;
      unsigned i;
      struct constraint_expr *argp;
      get_constraint_for_rhs (arg, &argc);
      FOR_EACH_VEC_ELT (argc, i, argp)
	results->safe_push (*argp);
    }

  /* May return addresses of globals.  */
  rhsc.var = nonlocal_id;
  rhsc.offset = 0;
  rhsc.type = ADDRESSOF;
  results->safe_push (rhsc);
}

/* For non-IPA mode, generate constraints necessary for a call to a
   pure function in statement STMT.  */

static void
handle_pure_call (gcall *stmt, vec<ce_s> *results)
{
  struct constraint_expr rhsc;
  unsigned i;
  varinfo_t uses = NULL;

  /* Memory reached from pointer arguments is call-used.  */
  for (i = 0; i < gimple_call_num_args (stmt); ++i)
    {
      tree arg = gimple_call_arg (stmt, i);
      if (!uses)
	{
	  uses = get_call_use_vi (stmt);
	  make_transitive_closure_constraints (uses);
	}
      make_constraint_to (uses->id, arg);
    }

  /* The static chain is used as well.  */
  if (gimple_call_chain (stmt))
    {
      if (!uses)
	{
	  uses = get_call_use_vi (stmt);
	  make_transitive_closure_constraints (uses);
	}
      make_constraint_to (uses->id, gimple_call_chain (stmt));
    }

  /* Pure functions may return call-used and nonlocal memory.  */
  if (uses)
    {
      rhsc.var = uses->id;
      rhsc.offset = 0;
      rhsc.type = SCALAR;
      results->safe_push (rhsc);
    }
  rhsc.var = nonlocal_id;
  rhsc.offset = 0;
  rhsc.type = SCALAR;
  results->safe_push (rhsc);
}


/* Return the varinfo for the callee of CALL.  */

static varinfo_t
get_fi_for_callee (gcall *call)
{
  tree decl, fn = gimple_call_fn (call);

  if (fn && TREE_CODE (fn) == OBJ_TYPE_REF)
    fn = OBJ_TYPE_REF_EXPR (fn);

  /* If we can directly resolve the function being called, do so.
     Otherwise, it must be some sort of indirect expression that
     we should still be able to handle.  */
  decl = gimple_call_addr_fndecl (fn);
  if (decl)
    return get_vi_for_tree (decl);

  /* If the function is anything other than a SSA name pointer we have no
     clue and should be getting ANYFN (well, ANYTHING for now).  */
  if (!fn || TREE_CODE (fn) != SSA_NAME)
    return get_varinfo (anything_id);

  if (SSA_NAME_IS_DEFAULT_DEF (fn)
      && (TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL
	  || TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL))
    fn = SSA_NAME_VAR (fn);

  return get_vi_for_tree (fn);
}

/* Create constraints for assigning call argument ARG to the incoming parameter
   INDEX of function FI.  */

static void
find_func_aliases_for_call_arg (varinfo_t fi, unsigned index, tree arg)
{
  struct constraint_expr lhs;
  lhs = get_function_part_constraint (fi, fi_parm_base + index);

  auto_vec<ce_s, 2> rhsc;
  get_constraint_for_rhs (arg, &rhsc);

  unsigned j;
  struct constraint_expr *rhsp;
  FOR_EACH_VEC_ELT (rhsc, j, rhsp)
    process_constraint (new_constraint (lhs, *rhsp));
}

/* Return true if FNDECL may be part of another lto partition.  */

static bool
fndecl_maybe_in_other_partition (tree fndecl)
{
  cgraph_node *fn_node = cgraph_node::get (fndecl);
  if (fn_node == NULL)
    return true;

  return fn_node->in_other_partition;
}

/* Create constraints for the builtin call T.  Return true if the call
   was handled, otherwise false.  */

static bool
find_func_aliases_for_builtin_call (struct function *fn, gcall *t)
{
  tree fndecl = gimple_call_fndecl (t);
  auto_vec<ce_s, 2> lhsc;
  auto_vec<ce_s, 4> rhsc;
  varinfo_t fi;

  if (gimple_call_builtin_p (t, BUILT_IN_NORMAL))
    /* ???  All builtins that are handled here need to be handled
       in the alias-oracle query functions explicitly!  */
    switch (DECL_FUNCTION_CODE (fndecl))
      {
      /* All the following functions return a pointer to the same object
	 as their first argument points to.  The functions do not add
	 to the ESCAPED solution.  The functions make the first argument
	 pointed to memory point to what the second argument pointed to
	 memory points to.  */
      case BUILT_IN_STRCPY:
      case BUILT_IN_STRNCPY:
      case BUILT_IN_BCOPY:
      case BUILT_IN_MEMCPY:
      case BUILT_IN_MEMMOVE:
      case BUILT_IN_MEMPCPY:
      case BUILT_IN_STPCPY:
      case BUILT_IN_STPNCPY:
      case BUILT_IN_STRCAT:
      case BUILT_IN_STRNCAT:
      case BUILT_IN_STRCPY_CHK:
      case BUILT_IN_STRNCPY_CHK:
      case BUILT_IN_MEMCPY_CHK:
      case BUILT_IN_MEMMOVE_CHK:
      case BUILT_IN_MEMPCPY_CHK:
      case BUILT_IN_STPCPY_CHK:
      case BUILT_IN_STPNCPY_CHK:
      case BUILT_IN_STRCAT_CHK:
      case BUILT_IN_STRNCAT_CHK:
      case BUILT_IN_TM_MEMCPY:
      case BUILT_IN_TM_MEMMOVE:
	{
	  tree res = gimple_call_lhs (t);
	  tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
					   == BUILT_IN_BCOPY ? 1 : 0));
	  tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
					  == BUILT_IN_BCOPY ? 0 : 1));
	  if (res != NULL_TREE)
	    {
	      get_constraint_for (res, &lhsc);
	      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY
		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK
		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK
		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY_CHK)
		get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
	      else
		get_constraint_for (dest, &rhsc);
	      process_all_all_constraints (lhsc, rhsc);
	      lhsc.truncate (0);
	      rhsc.truncate (0);
	    }
	  get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
	  get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
	  do_deref (&lhsc);
	  do_deref (&rhsc);
	  process_all_all_constraints (lhsc, rhsc);
	  return true;
	}
      case BUILT_IN_MEMSET:
      case BUILT_IN_MEMSET_CHK:
      case BUILT_IN_TM_MEMSET:
	{
	  tree res = gimple_call_lhs (t);
	  tree dest = gimple_call_arg (t, 0);
	  unsigned i;
	  ce_s *lhsp;
	  struct constraint_expr ac;
	  if (res != NULL_TREE)
	    {
	      get_constraint_for (res, &lhsc);
	      get_constraint_for (dest, &rhsc);
	      process_all_all_constraints (lhsc, rhsc);
	      lhsc.truncate (0);
	    }
	  get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
	  do_deref (&lhsc);
	  if (flag_delete_null_pointer_checks
	      && integer_zerop (gimple_call_arg (t, 1)))
	    {
	      ac.type = ADDRESSOF;
	      ac.var = nothing_id;
	    }
	  else
	    {
	      ac.type = SCALAR;
	      ac.var = integer_id;
	    }
	  ac.offset = 0;
	  FOR_EACH_VEC_ELT (lhsc, i, lhsp)
	      process_constraint (new_constraint (*lhsp, ac));
	  return true;
	}
      case BUILT_IN_POSIX_MEMALIGN:
        {
	  tree ptrptr = gimple_call_arg (t, 0);
	  get_constraint_for (ptrptr, &lhsc);
	  do_deref (&lhsc);
	  varinfo_t vi = make_heapvar ("HEAP", true);
	  /* We are marking allocated storage local, we deal with it becoming
	     global by escaping and setting of vars_contains_escaped_heap.  */
	  DECL_EXTERNAL (vi->decl) = 0;
	  vi->is_global_var = 0;
	  struct constraint_expr tmpc;
	  tmpc.var = vi->id;
	  tmpc.offset = 0;
	  tmpc.type = ADDRESSOF;
	  rhsc.safe_push (tmpc);
	  process_all_all_constraints (lhsc, rhsc);
	  return true;
	}
      case BUILT_IN_ASSUME_ALIGNED:
	{
	  tree res = gimple_call_lhs (t);
	  tree dest = gimple_call_arg (t, 0);
	  if (res != NULL_TREE)
	    {
	      get_constraint_for (res, &lhsc);
	      get_constraint_for (dest, &rhsc);
	      process_all_all_constraints (lhsc, rhsc);
	    }
	  return true;
	}
      /* All the following functions do not return pointers, do not
	 modify the points-to sets of memory reachable from their
	 arguments and do not add to the ESCAPED solution.  */
      case BUILT_IN_SINCOS:
      case BUILT_IN_SINCOSF:
      case BUILT_IN_SINCOSL:
      case BUILT_IN_FREXP:
      case BUILT_IN_FREXPF:
      case BUILT_IN_FREXPL:
      case BUILT_IN_GAMMA_R:
      case BUILT_IN_GAMMAF_R:
      case BUILT_IN_GAMMAL_R:
      case BUILT_IN_LGAMMA_R:
      case BUILT_IN_LGAMMAF_R:
      case BUILT_IN_LGAMMAL_R:
      case BUILT_IN_MODF:
      case BUILT_IN_MODFF:
      case BUILT_IN_MODFL:
      case BUILT_IN_REMQUO:
      case BUILT_IN_REMQUOF:
      case BUILT_IN_REMQUOL:
      case BUILT_IN_FREE:
	return true;
      case BUILT_IN_STRDUP:
      case BUILT_IN_STRNDUP:
      case BUILT_IN_REALLOC:
	if (gimple_call_lhs (t))
	  {
	    handle_lhs_call (t, gimple_call_lhs (t),
			     gimple_call_return_flags (t) | ERF_NOALIAS,
			     vNULL, fndecl);
	    get_constraint_for_ptr_offset (gimple_call_lhs (t),
					   NULL_TREE, &lhsc);
	    get_constraint_for_ptr_offset (gimple_call_arg (t, 0),
					   NULL_TREE, &rhsc);
	    do_deref (&lhsc);
	    do_deref (&rhsc);
	    process_all_all_constraints (lhsc, rhsc);
	    lhsc.truncate (0);
	    rhsc.truncate (0);
	    /* For realloc the resulting pointer can be equal to the
	       argument as well.  But only doing this wouldn't be
	       correct because with ptr == 0 realloc behaves like malloc.  */
	    if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_REALLOC)
	      {
		get_constraint_for (gimple_call_lhs (t), &lhsc);
		get_constraint_for (gimple_call_arg (t, 0), &rhsc);
		process_all_all_constraints (lhsc, rhsc);
	      }
	    return true;
	  }
	break;
      /* String / character search functions return a pointer into the
         source string or NULL.  */
      case BUILT_IN_INDEX:
      case BUILT_IN_STRCHR:
      case BUILT_IN_STRRCHR:
      case BUILT_IN_MEMCHR:
      case BUILT_IN_STRSTR:
      case BUILT_IN_STRPBRK:
	if (gimple_call_lhs (t))
	  {
	    tree src = gimple_call_arg (t, 0);
	    get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
	    constraint_expr nul;
	    nul.var = nothing_id;
	    nul.offset = 0;
	    nul.type = ADDRESSOF;
	    rhsc.safe_push (nul);
	    get_constraint_for (gimple_call_lhs (t), &lhsc);
	    process_all_all_constraints (lhsc, rhsc);
	  }
	return true;
      /* Trampolines are special - they set up passing the static
	 frame.  */
      case BUILT_IN_INIT_TRAMPOLINE:
	{
	  tree tramp = gimple_call_arg (t, 0);
	  tree nfunc = gimple_call_arg (t, 1);
	  tree frame = gimple_call_arg (t, 2);
	  unsigned i;
	  struct constraint_expr lhs, *rhsp;
	  if (in_ipa_mode)
	    {
	      varinfo_t nfi = NULL;
	      gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
	      nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
	      if (nfi)
		{
		  lhs = get_function_part_constraint (nfi, fi_static_chain);
		  get_constraint_for (frame, &rhsc);
		  FOR_EACH_VEC_ELT (rhsc, i, rhsp)
		    process_constraint (new_constraint (lhs, *rhsp));
		  rhsc.truncate (0);

		  /* Make the frame point to the function for
		     the trampoline adjustment call.  */
		  get_constraint_for (tramp, &lhsc);
		  do_deref (&lhsc);
		  get_constraint_for (nfunc, &rhsc);
		  process_all_all_constraints (lhsc, rhsc);

		  return true;
		}
	    }
	  /* Else fallthru to generic handling which will let
	     the frame escape.  */
	  break;
	}
      case BUILT_IN_ADJUST_TRAMPOLINE:
	{
	  tree tramp = gimple_call_arg (t, 0);
	  tree res = gimple_call_lhs (t);
	  if (in_ipa_mode && res)
	    {
	      get_constraint_for (res, &lhsc);
	      get_constraint_for (tramp, &rhsc);
	      do_deref (&rhsc);
	      process_all_all_constraints (lhsc, rhsc);
	    }
	  return true;
	}
      CASE_BUILT_IN_TM_STORE (1):
      CASE_BUILT_IN_TM_STORE (2):
      CASE_BUILT_IN_TM_STORE (4):
      CASE_BUILT_IN_TM_STORE (8):
      CASE_BUILT_IN_TM_STORE (FLOAT):
      CASE_BUILT_IN_TM_STORE (DOUBLE):
      CASE_BUILT_IN_TM_STORE (LDOUBLE):
      CASE_BUILT_IN_TM_STORE (M64):
      CASE_BUILT_IN_TM_STORE (M128):
      CASE_BUILT_IN_TM_STORE (M256):
	{
	  tree addr = gimple_call_arg (t, 0);
	  tree src = gimple_call_arg (t, 1);

	  get_constraint_for (addr, &lhsc);
	  do_deref (&lhsc);
	  get_constraint_for (src, &rhsc);
	  process_all_all_constraints (lhsc, rhsc);
	  return true;
	}
      CASE_BUILT_IN_TM_LOAD (1):
      CASE_BUILT_IN_TM_LOAD (2):
      CASE_BUILT_IN_TM_LOAD (4):
      CASE_BUILT_IN_TM_LOAD (8):
      CASE_BUILT_IN_TM_LOAD (FLOAT):
      CASE_BUILT_IN_TM_LOAD (DOUBLE):
      CASE_BUILT_IN_TM_LOAD (LDOUBLE):
      CASE_BUILT_IN_TM_LOAD (M64):
      CASE_BUILT_IN_TM_LOAD (M128):
      CASE_BUILT_IN_TM_LOAD (M256):
	{
	  tree dest = gimple_call_lhs (t);
	  tree addr = gimple_call_arg (t, 0);

	  get_constraint_for (dest, &lhsc);
	  get_constraint_for (addr, &rhsc);
	  do_deref (&rhsc);
	  process_all_all_constraints (lhsc, rhsc);
	  return true;
	}
      /* Variadic argument handling needs to be handled in IPA
	 mode as well.  */
      case BUILT_IN_VA_START:
	{
	  tree valist = gimple_call_arg (t, 0);
	  struct constraint_expr rhs, *lhsp;
	  unsigned i;
	  get_constraint_for_ptr_offset (valist, NULL_TREE, &lhsc);
	  do_deref (&lhsc);
	  /* The va_list gets access to pointers in variadic
	     arguments.  Which we know in the case of IPA analysis
	     and otherwise are just all nonlocal variables.  */
	  if (in_ipa_mode)
	    {
	      fi = lookup_vi_for_tree (fn->decl);
	      rhs = get_function_part_constraint (fi, ~0);
	      rhs.type = ADDRESSOF;
	    }
	  else
	    {
	      rhs.var = nonlocal_id;
	      rhs.type = ADDRESSOF;
	      rhs.offset = 0;
	    }
	  FOR_EACH_VEC_ELT (lhsc, i, lhsp)
	    process_constraint (new_constraint (*lhsp, rhs));
	  /* va_list is clobbered.  */
	  make_constraint_to (get_call_clobber_vi (t)->id, valist);
	  return true;
	}
      /* va_end doesn't have any effect that matters.  */
      case BUILT_IN_VA_END:
	return true;
      /* Alternate return.  Simply give up for now.  */
      case BUILT_IN_RETURN:
	{
	  fi = NULL;
	  if (!in_ipa_mode
	      || !(fi = get_vi_for_tree (fn->decl)))
	    make_constraint_from (get_varinfo (escaped_id), anything_id);
	  else if (in_ipa_mode
		   && fi != NULL)
	    {
	      struct constraint_expr lhs, rhs;
	      lhs = get_function_part_constraint (fi, fi_result);
	      rhs.var = anything_id;
	      rhs.offset = 0;
	      rhs.type = SCALAR;
	      process_constraint (new_constraint (lhs, rhs));
	    }
	  return true;
	}
      case BUILT_IN_GOMP_PARALLEL:
      case BUILT_IN_GOACC_PARALLEL:
	{
	  if (in_ipa_mode)
	    {
	      unsigned int fnpos, argpos;
	      switch (DECL_FUNCTION_CODE (fndecl))
		{
		case BUILT_IN_GOMP_PARALLEL:
		  /* __builtin_GOMP_parallel (fn, data, num_threads, flags).  */
		  fnpos = 0;
		  argpos = 1;
		  break;
		case BUILT_IN_GOACC_PARALLEL:
		  /* __builtin_GOACC_parallel (device, fn, mapnum, hostaddrs,
					       sizes, kinds, ...).  */
		  fnpos = 1;
		  argpos = 3;
		  break;
		default:
		  gcc_unreachable ();
		}

	      tree fnarg = gimple_call_arg (t, fnpos);
	      gcc_assert (TREE_CODE (fnarg) == ADDR_EXPR);
	      tree fndecl = TREE_OPERAND (fnarg, 0);
	      if (fndecl_maybe_in_other_partition (fndecl))
		/* Fallthru to general call handling.  */
		break;

	      tree arg = gimple_call_arg (t, argpos);

	      varinfo_t fi = get_vi_for_tree (fndecl);
	      find_func_aliases_for_call_arg (fi, 0, arg);
	      return true;
	    }
	  /* Else fallthru to generic call handling.  */
	  break;
	}
      /* printf-style functions may have hooks to set pointers to
	 point to somewhere into the generated string.  Leave them
	 for a later exercise...  */
      default:
	/* Fallthru to general call handling.  */;
      }

  return false;
}

/* Create constraints for the call T.  */

static void
find_func_aliases_for_call (struct function *fn, gcall *t)
{
  tree fndecl = gimple_call_fndecl (t);
  varinfo_t fi;

  if (fndecl != NULL_TREE
      && DECL_BUILT_IN (fndecl)
      && find_func_aliases_for_builtin_call (fn, t))
    return;

  fi = get_fi_for_callee (t);
  if (!in_ipa_mode
      || (fndecl && !fi->is_fn_info))
    {
      auto_vec<ce_s, 16> rhsc;
      int flags = gimple_call_flags (t);

      /* Const functions can return their arguments and addresses
	 of global memory but not of escaped memory.  */
      if (flags & (ECF_CONST|ECF_NOVOPS))
	{
	  if (gimple_call_lhs (t))
	    handle_const_call (t, &rhsc);
	}
      /* Pure functions can return addresses in and of memory
	 reachable from their arguments, but they are not an escape
	 point for reachable memory of their arguments.  */
      else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
	handle_pure_call (t, &rhsc);
      else
	handle_rhs_call (t, &rhsc);
      if (gimple_call_lhs (t))
	handle_lhs_call (t, gimple_call_lhs (t),
			 gimple_call_return_flags (t), rhsc, fndecl);
    }
  else
    {
      auto_vec<ce_s, 2> rhsc;
      tree lhsop;
      unsigned j;

      /* Assign all the passed arguments to the appropriate incoming
	 parameters of the function.  */
      for (j = 0; j < gimple_call_num_args (t); j++)
	{
	  tree arg = gimple_call_arg (t, j);
	  find_func_aliases_for_call_arg (fi, j, arg);
	}

      /* If we are returning a value, assign it to the result.  */
      lhsop = gimple_call_lhs (t);
      if (lhsop)
	{
	  auto_vec<ce_s, 2> lhsc;
	  struct constraint_expr rhs;
	  struct constraint_expr *lhsp;
	  bool aggr_p = aggregate_value_p (lhsop, gimple_call_fntype (t));

	  get_constraint_for (lhsop, &lhsc);
	  rhs = get_function_part_constraint (fi, fi_result);
	  if (aggr_p)
	    {
	      auto_vec<ce_s, 2> tem;
	      tem.quick_push (rhs);
	      do_deref (&tem);
	      gcc_checking_assert (tem.length () == 1);
	      rhs = tem[0];
	    }
	  FOR_EACH_VEC_ELT (lhsc, j, lhsp)
	    process_constraint (new_constraint (*lhsp, rhs));

	  /* If we pass the result decl by reference, honor that.  */
	  if (aggr_p)
	    {
	      struct constraint_expr lhs;
	      struct constraint_expr *rhsp;

	      get_constraint_for_address_of (lhsop, &rhsc);
	      lhs = get_function_part_constraint (fi, fi_result);
	      FOR_EACH_VEC_ELT (rhsc, j, rhsp)
		  process_constraint (new_constraint (lhs, *rhsp));
	      rhsc.truncate (0);
	    }
	}

      /* If we use a static chain, pass it along.  */
      if (gimple_call_chain (t))
	{
	  struct constraint_expr lhs;
	  struct constraint_expr *rhsp;

	  get_constraint_for (gimple_call_chain (t), &rhsc);
	  lhs = get_function_part_constraint (fi, fi_static_chain);
	  FOR_EACH_VEC_ELT (rhsc, j, rhsp)
	    process_constraint (new_constraint (lhs, *rhsp));
	}
    }
}

/* Walk statement T setting up aliasing constraints according to the
   references found in T.  This function is the main part of the
   constraint builder.  AI points to auxiliary alias information used
   when building alias sets and computing alias grouping heuristics.  */

static void
find_func_aliases (struct function *fn, gimple *origt)
{
  gimple *t = origt;
  auto_vec<ce_s, 16> lhsc;
  auto_vec<ce_s, 16> rhsc;
  struct constraint_expr *c;
  varinfo_t fi;

  /* Now build constraints expressions.  */
  if (gimple_code (t) == GIMPLE_PHI)
    {
      size_t i;
      unsigned int j;

      /* For a phi node, assign all the arguments to
	 the result.  */
      get_constraint_for (gimple_phi_result (t), &lhsc);
      for (i = 0; i < gimple_phi_num_args (t); i++)
	{
	  tree strippedrhs = PHI_ARG_DEF (t, i);

	  STRIP_NOPS (strippedrhs);
	  get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);

	  FOR_EACH_VEC_ELT (lhsc, j, c)
	    {
	      struct constraint_expr *c2;
	      while (rhsc.length () > 0)
		{
		  c2 = &rhsc.last ();
		  process_constraint (new_constraint (*c, *c2));
		  rhsc.pop ();
		}
	    }
	}
    }
  /* In IPA mode, we need to generate constraints to pass call
     arguments through their calls.   There are two cases,
     either a GIMPLE_CALL returning a value, or just a plain
     GIMPLE_CALL when we are not.

     In non-ipa mode, we need to generate constraints for each
     pointer passed by address.  */
  else if (is_gimple_call (t))
    find_func_aliases_for_call (fn, as_a <gcall *> (t));
    
  /* Otherwise, just a regular assignment statement.  Only care about
     operations with pointer result, others are dealt with as escape
     points if they have pointer operands.  */
  else if (is_gimple_assign (t))
    {
      /* Otherwise, just a regular assignment statement.  */
      tree lhsop = gimple_assign_lhs (t);
      tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;

      if (rhsop && TREE_CLOBBER_P (rhsop))
	/* Ignore clobbers, they don't actually store anything into
	   the LHS.  */
	;
      else if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
	do_structure_copy (lhsop, rhsop);
      else
	{
	  enum tree_code code = gimple_assign_rhs_code (t);

	  get_constraint_for (lhsop, &lhsc);

	  if (code == POINTER_PLUS_EXPR)
	    get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
					   gimple_assign_rhs2 (t), &rhsc);
	  else if (code == BIT_AND_EXPR
		   && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
	    {
	      /* Aligning a pointer via a BIT_AND_EXPR is offsetting
		 the pointer.  Handle it by offsetting it by UNKNOWN.  */
	      get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
					     NULL_TREE, &rhsc);
	    }
	  else if ((CONVERT_EXPR_CODE_P (code)
		    && !(POINTER_TYPE_P (gimple_expr_type (t))
			 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
		   || gimple_assign_single_p (t))
	    get_constraint_for_rhs (rhsop, &rhsc);
	  else if (code == COND_EXPR)
	    {
	      /* The result is a merge of both COND_EXPR arms.  */
	      auto_vec<ce_s, 2> tmp;
	      struct constraint_expr *rhsp;
	      unsigned i;
	      get_constraint_for_rhs (gimple_assign_rhs2 (t), &rhsc);
	      get_constraint_for_rhs (gimple_assign_rhs3 (t), &tmp);
	      FOR_EACH_VEC_ELT (tmp, i, rhsp)
		rhsc.safe_push (*rhsp);
	    }
	  else if (truth_value_p (code))
	    /* Truth value results are not pointer (parts).  Or at least
	       very unreasonable obfuscation of a part.  */
	    ;
	  else
	    {
	      /* All other operations are merges.  */
	      auto_vec<ce_s, 4> tmp;
	      struct constraint_expr *rhsp;
	      unsigned i, j;
	      get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
	      for (i = 2; i < gimple_num_ops (t); ++i)
		{
		  get_constraint_for_rhs (gimple_op (t, i), &tmp);
		  FOR_EACH_VEC_ELT (tmp, j, rhsp)
		    rhsc.safe_push (*rhsp);
		  tmp.truncate (0);
		}
	    }
	  process_all_all_constraints (lhsc, rhsc);
	}
      /* If there is a store to a global variable the rhs escapes.  */
      if ((lhsop = get_base_address (lhsop)) != NULL_TREE
	  && DECL_P (lhsop))
	{
	  varinfo_t vi = get_vi_for_tree (lhsop);
	  if ((! in_ipa_mode && vi->is_global_var)
	      || vi->is_ipa_escape_point)
	    make_escape_constraint (rhsop);
	}
    }
  /* Handle escapes through return.  */
  else if (gimple_code (t) == GIMPLE_RETURN
	   && gimple_return_retval (as_a <greturn *> (t)) != NULL_TREE)
    {
      greturn *return_stmt = as_a <greturn *> (t);
      fi = NULL;
      if (!in_ipa_mode
	  || !(fi = get_vi_for_tree (fn->decl)))
	make_escape_constraint (gimple_return_retval (return_stmt));
      else if (in_ipa_mode)
	{
	  struct constraint_expr lhs ;
	  struct constraint_expr *rhsp;
	  unsigned i;

	  lhs = get_function_part_constraint (fi, fi_result);
	  get_constraint_for_rhs (gimple_return_retval (return_stmt), &rhsc);
	  FOR_EACH_VEC_ELT (rhsc, i, rhsp)
	    process_constraint (new_constraint (lhs, *rhsp));
	}
    }
  /* Handle asms conservatively by adding escape constraints to everything.  */
  else if (gasm *asm_stmt = dyn_cast <gasm *> (t))
    {
      unsigned i, noutputs;
      const char **oconstraints;
      const char *constraint;
      bool allows_mem, allows_reg, is_inout;

      noutputs = gimple_asm_noutputs (asm_stmt);
      oconstraints = XALLOCAVEC (const char *, noutputs);

      for (i = 0; i < noutputs; ++i)
	{
	  tree link = gimple_asm_output_op (asm_stmt, i);
	  tree op = TREE_VALUE (link);

	  constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
	  oconstraints[i] = constraint;
	  parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
				   &allows_reg, &is_inout);

	  /* A memory constraint makes the address of the operand escape.  */
	  if (!allows_reg && allows_mem)
	    make_escape_constraint (build_fold_addr_expr (op));

	  /* The asm may read global memory, so outputs may point to
	     any global memory.  */
	  if (op)
	    {
	      auto_vec<ce_s, 2> lhsc;
	      struct constraint_expr rhsc, *lhsp;
	      unsigned j;
	      get_constraint_for (op, &lhsc);
	      rhsc.var = nonlocal_id;
	      rhsc.offset = 0;
	      rhsc.type = SCALAR;
	      FOR_EACH_VEC_ELT (lhsc, j, lhsp)
		process_constraint (new_constraint (*lhsp, rhsc));
	    }
	}
      for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
	{
	  tree link = gimple_asm_input_op (asm_stmt, i);
	  tree op = TREE_VALUE (link);

	  constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));

	  parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
				  &allows_mem, &allows_reg);

	  /* A memory constraint makes the address of the operand escape.  */
	  if (!allows_reg && allows_mem)
	    make_escape_constraint (build_fold_addr_expr (op));
	  /* Strictly we'd only need the constraint to ESCAPED if
	     the asm clobbers memory, otherwise using something
	     along the lines of per-call clobbers/uses would be enough.  */
	  else if (op)
	    make_escape_constraint (op);
	}
    }
}


/* Create a constraint adding to the clobber set of FI the memory
   pointed to by PTR.  */

static void
process_ipa_clobber (varinfo_t fi, tree ptr)
{
  vec<ce_s> ptrc = vNULL;
  struct constraint_expr *c, lhs;
  unsigned i;
  get_constraint_for_rhs (ptr, &ptrc);
  lhs = get_function_part_constraint (fi, fi_clobbers);
  FOR_EACH_VEC_ELT (ptrc, i, c)
    process_constraint (new_constraint (lhs, *c));
  ptrc.release ();
}

/* Walk statement T setting up clobber and use constraints according to the
   references found in T.  This function is a main part of the
   IPA constraint builder.  */

static void
find_func_clobbers (struct function *fn, gimple *origt)
{
  gimple *t = origt;
  auto_vec<ce_s, 16> lhsc;
  auto_vec<ce_s, 16> rhsc;
  varinfo_t fi;

  /* Add constraints for clobbered/used in IPA mode.
     We are not interested in what automatic variables are clobbered
     or used as we only use the information in the caller to which
     they do not escape.  */
  gcc_assert (in_ipa_mode);

  /* If the stmt refers to memory in any way it better had a VUSE.  */
  if (gimple_vuse (t) == NULL_TREE)
    return;

  /* We'd better have function information for the current function.  */
  fi = lookup_vi_for_tree (fn->decl);
  gcc_assert (fi != NULL);

  /* Account for stores in assignments and calls.  */
  if (gimple_vdef (t) != NULL_TREE
      && gimple_has_lhs (t))
    {
      tree lhs = gimple_get_lhs (t);
      tree tem = lhs;
      while (handled_component_p (tem))
	tem = TREE_OPERAND (tem, 0);
      if ((DECL_P (tem)
	   && !auto_var_in_fn_p (tem, fn->decl))
	  || INDIRECT_REF_P (tem)
	  || (TREE_CODE (tem) == MEM_REF
	      && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
		   && auto_var_in_fn_p
		        (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), fn->decl))))
	{
	  struct constraint_expr lhsc, *rhsp;
	  unsigned i;
	  lhsc = get_function_part_constraint (fi, fi_clobbers);
	  get_constraint_for_address_of (lhs, &rhsc);
	  FOR_EACH_VEC_ELT (rhsc, i, rhsp)
	    process_constraint (new_constraint (lhsc, *rhsp));
	  rhsc.truncate (0);
	}
    }

  /* Account for uses in assigments and returns.  */
  if (gimple_assign_single_p (t)
      || (gimple_code (t) == GIMPLE_RETURN
	  && gimple_return_retval (as_a <greturn *> (t)) != NULL_TREE))
    {
      tree rhs = (gimple_assign_single_p (t)
		  ? gimple_assign_rhs1 (t)
		  : gimple_return_retval (as_a <greturn *> (t)));
      tree tem = rhs;
      while (handled_component_p (tem))
	tem = TREE_OPERAND (tem, 0);
      if ((DECL_P (tem)
	   && !auto_var_in_fn_p (tem, fn->decl))
	  || INDIRECT_REF_P (tem)
	  || (TREE_CODE (tem) == MEM_REF
	      && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
		   && auto_var_in_fn_p
		        (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), fn->decl))))
	{
	  struct constraint_expr lhs, *rhsp;
	  unsigned i;
	  lhs = get_function_part_constraint (fi, fi_uses);
	  get_constraint_for_address_of (rhs, &rhsc);
	  FOR_EACH_VEC_ELT (rhsc, i, rhsp)
	    process_constraint (new_constraint (lhs, *rhsp));
	  rhsc.truncate (0);
	}
    }

  if (gcall *call_stmt = dyn_cast <gcall *> (t))
    {
      varinfo_t cfi = NULL;
      tree decl = gimple_call_fndecl (t);
      struct constraint_expr lhs, rhs;
      unsigned i, j;

      /* For builtins we do not have separate function info.  For those
	 we do not generate escapes for we have to generate clobbers/uses.  */
      if (gimple_call_builtin_p (t, BUILT_IN_NORMAL))
	switch (DECL_FUNCTION_CODE (decl))
	  {
	  /* The following functions use and clobber memory pointed to
	     by their arguments.  */
	  case BUILT_IN_STRCPY:
	  case BUILT_IN_STRNCPY:
	  case BUILT_IN_BCOPY:
	  case BUILT_IN_MEMCPY:
	  case BUILT_IN_MEMMOVE:
	  case BUILT_IN_MEMPCPY:
	  case BUILT_IN_STPCPY:
	  case BUILT_IN_STPNCPY:
	  case BUILT_IN_STRCAT:
	  case BUILT_IN_STRNCAT:
	  case BUILT_IN_STRCPY_CHK:
	  case BUILT_IN_STRNCPY_CHK:
	  case BUILT_IN_MEMCPY_CHK:
	  case BUILT_IN_MEMMOVE_CHK:
	  case BUILT_IN_MEMPCPY_CHK:
	  case BUILT_IN_STPCPY_CHK:
	  case BUILT_IN_STPNCPY_CHK:
	  case BUILT_IN_STRCAT_CHK:
	  case BUILT_IN_STRNCAT_CHK:
	    {
	      tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
					       == BUILT_IN_BCOPY ? 1 : 0));
	      tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
					      == BUILT_IN_BCOPY ? 0 : 1));
	      unsigned i;
	      struct constraint_expr *rhsp, *lhsp;
	      get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
	      lhs = get_function_part_constraint (fi, fi_clobbers);
	      FOR_EACH_VEC_ELT (lhsc, i, lhsp)
		process_constraint (new_constraint (lhs, *lhsp));
	      get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
	      lhs = get_function_part_constraint (fi, fi_uses);
	      FOR_EACH_VEC_ELT (rhsc, i, rhsp)
		process_constraint (new_constraint (lhs, *rhsp));
	      return;
	    }
	  /* The following function clobbers memory pointed to by
	     its argument.  */
	  case BUILT_IN_MEMSET:
	  case BUILT_IN_MEMSET_CHK:
	  case BUILT_IN_POSIX_MEMALIGN:
	    {
	      tree dest = gimple_call_arg (t, 0);
	      unsigned i;
	      ce_s *lhsp;
	      get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
	      lhs = get_function_part_constraint (fi, fi_clobbers);
	      FOR_EACH_VEC_ELT (lhsc, i, lhsp)
		process_constraint (new_constraint (lhs, *lhsp));
	      return;
	    }
	  /* The following functions clobber their second and third
	     arguments.  */
	  case BUILT_IN_SINCOS:
	  case BUILT_IN_SINCOSF:
	  case BUILT_IN_SINCOSL:
	    {
	      process_ipa_clobber (fi, gimple_call_arg (t, 1));
	      process_ipa_clobber (fi, gimple_call_arg (t, 2));
	      return;
	    }
	  /* The following functions clobber their second argument.  */
	  case BUILT_IN_FREXP:
	  case BUILT_IN_FREXPF:
	  case BUILT_IN_FREXPL:
	  case BUILT_IN_LGAMMA_R:
	  case BUILT_IN_LGAMMAF_R:
	  case BUILT_IN_LGAMMAL_R:
	  case BUILT_IN_GAMMA_R:
	  case BUILT_IN_GAMMAF_R:
	  case BUILT_IN_GAMMAL_R:
	  case BUILT_IN_MODF:
	  case BUILT_IN_MODFF:
	  case BUILT_IN_MODFL:
	    {
	      process_ipa_clobber (fi, gimple_call_arg (t, 1));
	      return;
	    }
	  /* The following functions clobber their third argument.  */
	  case BUILT_IN_REMQUO:
	  case BUILT_IN_REMQUOF:
	  case BUILT_IN_REMQUOL:
	    {
	      process_ipa_clobber (fi, gimple_call_arg (t, 2));
	      return;
	    }
	  /* The following functions neither read nor clobber memory.  */
	  case BUILT_IN_ASSUME_ALIGNED:
	  case BUILT_IN_FREE:
	    return;
	  /* Trampolines are of no interest to us.  */
	  case BUILT_IN_INIT_TRAMPOLINE:
	  case BUILT_IN_ADJUST_TRAMPOLINE:
	    return;
	  case BUILT_IN_VA_START:
	  case BUILT_IN_VA_END:
	    return;
	  case BUILT_IN_GOMP_PARALLEL:
	  case BUILT_IN_GOACC_PARALLEL:
	    {
	      unsigned int fnpos, argpos;
	      unsigned int implicit_use_args[2];
	      unsigned int num_implicit_use_args = 0;
	      switch (DECL_FUNCTION_CODE (decl))
		{
		case BUILT_IN_GOMP_PARALLEL:
		  /* __builtin_GOMP_parallel (fn, data, num_threads, flags).  */
		  fnpos = 0;
		  argpos = 1;
		  break;
		case BUILT_IN_GOACC_PARALLEL:
		  /* __builtin_GOACC_parallel (device, fn, mapnum, hostaddrs,
					       sizes, kinds, ...).  */
		  fnpos = 1;
		  argpos = 3;
		  implicit_use_args[num_implicit_use_args++] = 4;
		  implicit_use_args[num_implicit_use_args++] = 5;
		  break;
		default:
		  gcc_unreachable ();
		}

	      tree fnarg = gimple_call_arg (t, fnpos);
	      gcc_assert (TREE_CODE (fnarg) == ADDR_EXPR);
	      tree fndecl = TREE_OPERAND (fnarg, 0);
	      if (fndecl_maybe_in_other_partition (fndecl))
		/* Fallthru to general call handling.  */
		break;

	      varinfo_t cfi = get_vi_for_tree (fndecl);

	      tree arg = gimple_call_arg (t, argpos);

	      /* Parameter passed by value is used.  */
	      lhs = get_function_part_constraint (fi, fi_uses);
	      struct constraint_expr *rhsp;
	      get_constraint_for (arg, &rhsc);
	      FOR_EACH_VEC_ELT (rhsc, j, rhsp)
		process_constraint (new_constraint (lhs, *rhsp));
	      rhsc.truncate (0);

	      /* Handle parameters used by the call, but not used in cfi, as
		 implicitly used by cfi.  */
	      lhs = get_function_part_constraint (cfi, fi_uses);
	      for (unsigned i = 0; i < num_implicit_use_args; ++i)
		{
		  tree arg = gimple_call_arg (t, implicit_use_args[i]);
		  get_constraint_for (arg, &rhsc);
		  FOR_EACH_VEC_ELT (rhsc, j, rhsp)
		    process_constraint (new_constraint (lhs, *rhsp));
		  rhsc.truncate (0);
		}

	      /* The caller clobbers what the callee does.  */
	      lhs = get_function_part_constraint (fi, fi_clobbers);
	      rhs = get_function_part_constraint (cfi, fi_clobbers);
	      process_constraint (new_constraint (lhs, rhs));

	      /* The caller uses what the callee does.  */
	      lhs = get_function_part_constraint (fi, fi_uses);
	      rhs = get_function_part_constraint (cfi, fi_uses);
	      process_constraint (new_constraint (lhs, rhs));

	      return;
	    }
	  /* printf-style functions may have hooks to set pointers to
	     point to somewhere into the generated string.  Leave them
	     for a later exercise...  */
	  default:
	    /* Fallthru to general call handling.  */;
	  }

      /* Parameters passed by value are used.  */
      lhs = get_function_part_constraint (fi, fi_uses);
      for (i = 0; i < gimple_call_num_args (t); i++)
	{
	  struct constraint_expr *rhsp;
	  tree arg = gimple_call_arg (t, i);

	  if (TREE_CODE (arg) == SSA_NAME
	      || is_gimple_min_invariant (arg))
	    continue;

	  get_constraint_for_address_of (arg, &rhsc);
	  FOR_EACH_VEC_ELT (rhsc, j, rhsp)
	    process_constraint (new_constraint (lhs, *rhsp));
	  rhsc.truncate (0);
	}

      /* Build constraints for propagating clobbers/uses along the
	 callgraph edges.  */
      cfi = get_fi_for_callee (call_stmt);
      if (cfi->id == anything_id)
	{
	  if (gimple_vdef (t))
	    make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
				  anything_id);
	  make_constraint_from (first_vi_for_offset (fi, fi_uses),
				anything_id);
	  return;
	}

      /* For callees without function info (that's external functions),
	 ESCAPED is clobbered and used.  */
      if (gimple_call_fndecl (t)
	  && !cfi->is_fn_info)
	{
	  varinfo_t vi;

	  if (gimple_vdef (t))
	    make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
				  escaped_id);
	  make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);

	  /* Also honor the call statement use/clobber info.  */
	  if ((vi = lookup_call_clobber_vi (call_stmt)) != NULL)
	    make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
				  vi->id);
	  if ((vi = lookup_call_use_vi (call_stmt)) != NULL)
	    make_copy_constraint (first_vi_for_offset (fi, fi_uses),
				  vi->id);
	  return;
	}

      /* Otherwise the caller clobbers and uses what the callee does.
	 ???  This should use a new complex constraint that filters
	 local variables of the callee.  */
      if (gimple_vdef (t))
	{
	  lhs = get_function_part_constraint (fi, fi_clobbers);
	  rhs = get_function_part_constraint (cfi, fi_clobbers);
	  process_constraint (new_constraint (lhs, rhs));
	}
      lhs = get_function_part_constraint (fi, fi_uses);
      rhs = get_function_part_constraint (cfi, fi_uses);
      process_constraint (new_constraint (lhs, rhs));
    }
  else if (gimple_code (t) == GIMPLE_ASM)
    {
      /* ???  Ick.  We can do better.  */
      if (gimple_vdef (t))
	make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
			      anything_id);
      make_constraint_from (first_vi_for_offset (fi, fi_uses),
			    anything_id);
    }
}


/* Find the first varinfo in the same variable as START that overlaps with
   OFFSET.  Return NULL if we can't find one.  */

static varinfo_t
first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
{
  /* If the offset is outside of the variable, bail out.  */
  if (offset >= start->fullsize)
    return NULL;

  /* If we cannot reach offset from start, lookup the first field
     and start from there.  */
  if (start->offset > offset)
    start = get_varinfo (start->head);

  while (start)
    {
      /* We may not find a variable in the field list with the actual
	 offset when we have glommed a structure to a variable.
	 In that case, however, offset should still be within the size
	 of the variable. */
      if (offset >= start->offset
	  && (offset - start->offset) < start->size)
	return start;

      start = vi_next (start);
    }

  return NULL;
}

/* Find the first varinfo in the same variable as START that overlaps with
   OFFSET.  If there is no such varinfo the varinfo directly preceding
   OFFSET is returned.  */

static varinfo_t
first_or_preceding_vi_for_offset (varinfo_t start,
				  unsigned HOST_WIDE_INT offset)
{
  /* If we cannot reach offset from start, lookup the first field
     and start from there.  */
  if (start->offset > offset)
    start = get_varinfo (start->head);

  /* We may not find a variable in the field list with the actual
     offset when we have glommed a structure to a variable.
     In that case, however, offset should still be within the size
     of the variable.
     If we got beyond the offset we look for return the field
     directly preceding offset which may be the last field.  */
  while (start->next
	 && offset >= start->offset
	 && !((offset - start->offset) < start->size))
    start = vi_next (start);

  return start;
}


/* This structure is used during pushing fields onto the fieldstack
   to track the offset of the field, since bitpos_of_field gives it
   relative to its immediate containing type, and we want it relative
   to the ultimate containing object.  */

struct fieldoff
{
  /* Offset from the base of the base containing object to this field.  */
  HOST_WIDE_INT offset;

  /* Size, in bits, of the field.  */
  unsigned HOST_WIDE_INT size;

  unsigned has_unknown_size : 1;

  unsigned must_have_pointers : 1;

  unsigned may_have_pointers : 1;

  unsigned only_restrict_pointers : 1;

  tree restrict_pointed_type;
};
typedef struct fieldoff fieldoff_s;


/* qsort comparison function for two fieldoff's PA and PB */

static int
fieldoff_compare (const void *pa, const void *pb)
{
  const fieldoff_s *foa = (const fieldoff_s *)pa;
  const fieldoff_s *fob = (const fieldoff_s *)pb;
  unsigned HOST_WIDE_INT foasize, fobsize;

  if (foa->offset < fob->offset)
    return -1;
  else if (foa->offset > fob->offset)
    return 1;

  foasize = foa->size;
  fobsize = fob->size;
  if (foasize < fobsize)
    return -1;
  else if (foasize > fobsize)
    return 1;
  return 0;
}

/* Sort a fieldstack according to the field offset and sizes.  */
static void
sort_fieldstack (vec<fieldoff_s> fieldstack)
{
  fieldstack.qsort (fieldoff_compare);
}

/* Return true if T is a type that can have subvars.  */

static inline bool
type_can_have_subvars (const_tree t)
{
  /* Aggregates without overlapping fields can have subvars.  */
  return TREE_CODE (t) == RECORD_TYPE;
}

/* Return true if V is a tree that we can have subvars for.
   Normally, this is any aggregate type.  Also complex
   types which are not gimple registers can have subvars.  */

static inline bool
var_can_have_subvars (const_tree v)
{
  /* Volatile variables should never have subvars.  */
  if (TREE_THIS_VOLATILE (v))
    return false;

  /* Non decls or memory tags can never have subvars.  */
  if (!DECL_P (v))
    return false;

  return type_can_have_subvars (TREE_TYPE (v));
}

/* Return true if T is a type that does contain pointers.  */

static bool
type_must_have_pointers (tree type)
{
  if (POINTER_TYPE_P (type))
    return true;

  if (TREE_CODE (type) == ARRAY_TYPE)
    return type_must_have_pointers (TREE_TYPE (type));

  /* A function or method can have pointers as arguments, so track
     those separately.  */
  if (TREE_CODE (type) == FUNCTION_TYPE
      || TREE_CODE (type) == METHOD_TYPE)
    return true;

  return false;
}

static bool
field_must_have_pointers (tree t)
{
  return type_must_have_pointers (TREE_TYPE (t));
}

/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
   the fields of TYPE onto fieldstack, recording their offsets along
   the way.

   OFFSET is used to keep track of the offset in this entire
   structure, rather than just the immediately containing structure.
   Returns false if the caller is supposed to handle the field we
   recursed for.  */

static bool
push_fields_onto_fieldstack (tree type, vec<fieldoff_s> *fieldstack,
			     HOST_WIDE_INT offset)
{
  tree field;
  bool empty_p = true;

  if (TREE_CODE (type) != RECORD_TYPE)
    return false;

  /* If the vector of fields is growing too big, bail out early.
     Callers check for vec::length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
     sure this fails.  */
  if (fieldstack->length () > MAX_FIELDS_FOR_FIELD_SENSITIVE)
    return false;

  for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL)
      {
	bool push = false;
	HOST_WIDE_INT foff = bitpos_of_field (field);
	tree field_type = TREE_TYPE (field);

	if (!var_can_have_subvars (field)
	    || TREE_CODE (field_type) == QUAL_UNION_TYPE
	    || TREE_CODE (field_type) == UNION_TYPE)
	  push = true;
	else if (!push_fields_onto_fieldstack
		    (field_type, fieldstack, offset + foff)
		 && (DECL_SIZE (field)
		     && !integer_zerop (DECL_SIZE (field))))
	  /* Empty structures may have actual size, like in C++.  So
	     see if we didn't push any subfields and the size is
	     nonzero, push the field onto the stack.  */
	  push = true;

	if (push)
	  {
	    fieldoff_s *pair = NULL;
	    bool has_unknown_size = false;
	    bool must_have_pointers_p;

	    if (!fieldstack->is_empty ())
	      pair = &fieldstack->last ();

	    /* If there isn't anything at offset zero, create sth.  */
	    if (!pair
		&& offset + foff != 0)
	      {
		fieldoff_s e
		  = {0, offset + foff, false, false, false, false, NULL_TREE};
		pair = fieldstack->safe_push (e);
	      }

	    if (!DECL_SIZE (field)
		|| !tree_fits_uhwi_p (DECL_SIZE (field)))
	      has_unknown_size = true;

	    /* If adjacent fields do not contain pointers merge them.  */
	    must_have_pointers_p = field_must_have_pointers (field);
	    if (pair
		&& !has_unknown_size
		&& !must_have_pointers_p
		&& !pair->must_have_pointers
		&& !pair->has_unknown_size
		&& pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
	      {
		pair->size += tree_to_uhwi (DECL_SIZE (field));
	      }
	    else
	      {
		fieldoff_s e;
		e.offset = offset + foff;
		e.has_unknown_size = has_unknown_size;
		if (!has_unknown_size)
		  e.size = tree_to_uhwi (DECL_SIZE (field));
		else
		  e.size = -1;
		e.must_have_pointers = must_have_pointers_p;
		e.may_have_pointers = true;
		e.only_restrict_pointers
		  = (!has_unknown_size
		     && POINTER_TYPE_P (field_type)
		     && TYPE_RESTRICT (field_type));
		if (e.only_restrict_pointers)
		  e.restrict_pointed_type = TREE_TYPE (field_type);
		fieldstack->safe_push (e);
	      }
	  }

	empty_p = false;
      }

  return !empty_p;
}

/* Count the number of arguments DECL has, and set IS_VARARGS to true
   if it is a varargs function.  */

static unsigned int
count_num_arguments (tree decl, bool *is_varargs)
{
  unsigned int num = 0;
  tree t;

  /* Capture named arguments for K&R functions.  They do not
     have a prototype and thus no TYPE_ARG_TYPES.  */
  for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
    ++num;

  /* Check if the function has variadic arguments.  */
  for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
    if (TREE_VALUE (t) == void_type_node)
      break;
  if (!t)
    *is_varargs = true;

  return num;
}

/* Creation function node for DECL, using NAME, and return the index
   of the variable we've created for the function.  If NONLOCAL_p, create
   initial constraints.  */

static varinfo_t
create_function_info_for (tree decl, const char *name, bool add_id,
			  bool nonlocal_p)
{
  struct function *fn = DECL_STRUCT_FUNCTION (decl);
  varinfo_t vi, prev_vi;
  tree arg;
  unsigned int i;
  bool is_varargs = false;
  unsigned int num_args = count_num_arguments (decl, &is_varargs);

  /* Create the variable info.  */

  vi = new_var_info (decl, name, add_id);
  vi->offset = 0;
  vi->size = 1;
  vi->fullsize = fi_parm_base + num_args;
  vi->is_fn_info = 1;
  vi->may_have_pointers = false;
  if (is_varargs)
    vi->fullsize = ~0;
  insert_vi_for_tree (vi->decl, vi);

  prev_vi = vi;

  /* Create a variable for things the function clobbers and one for
     things the function uses.  */
    {
      varinfo_t clobbervi, usevi;
      const char *newname;
      char *tempname;

      tempname = xasprintf ("%s.clobber", name);
      newname = ggc_strdup (tempname);
      free (tempname);

      clobbervi = new_var_info (NULL, newname, false);
      clobbervi->offset = fi_clobbers;
      clobbervi->size = 1;
      clobbervi->fullsize = vi->fullsize;
      clobbervi->is_full_var = true;
      clobbervi->is_global_var = false;

      gcc_assert (prev_vi->offset < clobbervi->offset);
      prev_vi->next = clobbervi->id;
      prev_vi = clobbervi;

      tempname = xasprintf ("%s.use", name);
      newname = ggc_strdup (tempname);
      free (tempname);

      usevi = new_var_info (NULL, newname, false);
      usevi->offset = fi_uses;
      usevi->size = 1;
      usevi->fullsize = vi->fullsize;
      usevi->is_full_var = true;
      usevi->is_global_var = false;

      gcc_assert (prev_vi->offset < usevi->offset);
      prev_vi->next = usevi->id;
      prev_vi = usevi;
    }

  /* And one for the static chain.  */
  if (fn->static_chain_decl != NULL_TREE)
    {
      varinfo_t chainvi;
      const char *newname;
      char *tempname;

      tempname = xasprintf ("%s.chain", name);
      newname = ggc_strdup (tempname);
      free (tempname);

      chainvi = new_var_info (fn->static_chain_decl, newname, false);
      chainvi->offset = fi_static_chain;
      chainvi->size = 1;
      chainvi->fullsize = vi->fullsize;
      chainvi->is_full_var = true;
      chainvi->is_global_var = false;

      insert_vi_for_tree (fn->static_chain_decl, chainvi);

      if (nonlocal_p
	  && chainvi->may_have_pointers)
	make_constraint_from (chainvi, nonlocal_id);

      gcc_assert (prev_vi->offset < chainvi->offset);
      prev_vi->next = chainvi->id;
      prev_vi = chainvi;
    }

  /* Create a variable for the return var.  */
  if (DECL_RESULT (decl) != NULL
      || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
    {
      varinfo_t resultvi;
      const char *newname;
      char *tempname;
      tree resultdecl = decl;

      if (DECL_RESULT (decl))
	resultdecl = DECL_RESULT (decl);

      tempname = xasprintf ("%s.result", name);
      newname = ggc_strdup (tempname);
      free (tempname);

      resultvi = new_var_info (resultdecl, newname, false);
      resultvi->offset = fi_result;
      resultvi->size = 1;
      resultvi->fullsize = vi->fullsize;
      resultvi->is_full_var = true;
      if (DECL_RESULT (decl))
	resultvi->may_have_pointers = true;

      if (DECL_RESULT (decl))
	insert_vi_for_tree (DECL_RESULT (decl), resultvi);

      if (nonlocal_p
	  && DECL_RESULT (decl)
	  && DECL_BY_REFERENCE (DECL_RESULT (decl)))
	make_constraint_from (resultvi, nonlocal_id);

      gcc_assert (prev_vi->offset < resultvi->offset);
      prev_vi->next = resultvi->id;
      prev_vi = resultvi;
    }

  /* We also need to make function return values escape.  Nothing
     escapes by returning from main though.  */
  if (nonlocal_p
      && !MAIN_NAME_P (DECL_NAME (decl)))
    {
      varinfo_t fi, rvi;
      fi = lookup_vi_for_tree (decl);
      rvi = first_vi_for_offset (fi, fi_result);
      if (rvi && rvi->offset == fi_result)
	make_copy_constraint (get_varinfo (escaped_id), rvi->id);
    }

  /* Set up variables for each argument.  */
  arg = DECL_ARGUMENTS (decl);
  for (i = 0; i < num_args; i++)
    {
      varinfo_t argvi;
      const char *newname;
      char *tempname;
      tree argdecl = decl;

      if (arg)
	argdecl = arg;

      tempname = xasprintf ("%s.arg%d", name, i);
      newname = ggc_strdup (tempname);
      free (tempname);

      argvi = new_var_info (argdecl, newname, false);
      argvi->offset = fi_parm_base + i;
      argvi->size = 1;
      argvi->is_full_var = true;
      argvi->fullsize = vi->fullsize;
      if (arg)
	argvi->may_have_pointers = true;

      if (arg)
	insert_vi_for_tree (arg, argvi);

      if (nonlocal_p
	  && argvi->may_have_pointers)
	make_constraint_from (argvi, nonlocal_id);

      gcc_assert (prev_vi->offset < argvi->offset);
      prev_vi->next = argvi->id;
      prev_vi = argvi;
      if (arg)
	arg = DECL_CHAIN (arg);
    }

  /* Add one representative for all further args.  */
  if (is_varargs)
    {
      varinfo_t argvi;
      const char *newname;
      char *tempname;
      tree decl;

      tempname = xasprintf ("%s.varargs", name);
      newname = ggc_strdup (tempname);
      free (tempname);

      /* We need sth that can be pointed to for va_start.  */
      decl = build_fake_var_decl (ptr_type_node);

      argvi = new_var_info (decl, newname, false);
      argvi->offset = fi_parm_base + num_args;
      argvi->size = ~0;
      argvi->is_full_var = true;
      argvi->is_heap_var = true;
      argvi->fullsize = vi->fullsize;

      if (nonlocal_p
	  && argvi->may_have_pointers)
	make_constraint_from (argvi, nonlocal_id);

      gcc_assert (prev_vi->offset < argvi->offset);
      prev_vi->next = argvi->id;
      prev_vi = argvi;
    }

  return vi;
}


/* Return true if FIELDSTACK contains fields that overlap.
   FIELDSTACK is assumed to be sorted by offset.  */

static bool
check_for_overlaps (vec<fieldoff_s> fieldstack)
{
  fieldoff_s *fo = NULL;
  unsigned int i;
  HOST_WIDE_INT lastoffset = -1;

  FOR_EACH_VEC_ELT (fieldstack, i, fo)
    {
      if (fo->offset == lastoffset)
	return true;
      lastoffset = fo->offset;
    }
  return false;
}

/* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
   This will also create any varinfo structures necessary for fields
   of DECL.  DECL is a function parameter if HANDLE_PARAM is set.
   HANDLED_STRUCT_TYPE is used to register struct types reached by following
   restrict pointers.  This is needed to prevent infinite recursion.  */

static varinfo_t
create_variable_info_for_1 (tree decl, const char *name, bool add_id,
			    bool handle_param, bitmap handled_struct_type)
{
  varinfo_t vi, newvi;
  tree decl_type = TREE_TYPE (decl);
  tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
  auto_vec<fieldoff_s> fieldstack;
  fieldoff_s *fo;
  unsigned int i;

  if (!declsize
      || !tree_fits_uhwi_p (declsize))
    {
      vi = new_var_info (decl, name, add_id);
      vi->offset = 0;
      vi->size = ~0;
      vi->fullsize = ~0;
      vi->is_unknown_size_var = true;
      vi->is_full_var = true;
      vi->may_have_pointers = true;
      return vi;
    }

  /* Collect field information.  */
  if (use_field_sensitive
      && var_can_have_subvars (decl)
      /* ???  Force us to not use subfields for globals in IPA mode.
	 Else we'd have to parse arbitrary initializers.  */
      && !(in_ipa_mode
	   && is_global_var (decl)))
    {
      fieldoff_s *fo = NULL;
      bool notokay = false;
      unsigned int i;

      push_fields_onto_fieldstack (decl_type, &fieldstack, 0);

      for (i = 0; !notokay && fieldstack.iterate (i, &fo); i++)
	if (fo->has_unknown_size
	    || fo->offset < 0)
	  {
	    notokay = true;
	    break;
	  }

      /* We can't sort them if we have a field with a variable sized type,
	 which will make notokay = true.  In that case, we are going to return
	 without creating varinfos for the fields anyway, so sorting them is a
	 waste to boot.  */
      if (!notokay)
	{
	  sort_fieldstack (fieldstack);
	  /* Due to some C++ FE issues, like PR 22488, we might end up
	     what appear to be overlapping fields even though they,
	     in reality, do not overlap.  Until the C++ FE is fixed,
	     we will simply disable field-sensitivity for these cases.  */
	  notokay = check_for_overlaps (fieldstack);
	}

      if (notokay)
	fieldstack.release ();
    }

  /* If we didn't end up collecting sub-variables create a full
     variable for the decl.  */
  if (fieldstack.length () == 0
      || fieldstack.length () > MAX_FIELDS_FOR_FIELD_SENSITIVE)
    {
      vi = new_var_info (decl, name, add_id);
      vi->offset = 0;
      vi->may_have_pointers = true;
      vi->fullsize = tree_to_uhwi (declsize);
      vi->size = vi->fullsize;
      vi->is_full_var = true;
      if (POINTER_TYPE_P (decl_type)
	  && TYPE_RESTRICT (decl_type))
	vi->only_restrict_pointers = 1;
      if (vi->only_restrict_pointers
	  && !type_contains_placeholder_p (TREE_TYPE (decl_type))
	  && handle_param
	  && !bitmap_bit_p (handled_struct_type,
			    TYPE_UID (TREE_TYPE (decl_type))))
	{
	  varinfo_t rvi;
	  tree heapvar = build_fake_var_decl (TREE_TYPE (decl_type));
	  DECL_EXTERNAL (heapvar) = 1;
	  if (var_can_have_subvars (heapvar))
	    bitmap_set_bit (handled_struct_type,
			    TYPE_UID (TREE_TYPE (decl_type)));
	  rvi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS", true,
					    true, handled_struct_type);
	  if (var_can_have_subvars (heapvar))
	    bitmap_clear_bit (handled_struct_type,
			      TYPE_UID (TREE_TYPE (decl_type)));
	  rvi->is_restrict_var = 1;
	  insert_vi_for_tree (heapvar, rvi);
	  make_constraint_from (vi, rvi->id);
	  make_param_constraints (rvi);
	}
      fieldstack.release ();
      return vi;
    }

  vi = new_var_info (decl, name, add_id);
  vi->fullsize = tree_to_uhwi (declsize);
  if (fieldstack.length () == 1)
    vi->is_full_var = true;
  for (i = 0, newvi = vi;
       fieldstack.iterate (i, &fo);
       ++i, newvi = vi_next (newvi))
    {
      const char *newname = NULL;
      char *tempname;

      if (dump_file)
	{
	  if (fieldstack.length () != 1)
	    {
	      tempname
		= xasprintf ("%s." HOST_WIDE_INT_PRINT_DEC
			     "+" HOST_WIDE_INT_PRINT_DEC, name,
			     fo->offset, fo->size);
	      newname = ggc_strdup (tempname);
	      free (tempname);
	    }
	}
      else
	newname = "NULL";

      if (newname)
	  newvi->name = newname;
      newvi->offset = fo->offset;
      newvi->size = fo->size;
      newvi->fullsize = vi->fullsize;
      newvi->may_have_pointers = fo->may_have_pointers;
      newvi->only_restrict_pointers = fo->only_restrict_pointers;
      if (handle_param
	  && newvi->only_restrict_pointers
	  && !type_contains_placeholder_p (fo->restrict_pointed_type)
	  && !bitmap_bit_p (handled_struct_type,
			    TYPE_UID (fo->restrict_pointed_type)))
	{
	  varinfo_t rvi;
	  tree heapvar = build_fake_var_decl (fo->restrict_pointed_type);
	  DECL_EXTERNAL (heapvar) = 1;
	  if (var_can_have_subvars (heapvar))
	    bitmap_set_bit (handled_struct_type,
			    TYPE_UID (fo->restrict_pointed_type));
	  rvi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS", true,
					    true, handled_struct_type);
	  if (var_can_have_subvars (heapvar))
	    bitmap_clear_bit (handled_struct_type,
			      TYPE_UID (fo->restrict_pointed_type));
	  rvi->is_restrict_var = 1;
	  insert_vi_for_tree (heapvar, rvi);
	  make_constraint_from (newvi, rvi->id);
	  make_param_constraints (rvi);
	}
      if (i + 1 < fieldstack.length ())
	{
	  varinfo_t tem = new_var_info (decl, name, false);
	  newvi->next = tem->id;
	  tem->head = vi->id;
	}
    }

  return vi;
}

static unsigned int
create_variable_info_for (tree decl, const char *name, bool add_id)
{
  varinfo_t vi = create_variable_info_for_1 (decl, name, add_id, false, NULL);
  unsigned int id = vi->id;

  insert_vi_for_tree (decl, vi);

  if (TREE_CODE (decl) != VAR_DECL)
    return id;

  /* Create initial constraints for globals.  */
  for (; vi; vi = vi_next (vi))
    {
      if (!vi->may_have_pointers
	  || !vi->is_global_var)
	continue;

      /* Mark global restrict qualified pointers.  */
      if ((POINTER_TYPE_P (TREE_TYPE (decl))
	   && TYPE_RESTRICT (TREE_TYPE (decl)))
	  || vi->only_restrict_pointers)
	{
	  varinfo_t rvi
	    = make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT",
						    true);
	  /* ???  For now exclude reads from globals as restrict sources
	     if those are not (indirectly) from incoming parameters.  */
	  rvi->is_restrict_var = false;
	  continue;
	}

      /* In non-IPA mode the initializer from nonlocal is all we need.  */
      if (!in_ipa_mode
	  || DECL_HARD_REGISTER (decl))
	make_copy_constraint (vi, nonlocal_id);

      /* In IPA mode parse the initializer and generate proper constraints
	 for it.  */
      else
	{
	  varpool_node *vnode = varpool_node::get (decl);

	  /* For escaped variables initialize them from nonlocal.  */
	  if (!vnode->all_refs_explicit_p ())
	    make_copy_constraint (vi, nonlocal_id);

	  /* If this is a global variable with an initializer and we are in
	     IPA mode generate constraints for it.  */
	  ipa_ref *ref;
	  for (unsigned idx = 0; vnode->iterate_reference (idx, ref); ++idx)
	    {
	      auto_vec<ce_s> rhsc;
	      struct constraint_expr lhs, *rhsp;
	      unsigned i;
	      get_constraint_for_address_of (ref->referred->decl, &rhsc);
	      lhs.var = vi->id;
	      lhs.offset = 0;
	      lhs.type = SCALAR;
	      FOR_EACH_VEC_ELT (rhsc, i, rhsp)
		process_constraint (new_constraint (lhs, *rhsp));
	      /* If this is a variable that escapes from the unit
		 the initializer escapes as well.  */
	      if (!vnode->all_refs_explicit_p ())
		{
		  lhs.var = escaped_id;
		  lhs.offset = 0;
		  lhs.type = SCALAR;
		  FOR_EACH_VEC_ELT (rhsc, i, rhsp)
		    process_constraint (new_constraint (lhs, *rhsp));
		}
	    }
	}
    }

  return id;
}

/* Print out the points-to solution for VAR to FILE.  */

static void
dump_solution_for_var (FILE *file, unsigned int var)
{
  varinfo_t vi = get_varinfo (var);
  unsigned int i;
  bitmap_iterator bi;

  /* Dump the solution for unified vars anyway, this avoids difficulties
     in scanning dumps in the testsuite.  */
  fprintf (file, "%s = { ", vi->name);
  vi = get_varinfo (find (var));
  EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
    fprintf (file, "%s ", get_varinfo (i)->name);
  fprintf (file, "}");

  /* But note when the variable was unified.  */
  if (vi->id != var)
    fprintf (file, " same as %s", vi->name);

  fprintf (file, "\n");
}

/* Print the points-to solution for VAR to stderr.  */

DEBUG_FUNCTION void
debug_solution_for_var (unsigned int var)
{
  dump_solution_for_var (stderr, var);
}

/* Register the constraints for function parameter related VI.  */

static void
make_param_constraints (varinfo_t vi)
{
  for (; vi; vi = vi_next (vi))
    {
      if (vi->only_restrict_pointers)
	;
      else if (vi->may_have_pointers)
	make_constraint_from (vi, nonlocal_id);

      if (vi->is_full_var)
	break;
    }
}

/* Create varinfo structures for all of the variables in the
   function for intraprocedural mode.  */

static void
intra_create_variable_infos (struct function *fn)
{
  tree t;
  bitmap handled_struct_type = NULL;

  /* For each incoming pointer argument arg, create the constraint ARG
     = NONLOCAL or a dummy variable if it is a restrict qualified
     passed-by-reference argument.  */
  for (t = DECL_ARGUMENTS (fn->decl); t; t = DECL_CHAIN (t))
    {
      if (handled_struct_type == NULL)
	handled_struct_type = BITMAP_ALLOC (NULL);

      varinfo_t p
	= create_variable_info_for_1 (t, alias_get_name (t), false, true,
				      handled_struct_type);
      insert_vi_for_tree (t, p);

      make_param_constraints (p);
    }

  if (handled_struct_type != NULL)
    BITMAP_FREE (handled_struct_type);

  /* Add a constraint for a result decl that is passed by reference.  */
  if (DECL_RESULT (fn->decl)
      && DECL_BY_REFERENCE (DECL_RESULT (fn->decl)))
    {
      varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (fn->decl));

      for (p = result_vi; p; p = vi_next (p))
	make_constraint_from (p, nonlocal_id);
    }

  /* Add a constraint for the incoming static chain parameter.  */
  if (fn->static_chain_decl != NULL_TREE)
    {
      varinfo_t p, chain_vi = get_vi_for_tree (fn->static_chain_decl);

      for (p = chain_vi; p; p = vi_next (p))
	make_constraint_from (p, nonlocal_id);
    }
}

/* Structure used to put solution bitmaps in a hashtable so they can
   be shared among variables with the same points-to set.  */

typedef struct shared_bitmap_info
{
  bitmap pt_vars;
  hashval_t hashcode;
} *shared_bitmap_info_t;
typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;

/* Shared_bitmap hashtable helpers.  */

struct shared_bitmap_hasher : free_ptr_hash <shared_bitmap_info>
{
  static inline hashval_t hash (const shared_bitmap_info *);
  static inline bool equal (const shared_bitmap_info *,
			    const shared_bitmap_info *);
};

/* Hash function for a shared_bitmap_info_t */

inline hashval_t
shared_bitmap_hasher::hash (const shared_bitmap_info *bi)
{
  return bi->hashcode;
}

/* Equality function for two shared_bitmap_info_t's. */

inline bool
shared_bitmap_hasher::equal (const shared_bitmap_info *sbi1,
			     const shared_bitmap_info *sbi2)
{
  return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
}

/* Shared_bitmap hashtable.  */

static hash_table<shared_bitmap_hasher> *shared_bitmap_table;

/* Lookup a bitmap in the shared bitmap hashtable, and return an already
   existing instance if there is one, NULL otherwise.  */

static bitmap
shared_bitmap_lookup (bitmap pt_vars)
{
  shared_bitmap_info **slot;
  struct shared_bitmap_info sbi;

  sbi.pt_vars = pt_vars;
  sbi.hashcode = bitmap_hash (pt_vars);

  slot = shared_bitmap_table->find_slot (&sbi, NO_INSERT);
  if (!slot)
    return NULL;
  else
    return (*slot)->pt_vars;
}


/* Add a bitmap to the shared bitmap hashtable.  */

static void
shared_bitmap_add (bitmap pt_vars)
{
  shared_bitmap_info **slot;
  shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);

  sbi->pt_vars = pt_vars;
  sbi->hashcode = bitmap_hash (pt_vars);

  slot = shared_bitmap_table->find_slot (sbi, INSERT);
  gcc_assert (!*slot);
  *slot = sbi;
}


/* Set bits in INTO corresponding to the variable uids in solution set FROM.  */

static void
set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt,
		   tree fndecl)
{
  unsigned int i;
  bitmap_iterator bi;
  varinfo_t escaped_vi = get_varinfo (find (escaped_id));
  bool everything_escaped
    = escaped_vi->solution && bitmap_bit_p (escaped_vi->solution, anything_id);

  EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      /* The only artificial variables that are allowed in a may-alias
	 set are heap variables.  */
      if (vi->is_artificial_var && !vi->is_heap_var)
	continue;

      if (everything_escaped
	  || (escaped_vi->solution
	      && bitmap_bit_p (escaped_vi->solution, i)))
	{
	  pt->vars_contains_escaped = true;
	  pt->vars_contains_escaped_heap = vi->is_heap_var;
	}

      if (vi->is_restrict_var)
	pt->vars_contains_restrict = true;

      if (TREE_CODE (vi->decl) == VAR_DECL
	  || TREE_CODE (vi->decl) == PARM_DECL
	  || TREE_CODE (vi->decl) == RESULT_DECL)
	{
	  /* If we are in IPA mode we will not recompute points-to
	     sets after inlining so make sure they stay valid.  */
	  if (in_ipa_mode
	      && !DECL_PT_UID_SET_P (vi->decl))
	    SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));

	  /* Add the decl to the points-to set.  Note that the points-to
	     set contains global variables.  */
	  bitmap_set_bit (into, DECL_PT_UID (vi->decl));
	  if (vi->is_global_var
	      /* In IPA mode the escaped_heap trick doesn't work as
		 ESCAPED is escaped from the unit but
		 pt_solution_includes_global needs to answer true for
		 all variables not automatic within a function.
		 For the same reason is_global_var is not the
		 correct flag to track - local variables from other
		 functions also need to be considered global.
		 Conveniently all HEAP vars are not put in function
		 scope.  */
	      || (in_ipa_mode
		  && fndecl
		  && ! auto_var_in_fn_p (vi->decl, fndecl)))
	    pt->vars_contains_nonlocal = true;
	}

      else if (TREE_CODE (vi->decl) == FUNCTION_DECL
	       || TREE_CODE (vi->decl) == LABEL_DECL)
	{
	  /* Nothing should read/write from/to code so we can
	     save bits by not including them in the points-to bitmaps.
	     Still mark the points-to set as containing global memory
	     to make code-patching possible - see PR70128.  */
	  pt->vars_contains_nonlocal = true;
	}
    }
}


/* Compute the points-to solution *PT for the variable VI.  */

static struct pt_solution
find_what_var_points_to (tree fndecl, varinfo_t orig_vi)
{
  unsigned int i;
  bitmap_iterator bi;
  bitmap finished_solution;
  bitmap result;
  varinfo_t vi;
  struct pt_solution *pt;

  /* This variable may have been collapsed, let's get the real
     variable.  */
  vi = get_varinfo (find (orig_vi->id));

  /* See if we have already computed the solution and return it.  */
  pt_solution **slot = &final_solutions->get_or_insert (vi);
  if (*slot != NULL)
    return **slot;

  *slot = pt = XOBNEW (&final_solutions_obstack, struct pt_solution);
  memset (pt, 0, sizeof (struct pt_solution));

  /* Translate artificial variables into SSA_NAME_PTR_INFO
     attributes.  */
  EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      if (vi->is_artificial_var)
	{
	  if (vi->id == nothing_id)
	    pt->null = 1;
	  else if (vi->id == escaped_id)
	    {
	      if (in_ipa_mode)
		pt->ipa_escaped = 1;
	      else
		pt->escaped = 1;
	      /* Expand some special vars of ESCAPED in-place here.  */
	      varinfo_t evi = get_varinfo (find (escaped_id));
	      if (bitmap_bit_p (evi->solution, nonlocal_id))
		pt->nonlocal = 1;
	    }
	  else if (vi->id == nonlocal_id)
	    pt->nonlocal = 1;
	  else if (vi->is_heap_var)
	    /* We represent heapvars in the points-to set properly.  */
	    ;
	  else if (vi->id == string_id)
	    /* Nobody cares - STRING_CSTs are read-only entities.  */
	    ;
	  else if (vi->id == anything_id
		   || vi->id == integer_id)
	    pt->anything = 1;
	}
    }

  /* Instead of doing extra work, simply do not create
     elaborate points-to information for pt_anything pointers.  */
  if (pt->anything)
    return *pt;

  /* Share the final set of variables when possible.  */
  finished_solution = BITMAP_GGC_ALLOC ();
  stats.points_to_sets_created++;

  set_uids_in_ptset (finished_solution, vi->solution, pt, fndecl);
  result = shared_bitmap_lookup (finished_solution);
  if (!result)
    {
      shared_bitmap_add (finished_solution);
      pt->vars = finished_solution;
    }
  else
    {
      pt->vars = result;
      bitmap_clear (finished_solution);
    }

  return *pt;
}

/* Given a pointer variable P, fill in its points-to set.  */

static void
find_what_p_points_to (tree fndecl, tree p)
{
  struct ptr_info_def *pi;
  tree lookup_p = p;
  varinfo_t vi;

  /* For parameters, get at the points-to set for the actual parm
     decl.  */
  if (TREE_CODE (p) == SSA_NAME
      && SSA_NAME_IS_DEFAULT_DEF (p)
      && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
	  || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL))
    lookup_p = SSA_NAME_VAR (p);

  vi = lookup_vi_for_tree (lookup_p);
  if (!vi)
    return;

  pi = get_ptr_info (p);
  pi->pt = find_what_var_points_to (fndecl, vi);
}


/* Query statistics for points-to solutions.  */

static struct {
  unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
  unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
  unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
  unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
} pta_stats;

void
dump_pta_stats (FILE *s)
{
  fprintf (s, "\nPTA query stats:\n");
  fprintf (s, "  pt_solution_includes: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   pta_stats.pt_solution_includes_no_alias,
	   pta_stats.pt_solution_includes_no_alias
	   + pta_stats.pt_solution_includes_may_alias);
  fprintf (s, "  pt_solutions_intersect: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   pta_stats.pt_solutions_intersect_no_alias,
	   pta_stats.pt_solutions_intersect_no_alias
	   + pta_stats.pt_solutions_intersect_may_alias);
}


/* Reset the points-to solution *PT to a conservative default
   (point to anything).  */

void
pt_solution_reset (struct pt_solution *pt)
{
  memset (pt, 0, sizeof (struct pt_solution));
  pt->anything = true;
}

/* Set the points-to solution *PT to point only to the variables
   in VARS.  VARS_CONTAINS_GLOBAL specifies whether that contains
   global variables and VARS_CONTAINS_RESTRICT specifies whether
   it contains restrict tag variables.  */

void
pt_solution_set (struct pt_solution *pt, bitmap vars,
		 bool vars_contains_nonlocal)
{
  memset (pt, 0, sizeof (struct pt_solution));
  pt->vars = vars;
  pt->vars_contains_nonlocal = vars_contains_nonlocal;
  pt->vars_contains_escaped
    = (cfun->gimple_df->escaped.anything
       || bitmap_intersect_p (cfun->gimple_df->escaped.vars, vars));
}

/* Set the points-to solution *PT to point only to the variable VAR.  */

void
pt_solution_set_var (struct pt_solution *pt, tree var)
{
  memset (pt, 0, sizeof (struct pt_solution));
  pt->vars = BITMAP_GGC_ALLOC ();
  bitmap_set_bit (pt->vars, DECL_PT_UID (var));
  pt->vars_contains_nonlocal = is_global_var (var);
  pt->vars_contains_escaped
    = (cfun->gimple_df->escaped.anything
       || bitmap_bit_p (cfun->gimple_df->escaped.vars, DECL_PT_UID (var)));
}

/* Computes the union of the points-to solutions *DEST and *SRC and
   stores the result in *DEST.  This changes the points-to bitmap
   of *DEST and thus may not be used if that might be shared.
   The points-to bitmap of *SRC and *DEST will not be shared after
   this function if they were not before.  */

static void
pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
{
  dest->anything |= src->anything;
  if (dest->anything)
    {
      pt_solution_reset (dest);
      return;
    }

  dest->nonlocal |= src->nonlocal;
  dest->escaped |= src->escaped;
  dest->ipa_escaped |= src->ipa_escaped;
  dest->null |= src->null;
  dest->vars_contains_nonlocal |= src->vars_contains_nonlocal;
  dest->vars_contains_escaped |= src->vars_contains_escaped;
  dest->vars_contains_escaped_heap |= src->vars_contains_escaped_heap;
  if (!src->vars)
    return;

  if (!dest->vars)
    dest->vars = BITMAP_GGC_ALLOC ();
  bitmap_ior_into (dest->vars, src->vars);
}

/* Return true if the points-to solution *PT is empty.  */

bool
pt_solution_empty_p (struct pt_solution *pt)
{
  if (pt->anything
      || pt->nonlocal)
    return false;

  if (pt->vars
      && !bitmap_empty_p (pt->vars))
    return false;

  /* If the solution includes ESCAPED, check if that is empty.  */
  if (pt->escaped
      && !pt_solution_empty_p (&cfun->gimple_df->escaped))
    return false;

  /* If the solution includes ESCAPED, check if that is empty.  */
  if (pt->ipa_escaped
      && !pt_solution_empty_p (&ipa_escaped_pt))
    return false;

  return true;
}

/* Return true if the points-to solution *PT only point to a single var, and
   return the var uid in *UID.  */

bool
pt_solution_singleton_p (struct pt_solution *pt, unsigned *uid)
{
  if (pt->anything || pt->nonlocal || pt->escaped || pt->ipa_escaped
      || pt->null || pt->vars == NULL
      || !bitmap_single_bit_set_p (pt->vars))
    return false;

  *uid = bitmap_first_set_bit (pt->vars);
  return true;
}

/* Return true if the points-to solution *PT includes global memory.  */

bool
pt_solution_includes_global (struct pt_solution *pt)
{
  if (pt->anything
      || pt->nonlocal
      || pt->vars_contains_nonlocal
      /* The following is a hack to make the malloc escape hack work.
         In reality we'd need different sets for escaped-through-return
	 and escaped-to-callees and passes would need to be updated.  */
      || pt->vars_contains_escaped_heap)
    return true;

  /* 'escaped' is also a placeholder so we have to look into it.  */
  if (pt->escaped)
    return pt_solution_includes_global (&cfun->gimple_df->escaped);

  if (pt->ipa_escaped)
    return pt_solution_includes_global (&ipa_escaped_pt);

  return false;
}

/* Return true if the points-to solution *PT includes the variable
   declaration DECL.  */

static bool
pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
{
  if (pt->anything)
    return true;

  if (pt->nonlocal
      && is_global_var (decl))
    return true;

  if (pt->vars
      && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
    return true;

  /* If the solution includes ESCAPED, check it.  */
  if (pt->escaped
      && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
    return true;

  /* If the solution includes ESCAPED, check it.  */
  if (pt->ipa_escaped
      && pt_solution_includes_1 (&ipa_escaped_pt, decl))
    return true;

  return false;
}

bool
pt_solution_includes (struct pt_solution *pt, const_tree decl)
{
  bool res = pt_solution_includes_1 (pt, decl);
  if (res)
    ++pta_stats.pt_solution_includes_may_alias;
  else
    ++pta_stats.pt_solution_includes_no_alias;
  return res;
}

/* Return true if both points-to solutions PT1 and PT2 have a non-empty
   intersection.  */

static bool
pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
{
  if (pt1->anything || pt2->anything)
    return true;

  /* If either points to unknown global memory and the other points to
     any global memory they alias.  */
  if ((pt1->nonlocal
       && (pt2->nonlocal
	   || pt2->vars_contains_nonlocal))
      || (pt2->nonlocal
	  && pt1->vars_contains_nonlocal))
    return true;

  /* If either points to all escaped memory and the other points to
     any escaped memory they alias.  */
  if ((pt1->escaped
       && (pt2->escaped
	   || pt2->vars_contains_escaped))
      || (pt2->escaped
	  && pt1->vars_contains_escaped))
    return true;

  /* Check the escaped solution if required.
     ???  Do we need to check the local against the IPA escaped sets?  */
  if ((pt1->ipa_escaped || pt2->ipa_escaped)
      && !pt_solution_empty_p (&ipa_escaped_pt))
    {
      /* If both point to escaped memory and that solution
	 is not empty they alias.  */
      if (pt1->ipa_escaped && pt2->ipa_escaped)
	return true;

      /* If either points to escaped memory see if the escaped solution
	 intersects with the other.  */
      if ((pt1->ipa_escaped
	   && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
	  || (pt2->ipa_escaped
	      && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
	return true;
    }

  /* Now both pointers alias if their points-to solution intersects.  */
  return (pt1->vars
	  && pt2->vars
	  && bitmap_intersect_p (pt1->vars, pt2->vars));
}

bool
pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
{
  bool res = pt_solutions_intersect_1 (pt1, pt2);
  if (res)
    ++pta_stats.pt_solutions_intersect_may_alias;
  else
    ++pta_stats.pt_solutions_intersect_no_alias;
  return res;
}


/* Dump points-to information to OUTFILE.  */

static void
dump_sa_points_to_info (FILE *outfile)
{
  unsigned int i;

  fprintf (outfile, "\nPoints-to sets\n\n");

  if (dump_flags & TDF_STATS)
    {
      fprintf (outfile, "Stats:\n");
      fprintf (outfile, "Total vars:               %d\n", stats.total_vars);
      fprintf (outfile, "Non-pointer vars:          %d\n",
	       stats.nonpointer_vars);
      fprintf (outfile, "Statically unified vars:  %d\n",
	       stats.unified_vars_static);
      fprintf (outfile, "Dynamically unified vars: %d\n",
	       stats.unified_vars_dynamic);
      fprintf (outfile, "Iterations:               %d\n", stats.iterations);
      fprintf (outfile, "Number of edges:          %d\n", stats.num_edges);
      fprintf (outfile, "Number of implicit edges: %d\n",
	       stats.num_implicit_edges);
    }

  for (i = 1; i < varmap.length (); i++)
    {
      varinfo_t vi = get_varinfo (i);
      if (!vi->may_have_pointers)
	continue;
      dump_solution_for_var (outfile, i);
    }
}


/* Debug points-to information to stderr.  */

DEBUG_FUNCTION void
debug_sa_points_to_info (void)
{
  dump_sa_points_to_info (stderr);
}


/* Initialize the always-existing constraint variables for NULL
   ANYTHING, READONLY, and INTEGER */

static void
init_base_vars (void)
{
  struct constraint_expr lhs, rhs;
  varinfo_t var_anything;
  varinfo_t var_nothing;
  varinfo_t var_string;
  varinfo_t var_escaped;
  varinfo_t var_nonlocal;
  varinfo_t var_storedanything;
  varinfo_t var_integer;

  /* Variable ID zero is reserved and should be NULL.  */
  varmap.safe_push (NULL);

  /* Create the NULL variable, used to represent that a variable points
     to NULL.  */
  var_nothing = new_var_info (NULL_TREE, "NULL", false);
  gcc_assert (var_nothing->id == nothing_id);
  var_nothing->is_artificial_var = 1;
  var_nothing->offset = 0;
  var_nothing->size = ~0;
  var_nothing->fullsize = ~0;
  var_nothing->is_special_var = 1;
  var_nothing->may_have_pointers = 0;
  var_nothing->is_global_var = 0;

  /* Create the ANYTHING variable, used to represent that a variable
     points to some unknown piece of memory.  */
  var_anything = new_var_info (NULL_TREE, "ANYTHING", false);
  gcc_assert (var_anything->id == anything_id);
  var_anything->is_artificial_var = 1;
  var_anything->size = ~0;
  var_anything->offset = 0;
  var_anything->fullsize = ~0;
  var_anything->is_special_var = 1;

  /* Anything points to anything.  This makes deref constraints just
     work in the presence of linked list and other p = *p type loops,
     by saying that *ANYTHING = ANYTHING. */
  lhs.type = SCALAR;
  lhs.var = anything_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = anything_id;
  rhs.offset = 0;

  /* This specifically does not use process_constraint because
     process_constraint ignores all anything = anything constraints, since all
     but this one are redundant.  */
  constraints.safe_push (new_constraint (lhs, rhs));

  /* Create the STRING variable, used to represent that a variable
     points to a string literal.  String literals don't contain
     pointers so STRING doesn't point to anything.  */
  var_string = new_var_info (NULL_TREE, "STRING", false);
  gcc_assert (var_string->id == string_id);
  var_string->is_artificial_var = 1;
  var_string->offset = 0;
  var_string->size = ~0;
  var_string->fullsize = ~0;
  var_string->is_special_var = 1;
  var_string->may_have_pointers = 0;

  /* Create the ESCAPED variable, used to represent the set of escaped
     memory.  */
  var_escaped = new_var_info (NULL_TREE, "ESCAPED", false);
  gcc_assert (var_escaped->id == escaped_id);
  var_escaped->is_artificial_var = 1;
  var_escaped->offset = 0;
  var_escaped->size = ~0;
  var_escaped->fullsize = ~0;
  var_escaped->is_special_var = 0;

  /* Create the NONLOCAL variable, used to represent the set of nonlocal
     memory.  */
  var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL", false);
  gcc_assert (var_nonlocal->id == nonlocal_id);
  var_nonlocal->is_artificial_var = 1;
  var_nonlocal->offset = 0;
  var_nonlocal->size = ~0;
  var_nonlocal->fullsize = ~0;
  var_nonlocal->is_special_var = 1;

  /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc.  */
  lhs.type = SCALAR;
  lhs.var = escaped_id;
  lhs.offset = 0;
  rhs.type = DEREF;
  rhs.var = escaped_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));

  /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
     whole variable escapes.  */
  lhs.type = SCALAR;
  lhs.var = escaped_id;
  lhs.offset = 0;
  rhs.type = SCALAR;
  rhs.var = escaped_id;
  rhs.offset = UNKNOWN_OFFSET;
  process_constraint (new_constraint (lhs, rhs));

  /* *ESCAPED = NONLOCAL.  This is true because we have to assume
     everything pointed to by escaped points to what global memory can
     point to.  */
  lhs.type = DEREF;
  lhs.var = escaped_id;
  lhs.offset = 0;
  rhs.type = SCALAR;
  rhs.var = nonlocal_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));

  /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED.  This is true because
     global memory may point to global memory and escaped memory.  */
  lhs.type = SCALAR;
  lhs.var = nonlocal_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = nonlocal_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));
  rhs.type = ADDRESSOF;
  rhs.var = escaped_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));

  /* Create the STOREDANYTHING variable, used to represent the set of
     variables stored to *ANYTHING.  */
  var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING", false);
  gcc_assert (var_storedanything->id == storedanything_id);
  var_storedanything->is_artificial_var = 1;
  var_storedanything->offset = 0;
  var_storedanything->size = ~0;
  var_storedanything->fullsize = ~0;
  var_storedanything->is_special_var = 0;

  /* Create the INTEGER variable, used to represent that a variable points
     to what an INTEGER "points to".  */
  var_integer = new_var_info (NULL_TREE, "INTEGER", false);
  gcc_assert (var_integer->id == integer_id);
  var_integer->is_artificial_var = 1;
  var_integer->size = ~0;
  var_integer->fullsize = ~0;
  var_integer->offset = 0;
  var_integer->is_special_var = 1;

  /* INTEGER = ANYTHING, because we don't know where a dereference of
     a random integer will point to.  */
  lhs.type = SCALAR;
  lhs.var = integer_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = anything_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));
}

/* Initialize things necessary to perform PTA */

static void
init_alias_vars (void)
{
  use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);

  bitmap_obstack_initialize (&pta_obstack);
  bitmap_obstack_initialize (&oldpta_obstack);
  bitmap_obstack_initialize (&predbitmap_obstack);

  constraints.create (8);
  varmap.create (8);
  vi_for_tree = new hash_map<tree, varinfo_t>;
  call_stmt_vars = new hash_map<gimple *, varinfo_t>;

  memset (&stats, 0, sizeof (stats));
  shared_bitmap_table = new hash_table<shared_bitmap_hasher> (511);
  init_base_vars ();

  gcc_obstack_init (&fake_var_decl_obstack);

  final_solutions = new hash_map<varinfo_t, pt_solution *>;
  gcc_obstack_init (&final_solutions_obstack);
}

/* Remove the REF and ADDRESS edges from GRAPH, as well as all the
   predecessor edges.  */

static void
remove_preds_and_fake_succs (constraint_graph_t graph)
{
  unsigned int i;

  /* Clear the implicit ref and address nodes from the successor
     lists.  */
  for (i = 1; i < FIRST_REF_NODE; i++)
    {
      if (graph->succs[i])
	bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
			    FIRST_REF_NODE * 2);
    }

  /* Free the successor list for the non-ref nodes.  */
  for (i = FIRST_REF_NODE + 1; i < graph->size; i++)
    {
      if (graph->succs[i])
	BITMAP_FREE (graph->succs[i]);
    }

  /* Now reallocate the size of the successor list as, and blow away
     the predecessor bitmaps.  */
  graph->size = varmap.length ();
  graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);

  free (graph->implicit_preds);
  graph->implicit_preds = NULL;
  free (graph->preds);
  graph->preds = NULL;
  bitmap_obstack_release (&predbitmap_obstack);
}

/* Solve the constraint set.  */

static void
solve_constraints (void)
{
  struct scc_info *si;

  if (dump_file)
    fprintf (dump_file,
	     "\nCollapsing static cycles and doing variable "
	     "substitution\n");

  init_graph (varmap.length () * 2);

  if (dump_file)
    fprintf (dump_file, "Building predecessor graph\n");
  build_pred_graph ();

  if (dump_file)
    fprintf (dump_file, "Detecting pointer and location "
	     "equivalences\n");
  si = perform_var_substitution (graph);

  if (dump_file)
    fprintf (dump_file, "Rewriting constraints and unifying "
	     "variables\n");
  rewrite_constraints (graph, si);

  build_succ_graph ();

  free_var_substitution_info (si);

  /* Attach complex constraints to graph nodes.  */
  move_complex_constraints (graph);

  if (dump_file)
    fprintf (dump_file, "Uniting pointer but not location equivalent "
	     "variables\n");
  unite_pointer_equivalences (graph);

  if (dump_file)
    fprintf (dump_file, "Finding indirect cycles\n");
  find_indirect_cycles (graph);

  /* Implicit nodes and predecessors are no longer necessary at this
     point. */
  remove_preds_and_fake_succs (graph);

  if (dump_file && (dump_flags & TDF_GRAPH))
    {
      fprintf (dump_file, "\n\n// The constraint graph before solve-graph "
	       "in dot format:\n");
      dump_constraint_graph (dump_file);
      fprintf (dump_file, "\n\n");
    }

  if (dump_file)
    fprintf (dump_file, "Solving graph\n");

  solve_graph (graph);

  if (dump_file && (dump_flags & TDF_GRAPH))
    {
      fprintf (dump_file, "\n\n// The constraint graph after solve-graph "
	       "in dot format:\n");
      dump_constraint_graph (dump_file);
      fprintf (dump_file, "\n\n");
    }

  if (dump_file)
    dump_sa_points_to_info (dump_file);
}

/* Create points-to sets for the current function.  See the comments
   at the start of the file for an algorithmic overview.  */

static void
compute_points_to_sets (void)
{
  basic_block bb;
  unsigned i;
  varinfo_t vi;

  timevar_push (TV_TREE_PTA);

  init_alias_vars ();

  intra_create_variable_infos (cfun);

  /* Now walk all statements and build the constraint set.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
	   gsi_next (&gsi))
	{
	  gphi *phi = gsi.phi ();

	  if (! virtual_operand_p (gimple_phi_result (phi)))
	    find_func_aliases (cfun, phi);
	}

      for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
	   gsi_next (&gsi))
	{
	  gimple *stmt = gsi_stmt (gsi);

	  find_func_aliases (cfun, stmt);
	}
    }

  if (dump_file)
    {
      fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
      dump_constraints (dump_file, 0);
    }

  /* From the constraints compute the points-to sets.  */
  solve_constraints ();

  /* Compute the points-to set for ESCAPED used for call-clobber analysis.  */
  cfun->gimple_df->escaped = find_what_var_points_to (cfun->decl,
						      get_varinfo (escaped_id));

  /* Make sure the ESCAPED solution (which is used as placeholder in
     other solutions) does not reference itself.  This simplifies
     points-to solution queries.  */
  cfun->gimple_df->escaped.escaped = 0;

  /* Compute the points-to sets for pointer SSA_NAMEs.  */
  for (i = 0; i < num_ssa_names; ++i)
    {
      tree ptr = ssa_name (i);
      if (ptr
	  && POINTER_TYPE_P (TREE_TYPE (ptr)))
	find_what_p_points_to (cfun->decl, ptr);
    }

  /* Compute the call-used/clobbered sets.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator gsi;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gcall *stmt;
	  struct pt_solution *pt;

	  stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
	  if (!stmt)
	    continue;

	  pt = gimple_call_use_set (stmt);
	  if (gimple_call_flags (stmt) & ECF_CONST)
	    memset (pt, 0, sizeof (struct pt_solution));
	  else if ((vi = lookup_call_use_vi (stmt)) != NULL)
	    {
	      *pt = find_what_var_points_to (cfun->decl, vi);
	      /* Escaped (and thus nonlocal) variables are always
	         implicitly used by calls.  */
	      /* ???  ESCAPED can be empty even though NONLOCAL
		 always escaped.  */
	      pt->nonlocal = 1;
	      pt->escaped = 1;
	    }
	  else
	    {
	      /* If there is nothing special about this call then
		 we have made everything that is used also escape.  */
	      *pt = cfun->gimple_df->escaped;
	      pt->nonlocal = 1;
	    }

	  pt = gimple_call_clobber_set (stmt);
	  if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
	    memset (pt, 0, sizeof (struct pt_solution));
	  else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
	    {
	      *pt = find_what_var_points_to (cfun->decl, vi);
	      /* Escaped (and thus nonlocal) variables are always
	         implicitly clobbered by calls.  */
	      /* ???  ESCAPED can be empty even though NONLOCAL
		 always escaped.  */
	      pt->nonlocal = 1;
	      pt->escaped = 1;
	    }
	  else
	    {
	      /* If there is nothing special about this call then
		 we have made everything that is used also escape.  */
	      *pt = cfun->gimple_df->escaped;
	      pt->nonlocal = 1;
	    }
	}
    }

  timevar_pop (TV_TREE_PTA);
}


/* Delete created points-to sets.  */

static void
delete_points_to_sets (void)
{
  unsigned int i;

  delete shared_bitmap_table;
  shared_bitmap_table = NULL;
  if (dump_file && (dump_flags & TDF_STATS))
    fprintf (dump_file, "Points to sets created:%d\n",
	     stats.points_to_sets_created);

  delete vi_for_tree;
  delete call_stmt_vars;
  bitmap_obstack_release (&pta_obstack);
  constraints.release ();

  for (i = 0; i < graph->size; i++)
    graph->complex[i].release ();
  free (graph->complex);

  free (graph->rep);
  free (graph->succs);
  free (graph->pe);
  free (graph->pe_rep);
  free (graph->indirect_cycles);
  free (graph);

  varmap.release ();
  variable_info_pool.release ();
  constraint_pool.release ();

  obstack_free (&fake_var_decl_obstack, NULL);

  delete final_solutions;
  obstack_free (&final_solutions_obstack, NULL);
}

struct vls_data
{
  unsigned short clique;
  bitmap rvars;
};

/* Mark "other" loads and stores as belonging to CLIQUE and with
   base zero.  */

static bool
visit_loadstore (gimple *, tree base, tree ref, void *data)
{
  unsigned short clique = ((vls_data *) data)->clique;
  bitmap rvars = ((vls_data *) data)->rvars;
  if (TREE_CODE (base) == MEM_REF
      || TREE_CODE (base) == TARGET_MEM_REF)
    {
      tree ptr = TREE_OPERAND (base, 0);
      if (TREE_CODE (ptr) == SSA_NAME
	  && ! SSA_NAME_IS_DEFAULT_DEF (ptr))
	{
	  /* We need to make sure 'ptr' doesn't include any of
	     the restrict tags we added bases for in its points-to set.  */
	  varinfo_t vi = lookup_vi_for_tree (ptr);
	  if (! vi)
	    return false;

	  vi = get_varinfo (find (vi->id));
	  if (bitmap_intersect_p (rvars, vi->solution))
	    return false;
	}

      /* Do not overwrite existing cliques (that includes clique, base
         pairs we just set).  */
      if (MR_DEPENDENCE_CLIQUE (base) == 0)
	{
	  MR_DEPENDENCE_CLIQUE (base) = clique;
	  MR_DEPENDENCE_BASE (base) = 0;
	}
    }

  /* For plain decl accesses see whether they are accesses to globals
     and rewrite them to MEM_REFs with { clique, 0 }.  */
  if (TREE_CODE (base) == VAR_DECL
      && is_global_var (base)
      /* ???  We can't rewrite a plain decl with the walk_stmt_load_store
	 ops callback.  */
      && base != ref)
    {
      tree *basep = &ref;
      while (handled_component_p (*basep))
	basep = &TREE_OPERAND (*basep, 0);
      gcc_assert (TREE_CODE (*basep) == VAR_DECL);
      tree ptr = build_fold_addr_expr (*basep);
      tree zero = build_int_cst (TREE_TYPE (ptr), 0);
      *basep = build2 (MEM_REF, TREE_TYPE (*basep), ptr, zero);
      MR_DEPENDENCE_CLIQUE (*basep) = clique;
      MR_DEPENDENCE_BASE (*basep) = 0;
    }

  return false;
}

/* If REF is a MEM_REF then assign a clique, base pair to it, updating
   CLIQUE, *RESTRICT_VAR and LAST_RUID.  Return whether dependence info
   was assigned to REF.  */

static bool
maybe_set_dependence_info (tree ref, tree ptr,
			   unsigned short &clique, varinfo_t restrict_var,
			   unsigned short &last_ruid)
{
  while (handled_component_p (ref))
    ref = TREE_OPERAND (ref, 0);
  if ((TREE_CODE (ref) == MEM_REF
       || TREE_CODE (ref) == TARGET_MEM_REF)
      && TREE_OPERAND (ref, 0) == ptr)
    {
      /* Do not overwrite existing cliques.  This avoids overwriting dependence
	 info inlined from a function with restrict parameters inlined
	 into a function with restrict parameters.  This usually means we
	 prefer to be precise in innermost loops.  */
      if (MR_DEPENDENCE_CLIQUE (ref) == 0)
	{
	  if (clique == 0)
	    clique = ++cfun->last_clique;
	  if (restrict_var->ruid == 0)
	    restrict_var->ruid = ++last_ruid;
	  MR_DEPENDENCE_CLIQUE (ref) = clique;
	  MR_DEPENDENCE_BASE (ref) = restrict_var->ruid;
	  return true;
	}
    }
  return false;
}

/* Compute the set of independend memory references based on restrict
   tags and their conservative propagation to the points-to sets.  */

static void
compute_dependence_clique (void)
{
  unsigned short clique = 0;
  unsigned short last_ruid = 0;
  bitmap rvars = BITMAP_ALLOC (NULL);
  for (unsigned i = 0; i < num_ssa_names; ++i)
    {
      tree ptr = ssa_name (i);
      if (!ptr || !POINTER_TYPE_P (TREE_TYPE (ptr)))
	continue;

      /* Avoid all this when ptr is not dereferenced?  */
      tree p = ptr;
      if (SSA_NAME_IS_DEFAULT_DEF (ptr)
	  && (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
	      || TREE_CODE (SSA_NAME_VAR (ptr)) == RESULT_DECL))
	p = SSA_NAME_VAR (ptr);
      varinfo_t vi = lookup_vi_for_tree (p);
      if (!vi)
	continue;
      vi = get_varinfo (find (vi->id));
      bitmap_iterator bi;
      unsigned j;
      varinfo_t restrict_var = NULL;
      EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, j, bi)
	{
	  varinfo_t oi = get_varinfo (j);
	  if (oi->is_restrict_var)
	    {
	      if (restrict_var)
		{
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    {
		      fprintf (dump_file, "found restrict pointed-to "
			       "for ");
		      print_generic_expr (dump_file, ptr, 0);
		      fprintf (dump_file, " but not exclusively\n");
		    }
		  restrict_var = NULL;
		  break;
		}
	      restrict_var = oi;
	    }
	  /* NULL is the only other valid points-to entry.  */
	  else if (oi->id != nothing_id)
	    {
	      restrict_var = NULL;
	      break;
	    }
	}
      /* Ok, found that ptr must(!) point to a single(!) restrict
	 variable.  */
      /* ???  PTA isn't really a proper propagation engine to compute
	 this property.
	 ???  We could handle merging of two restricts by unifying them.  */
      if (restrict_var)
	{
	  /* Now look at possible dereferences of ptr.  */
	  imm_use_iterator ui;
	  gimple *use_stmt;
	  bool used = false;
	  FOR_EACH_IMM_USE_STMT (use_stmt, ui, ptr)
	    {
	      /* ???  Calls and asms.  */
	      if (!gimple_assign_single_p (use_stmt))
		continue;
	      used |= maybe_set_dependence_info (gimple_assign_lhs (use_stmt),
						 ptr, clique, restrict_var,
						 last_ruid);
	      used |= maybe_set_dependence_info (gimple_assign_rhs1 (use_stmt),
						 ptr, clique, restrict_var,
						 last_ruid);
	    }
	  if (used)
	    bitmap_set_bit (rvars, restrict_var->id);
	}
    }

  if (clique != 0)
    {
      /* Assign the BASE id zero to all accesses not based on a restrict
	 pointer.  That way they get disambiguated against restrict
	 accesses but not against each other.  */
      /* ???  For restricts derived from globals (thus not incoming
	 parameters) we can't restrict scoping properly thus the following
	 is too aggressive there.  For now we have excluded those globals from
	 getting into the MR_DEPENDENCE machinery.  */
      vls_data data = { clique, rvars };
      basic_block bb;
      FOR_EACH_BB_FN (bb, cfun)
	for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
	     !gsi_end_p (gsi); gsi_next (&gsi))
	  {
	    gimple *stmt = gsi_stmt (gsi);
	    walk_stmt_load_store_ops (stmt, &data,
				      visit_loadstore, visit_loadstore);
	  }
    }

  BITMAP_FREE (rvars);
}

/* Compute points-to information for every SSA_NAME pointer in the
   current function and compute the transitive closure of escaped
   variables to re-initialize the call-clobber states of local variables.  */

unsigned int
compute_may_aliases (void)
{
  if (cfun->gimple_df->ipa_pta)
    {
      if (dump_file)
	{
	  fprintf (dump_file, "\nNot re-computing points-to information "
		   "because IPA points-to information is available.\n\n");

	  /* But still dump what we have remaining it.  */
	  dump_alias_info (dump_file);
	}

      return 0;
    }

  /* For each pointer P_i, determine the sets of variables that P_i may
     point-to.  Compute the reachability set of escaped and call-used
     variables.  */
  compute_points_to_sets ();

  /* Debugging dumps.  */
  if (dump_file)
    dump_alias_info (dump_file);

  /* Compute restrict-based memory disambiguations.  */
  compute_dependence_clique ();

  /* Deallocate memory used by aliasing data structures and the internal
     points-to solution.  */
  delete_points_to_sets ();

  gcc_assert (!need_ssa_update_p (cfun));

  return 0;
}

/* A dummy pass to cause points-to information to be computed via
   TODO_rebuild_alias.  */

namespace {

const pass_data pass_data_build_alias =
{
  GIMPLE_PASS, /* type */
  "alias", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_rebuild_alias, /* todo_flags_finish */
};

class pass_build_alias : public gimple_opt_pass
{
public:
  pass_build_alias (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_build_alias, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *) { return flag_tree_pta; }

}; // class pass_build_alias

} // anon namespace

gimple_opt_pass *
make_pass_build_alias (gcc::context *ctxt)
{
  return new pass_build_alias (ctxt);
}

/* A dummy pass to cause points-to information to be computed via
   TODO_rebuild_alias.  */

namespace {

const pass_data pass_data_build_ealias =
{
  GIMPLE_PASS, /* type */
  "ealias", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_rebuild_alias, /* todo_flags_finish */
};

class pass_build_ealias : public gimple_opt_pass
{
public:
  pass_build_ealias (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_build_ealias, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *) { return flag_tree_pta; }

}; // class pass_build_ealias

} // anon namespace

gimple_opt_pass *
make_pass_build_ealias (gcc::context *ctxt)
{
  return new pass_build_ealias (ctxt);
}


/* IPA PTA solutions for ESCAPED.  */
struct pt_solution ipa_escaped_pt
  = { true, false, false, false, false, false, false, false, false, NULL };

/* Associate node with varinfo DATA. Worker for
   cgraph_for_symbol_thunks_and_aliases.  */
static bool
associate_varinfo_to_alias (struct cgraph_node *node, void *data)
{
  if ((node->alias || node->thunk.thunk_p)
      && node->analyzed)
    insert_vi_for_tree (node->decl, (varinfo_t)data);
  return false;
}

/* Dump varinfo VI to FILE.  */

static void
dump_varinfo (FILE *file, varinfo_t vi)
{
  if (vi == NULL)
    return;

  fprintf (file, "%u: %s\n", vi->id, vi->name);

  const char *sep = " ";
  if (vi->is_artificial_var)
    fprintf (file, "%sartificial", sep);
  if (vi->is_special_var)
    fprintf (file, "%sspecial", sep);
  if (vi->is_unknown_size_var)
    fprintf (file, "%sunknown-size", sep);
  if (vi->is_full_var)
    fprintf (file, "%sfull", sep);
  if (vi->is_heap_var)
    fprintf (file, "%sheap", sep);
  if (vi->may_have_pointers)
    fprintf (file, "%smay-have-pointers", sep);
  if (vi->only_restrict_pointers)
    fprintf (file, "%sonly-restrict-pointers", sep);
  if (vi->is_restrict_var)
    fprintf (file, "%sis-restrict-var", sep);
  if (vi->is_global_var)
    fprintf (file, "%sglobal", sep);
  if (vi->is_ipa_escape_point)
    fprintf (file, "%sipa-escape-point", sep);
  if (vi->is_fn_info)
    fprintf (file, "%sfn-info", sep);
  if (vi->ruid)
    fprintf (file, "%srestrict-uid:%u", sep, vi->ruid);
  if (vi->next)
    fprintf (file, "%snext:%u", sep, vi->next);
  if (vi->head != vi->id)
    fprintf (file, "%shead:%u", sep, vi->head);
  if (vi->offset)
    fprintf (file, "%soffset:" HOST_WIDE_INT_PRINT_DEC, sep, vi->offset);
  if (vi->size != ~(unsigned HOST_WIDE_INT)0)
    fprintf (file, "%ssize:" HOST_WIDE_INT_PRINT_DEC, sep, vi->size);
  if (vi->fullsize != ~(unsigned HOST_WIDE_INT)0
      && vi->fullsize != vi->size)
    fprintf (file, "%sfullsize:" HOST_WIDE_INT_PRINT_DEC, sep,
	     vi->fullsize);
  fprintf (file, "\n");

  if (vi->solution && !bitmap_empty_p (vi->solution))
    {
      bitmap_iterator bi;
      unsigned i;
      fprintf (file, " solution: {");
      EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
	fprintf (file, " %u", i);
      fprintf (file, " }\n");
    }

  if (vi->oldsolution && !bitmap_empty_p (vi->oldsolution)
      && !bitmap_equal_p (vi->solution, vi->oldsolution))
    {
      bitmap_iterator bi;
      unsigned i;
      fprintf (file, " oldsolution: {");
      EXECUTE_IF_SET_IN_BITMAP (vi->oldsolution, 0, i, bi)
	fprintf (file, " %u", i);
      fprintf (file, " }\n");
    }
}

/* Dump varinfo VI to stderr.  */

DEBUG_FUNCTION void
debug_varinfo (varinfo_t vi)
{
  dump_varinfo (stderr, vi);
}

/* Dump varmap to FILE.  */

static void
dump_varmap (FILE *file)
{
  if (varmap.length () == 0)
    return;

  fprintf (file, "variables:\n");

  for (unsigned int i = 0; i < varmap.length (); ++i)
    {
      varinfo_t vi = get_varinfo (i);
      dump_varinfo (file, vi);
    }

  fprintf (file, "\n");
}

/* Dump varmap to stderr.  */

DEBUG_FUNCTION void
debug_varmap (void)
{
  dump_varmap (stderr);
}

/* Compute whether node is refered to non-locally.  Worker for
   cgraph_for_symbol_thunks_and_aliases.  */
static bool
refered_from_nonlocal_fn (struct cgraph_node *node, void *data)
{
  bool *nonlocal_p = (bool *)data;
  *nonlocal_p |= (node->used_from_other_partition
		  || node->externally_visible
		  || node->force_output);
  return false;
}

/* Same for varpool nodes.  */
static bool
refered_from_nonlocal_var (struct varpool_node *node, void *data)
{
  bool *nonlocal_p = (bool *)data;
  *nonlocal_p |= (node->used_from_other_partition
		  || node->externally_visible
		  || node->force_output);
  return false;
}

/* Execute the driver for IPA PTA.  */
static unsigned int
ipa_pta_execute (void)
{
  struct cgraph_node *node;
  varpool_node *var;
  unsigned int from = 0;

  in_ipa_mode = 1;

  init_alias_vars ();

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      symtab_node::dump_table (dump_file);
      fprintf (dump_file, "\n");
    }

  if (dump_file)
    {
      fprintf (dump_file, "Generating generic constraints\n\n");
      dump_constraints (dump_file, from);
      fprintf (dump_file, "\n");
      from = constraints.length ();
    }

  /* Build the constraints.  */
  FOR_EACH_DEFINED_FUNCTION (node)
    {
      varinfo_t vi;
      /* Nodes without a body are not interesting.  Especially do not
         visit clones at this point for now - we get duplicate decls
	 there for inline clones at least.  */
      if (!node->has_gimple_body_p () || node->global.inlined_to)
	continue;
      node->get_body ();

      gcc_assert (!node->clone_of);

      /* For externally visible or attribute used annotated functions use
	 local constraints for their arguments.
	 For local functions we see all callers and thus do not need initial
	 constraints for parameters.  */
      bool nonlocal_p = (node->used_from_other_partition
			 || node->externally_visible
			 || node->force_output);
      node->call_for_symbol_thunks_and_aliases (refered_from_nonlocal_fn,
						&nonlocal_p, true);

      vi = create_function_info_for (node->decl,
				     alias_get_name (node->decl), false,
				     nonlocal_p);
      if (dump_file
	  && from != constraints.length ())
	{
	  fprintf (dump_file,
		   "Generating intial constraints for %s", node->name ());
	  if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
	    fprintf (dump_file, " (%s)",
		     IDENTIFIER_POINTER
		       (DECL_ASSEMBLER_NAME (node->decl)));
	  fprintf (dump_file, "\n\n");
	  dump_constraints (dump_file, from);
	  fprintf (dump_file, "\n");

	  from = constraints.length ();
	}

      node->call_for_symbol_thunks_and_aliases
	(associate_varinfo_to_alias, vi, true);
    }

  /* Create constraints for global variables and their initializers.  */
  FOR_EACH_VARIABLE (var)
    {
      if (var->alias && var->analyzed)
	continue;

      varinfo_t vi = get_vi_for_tree (var->decl);

      /* For the purpose of IPA PTA unit-local globals are not
         escape points.  */
      bool nonlocal_p = (var->used_from_other_partition
			 || var->externally_visible
			 || var->force_output);
      var->call_for_symbol_and_aliases (refered_from_nonlocal_var,
					&nonlocal_p, true);
      if (nonlocal_p)
	vi->is_ipa_escape_point = true;
    }

  if (dump_file
      && from != constraints.length ())
    {
      fprintf (dump_file,
	       "Generating constraints for global initializers\n\n");
      dump_constraints (dump_file, from);
      fprintf (dump_file, "\n");
      from = constraints.length ();
    }

  FOR_EACH_DEFINED_FUNCTION (node)
    {
      struct function *func;
      basic_block bb;

      /* Nodes without a body are not interesting.  */
      if (!node->has_gimple_body_p () || node->clone_of)
	continue;

      if (dump_file)
	{
	  fprintf (dump_file,
		   "Generating constraints for %s", node->name ());
	  if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
	    fprintf (dump_file, " (%s)",
		     IDENTIFIER_POINTER
		       (DECL_ASSEMBLER_NAME (node->decl)));
	  fprintf (dump_file, "\n");
	}

      func = DECL_STRUCT_FUNCTION (node->decl);
      gcc_assert (cfun == NULL);

      /* Build constriants for the function body.  */
      FOR_EACH_BB_FN (bb, func)
	{
	  for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
	       gsi_next (&gsi))
	    {
	      gphi *phi = gsi.phi ();

	      if (! virtual_operand_p (gimple_phi_result (phi)))
		find_func_aliases (func, phi);
	    }

	  for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
	       gsi_next (&gsi))
	    {
	      gimple *stmt = gsi_stmt (gsi);

	      find_func_aliases (func, stmt);
	      find_func_clobbers (func, stmt);
	    }
	}

      if (dump_file)
	{
	  fprintf (dump_file, "\n");
	  dump_constraints (dump_file, from);
	  fprintf (dump_file, "\n");
	  from = constraints.length ();
	}
    }

  /* From the constraints compute the points-to sets.  */
  solve_constraints ();

  /* Compute the global points-to sets for ESCAPED.
     ???  Note that the computed escape set is not correct
     for the whole unit as we fail to consider graph edges to
     externally visible functions.  */
  ipa_escaped_pt = find_what_var_points_to (NULL, get_varinfo (escaped_id));

  /* Make sure the ESCAPED solution (which is used as placeholder in
     other solutions) does not reference itself.  This simplifies
     points-to solution queries.  */
  ipa_escaped_pt.ipa_escaped = 0;

  /* Assign the points-to sets to the SSA names in the unit.  */
  FOR_EACH_DEFINED_FUNCTION (node)
    {
      tree ptr;
      struct function *fn;
      unsigned i;
      basic_block bb;

      /* Nodes without a body are not interesting.  */
      if (!node->has_gimple_body_p () || node->clone_of)
	continue;

      fn = DECL_STRUCT_FUNCTION (node->decl);

      /* Compute the points-to sets for pointer SSA_NAMEs.  */
      FOR_EACH_VEC_ELT (*fn->gimple_df->ssa_names, i, ptr)
	{
	  if (ptr
	      && POINTER_TYPE_P (TREE_TYPE (ptr)))
	    find_what_p_points_to (node->decl, ptr);
	}

      /* Compute the call-use and call-clobber sets for indirect calls
	 and calls to external functions.  */
      FOR_EACH_BB_FN (bb, fn)
	{
	  gimple_stmt_iterator gsi;

	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	    {
	      gcall *stmt;
	      struct pt_solution *pt;
	      varinfo_t vi, fi;
	      tree decl;

	      stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
	      if (!stmt)
		continue;

	      /* Handle direct calls to functions with body.  */
	      decl = gimple_call_fndecl (stmt);

	      {
		tree called_decl = NULL_TREE;
		if (gimple_call_builtin_p (stmt, BUILT_IN_GOMP_PARALLEL))
		  called_decl = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
		else if (gimple_call_builtin_p (stmt, BUILT_IN_GOACC_PARALLEL))
		  called_decl = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);

		if (called_decl != NULL_TREE
		    && !fndecl_maybe_in_other_partition (called_decl))
		  decl = called_decl;
	      }

	      if (decl
		  && (fi = lookup_vi_for_tree (decl))
		  && fi->is_fn_info)
		{
		  *gimple_call_clobber_set (stmt)
		     = find_what_var_points_to
		         (node->decl, first_vi_for_offset (fi, fi_clobbers));
		  *gimple_call_use_set (stmt)
		     = find_what_var_points_to
		         (node->decl, first_vi_for_offset (fi, fi_uses));
		}
	      /* Handle direct calls to external functions.  */
	      else if (decl)
		{
		  pt = gimple_call_use_set (stmt);
		  if (gimple_call_flags (stmt) & ECF_CONST)
		    memset (pt, 0, sizeof (struct pt_solution));
		  else if ((vi = lookup_call_use_vi (stmt)) != NULL)
		    {
		      *pt = find_what_var_points_to (node->decl, vi);
		      /* Escaped (and thus nonlocal) variables are always
			 implicitly used by calls.  */
		      /* ???  ESCAPED can be empty even though NONLOCAL
			 always escaped.  */
		      pt->nonlocal = 1;
		      pt->ipa_escaped = 1;
		    }
		  else
		    {
		      /* If there is nothing special about this call then
			 we have made everything that is used also escape.  */
		      *pt = ipa_escaped_pt;
		      pt->nonlocal = 1;
		    }

		  pt = gimple_call_clobber_set (stmt);
		  if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
		    memset (pt, 0, sizeof (struct pt_solution));
		  else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
		    {
		      *pt = find_what_var_points_to (node->decl, vi);
		      /* Escaped (and thus nonlocal) variables are always
			 implicitly clobbered by calls.  */
		      /* ???  ESCAPED can be empty even though NONLOCAL
			 always escaped.  */
		      pt->nonlocal = 1;
		      pt->ipa_escaped = 1;
		    }
		  else
		    {
		      /* If there is nothing special about this call then
			 we have made everything that is used also escape.  */
		      *pt = ipa_escaped_pt;
		      pt->nonlocal = 1;
		    }
		}
	      /* Handle indirect calls.  */
	      else if (!decl
		       && (fi = get_fi_for_callee (stmt)))
		{
		  /* We need to accumulate all clobbers/uses of all possible
		     callees.  */
		  fi = get_varinfo (find (fi->id));
		  /* If we cannot constrain the set of functions we'll end up
		     calling we end up using/clobbering everything.  */
		  if (bitmap_bit_p (fi->solution, anything_id)
		      || bitmap_bit_p (fi->solution, nonlocal_id)
		      || bitmap_bit_p (fi->solution, escaped_id))
		    {
		      pt_solution_reset (gimple_call_clobber_set (stmt));
		      pt_solution_reset (gimple_call_use_set (stmt));
		    }
		  else
		    {
		      bitmap_iterator bi;
		      unsigned i;
		      struct pt_solution *uses, *clobbers;

		      uses = gimple_call_use_set (stmt);
		      clobbers = gimple_call_clobber_set (stmt);
		      memset (uses, 0, sizeof (struct pt_solution));
		      memset (clobbers, 0, sizeof (struct pt_solution));
		      EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
			{
			  struct pt_solution sol;

			  vi = get_varinfo (i);
			  if (!vi->is_fn_info)
			    {
			      /* ???  We could be more precise here?  */
			      uses->nonlocal = 1;
			      uses->ipa_escaped = 1;
			      clobbers->nonlocal = 1;
			      clobbers->ipa_escaped = 1;
			      continue;
			    }

			  if (!uses->anything)
			    {
			      sol = find_what_var_points_to
				      (node->decl,
				       first_vi_for_offset (vi, fi_uses));
			      pt_solution_ior_into (uses, &sol);
			    }
			  if (!clobbers->anything)
			    {
			      sol = find_what_var_points_to
				      (node->decl,
				       first_vi_for_offset (vi, fi_clobbers));
			      pt_solution_ior_into (clobbers, &sol);
			    }
			}
		    }
		}
	    }
	}

      fn->gimple_df->ipa_pta = true;

      /* We have to re-set the final-solution cache after each function
         because what is a "global" is dependent on function context.  */
      final_solutions->empty ();
      obstack_free (&final_solutions_obstack, NULL);
      gcc_obstack_init (&final_solutions_obstack);
    }

  delete_points_to_sets ();

  in_ipa_mode = 0;

  return 0;
}

namespace {

const pass_data pass_data_ipa_pta =
{
  SIMPLE_IPA_PASS, /* type */
  "pta", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_IPA_PTA, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_ipa_pta : public simple_ipa_opt_pass
{
public:
  pass_ipa_pta (gcc::context *ctxt)
    : simple_ipa_opt_pass (pass_data_ipa_pta, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
    {
      return (optimize
	      && flag_ipa_pta
	      /* Don't bother doing anything if the program has errors.  */
	      && !seen_error ());
    }

  opt_pass * clone () { return new pass_ipa_pta (m_ctxt); }

  virtual unsigned int execute (function *) { return ipa_pta_execute (); }

}; // class pass_ipa_pta

} // anon namespace

simple_ipa_opt_pass *
make_pass_ipa_pta (gcc::context *ctxt)
{
  return new pass_ipa_pta (ctxt);
}