summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-structalias.c
blob: cad485abd77dc21d31ac950b6370b04ec090d71e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
/* Tree based points-to analysis
   Copyright (C) 2005 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dberlin@dberlin.org>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "obstack.h"
#include "bitmap.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "errors.h"
#include "diagnostic.h"
#include "tree.h"
#include "c-common.h"
#include "tree-flow.h"
#include "tree-inline.h"
#include "varray.h"
#include "c-tree.h"
#include "tree-gimple.h"
#include "hashtab.h"
#include "function.h"
#include "cgraph.h"
#include "tree-pass.h"
#include "timevar.h"
#include "alloc-pool.h"
#include "splay-tree.h"
#include "tree-ssa-structalias.h"

/* The idea behind this analyzer is to generate set constraints from the
   program, then solve the resulting constraints in order to generate the
   points-to sets. 

   Set constraints are a way of modeling program analysis problems that
   involve sets.  They consist of an inclusion constraint language,
   describing the variables (each variable is a set) and operations that
   are involved on the variables, and a set of rules that derive facts
   from these operations.  To solve a system of set constraints, you derive
   all possible facts under the rules, which gives you the correct sets
   as a consequence.

   See  "Efficient Field-sensitive pointer analysis for C" by "David
   J. Pearce and Paul H. J. Kelly and Chris Hankin, at
   http://citeseer.ist.psu.edu/pearce04efficient.html

   Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
   of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
   http://citeseer.ist.psu.edu/heintze01ultrafast.html 

   There are three types of constraint expressions, DEREF, ADDRESSOF, and
   SCALAR.  Each constraint expression consists of a constraint type,
   a variable, and an offset.  
   
   SCALAR is a constraint expression type used to represent x, whether
   it appears on the LHS or the RHS of a statement.
   DEREF is a constraint expression type used to represent *x, whether
   it appears on the LHS or the RHS of a statement. 
   ADDRESSOF is a constraint expression used to represent &x, whether
   it appears on the LHS or the RHS of a statement.
   
   Each pointer variable in the program is assigned an integer id, and
   each field of a structure variable is assigned an integer id as well.
   
   Structure variables are linked to their list of fields through a "next
   field" in each variable that points to the next field in offset
   order.  
   Each variable for a structure field has 

   1. "size", that tells the size in bits of that field.
   2. "fullsize, that tells the size in bits of the entire structure.
   3. "offset", that tells the offset in bits from the beginning of the
   structure to this field.

   Thus, 
   struct f
   {
     int a;
     int b;
   } foo;
   int *bar;

   looks like

   foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
   foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
   bar -> id 3, size 32, offset 0, fullsize 32, next NULL

   
  In order to solve the system of set constraints, the following is
  done:

  1. Each constraint variable x has a solution set associated with it,
  Sol(x).
  
  2. Constraints are separated into direct, copy, and complex.
  Direct constraints are ADDRESSOF constraints that require no extra
  processing, such as P = &Q
  Copy constraints are those of the form P = Q.
  Complex constraints are all the constraints involving dereferences.
  
  3. All direct constraints of the form P = &Q are processed, such
  that Q is added to Sol(P) 

  4. All complex constraints for a given constraint variable are stored in a
  linked list attached to that variable's node.  

  5. A directed graph is built out of the copy constraints. Each
  constraint variable is a node in the graph, and an edge from 
  Q to P is added for each copy constraint of the form P = Q
  
  6. The graph is then walked, and solution sets are
  propagated along the copy edges, such that an edge from Q to P
  causes Sol(P) <- Sol(P) union Sol(Q).
  
  7.  As we visit each node, all complex constraints associated with
  that node are processed by adding appropriate copy edges to the graph, or the
  appropriate variables to the solution set.  

  8. The process of walking the graph is iterated until no solution
  sets change.

  Prior to walking the graph in steps 6 and 7, We perform static
  cycle elimination on the constraint graph, as well 
  as off-line variable substitution.
  
  TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
  on and turned into anything), but isn't.  You can just see what offset
  inside the pointed-to struct it's going to access.
  
  TODO: Constant bounded arrays can be handled as if they were structs of the
  same number of elements. 

  TODO: Modeling heap and incoming pointers becomes much better if we
  add fields to them as we discover them, which we could do.

  TODO: We could handle unions, but to be honest, it's probably not
  worth the pain or slowdown.  */

static bool use_field_sensitive = true;
static unsigned int create_variable_info_for (tree, const char *);
static struct constraint_expr get_constraint_for (tree);
static void build_constraint_graph (void);

static bitmap_obstack ptabitmap_obstack;
static bitmap_obstack iteration_obstack;
DEF_VEC_P(constraint_t);
DEF_VEC_ALLOC_P(constraint_t,heap);

static struct constraint_stats
{
  unsigned int total_vars;
  unsigned int collapsed_vars;
  unsigned int unified_vars_static;
  unsigned int unified_vars_dynamic;
  unsigned int iterations;
} stats;

struct variable_info
{
  /* ID of this variable  */
  unsigned int id;

  /* Name of this variable */
  const char *name;

  /* Tree that this variable is associated with.  */
  tree decl;

  /* Offset of this variable, in bits, from the base variable  */
  unsigned HOST_WIDE_INT offset;  

  /* Size of the variable, in bits.  */
  unsigned HOST_WIDE_INT size;

  /* Full size of the base variable, in bits.  */
  unsigned HOST_WIDE_INT fullsize;

  /* A link to the variable for the next field in this structure.  */
  struct variable_info *next;

  /* Node in the graph that represents the constraints and points-to
     solution for the variable.  */
  unsigned int node;

  /* True if the address of this variable is taken.  Needed for
     variable substitution.  */
  unsigned int address_taken:1;

  /* True if this variable is the target of a dereference.  Needed for
     variable substitution.  */
  unsigned int indirect_target:1;

  /* True if this is a variable created by the constraint analysis, such as
     heap variables and constraints we had to break up.  */
  unsigned int is_artificial_var:1;
  
  /* True if this is a special variable whose solution set should not be
     changed.  */
  unsigned int is_special_var:1;

  /* True for variables whose size is not known or variable.  */
  unsigned int is_unknown_size_var:1;  

  /* True for variables that have unions somewhere in them.  */
  unsigned int has_union:1;

  /* True if this is a heap variable.  */
  unsigned int is_heap_var:1;

  /* Points-to set for this variable.  */
  bitmap solution;

  /* Variable ids represented by this node.  */
  bitmap variables;

  /* Vector of complex constraints for this node.  Complex
     constraints are those involving dereferences.  */
  VEC(constraint_t,heap) *complex;
};
typedef struct variable_info *varinfo_t;

static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);

/* Pool of variable info structures.  */
static alloc_pool variable_info_pool;

DEF_VEC_P(varinfo_t);

DEF_VEC_ALLOC_P(varinfo_t, heap);

/* Table of variable info structures for constraint variables.  Indexed directly
   by variable info id.  */
static VEC(varinfo_t,heap) *varmap;

/* Return the varmap element N */

static inline varinfo_t
get_varinfo(unsigned int n)
{
  return VEC_index(varinfo_t, varmap, n);
}

/* Variable that represents the unknown pointer.  */
static varinfo_t var_anything;
static tree anything_tree;
static unsigned int anything_id;

/* Variable that represents the NULL pointer.  */
static varinfo_t var_nothing;
static tree nothing_tree;
static unsigned int nothing_id;

/* Variable that represents read only memory.  */
static varinfo_t var_readonly;
static tree readonly_tree;
static unsigned int readonly_id;

/* Variable that represents integers.  This is used for when people do things
   like &0->a.b.  */
static varinfo_t var_integer;
static tree integer_tree;
static unsigned int integer_id;

/* Variable that represents arbitrary offsets into an object.  Used to
   represent pointer arithmetic, which may not legally escape the
   bounds of an object.  */
static varinfo_t var_anyoffset;
static tree anyoffset_tree;
static unsigned int anyoffset_id;

/* Return a new variable info structure consisting for a variable
   named NAME, and using constraint graph node NODE.  */

static varinfo_t
new_var_info (tree t, unsigned int id, const char *name, unsigned int node)
{
  varinfo_t ret = pool_alloc (variable_info_pool);

  ret->id = id;
  ret->name = name;
  ret->decl = t;
  ret->node = node;
  ret->address_taken = false;
  ret->indirect_target = false;
  ret->is_artificial_var = false;
  ret->is_heap_var = false;
  ret->is_special_var = false;
  ret->is_unknown_size_var = false;
  ret->has_union = false;
  ret->solution = BITMAP_ALLOC (&ptabitmap_obstack);
  bitmap_clear (ret->solution);
  ret->variables = BITMAP_ALLOC (&ptabitmap_obstack);
  bitmap_clear (ret->variables);
  ret->complex = NULL;
  ret->next = NULL;
  return ret;
}

typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;

/* An expression that appears in a constraint.  */

struct constraint_expr 
{
  /* Constraint type.  */
  constraint_expr_type type;

  /* Variable we are referring to in the constraint.  */
  unsigned int var;

  /* Offset, in bits, of this constraint from the beginning of
     variables it ends up referring to.

     IOW, in a deref constraint, we would deref, get the result set,
     then add OFFSET to each member.   */
  unsigned HOST_WIDE_INT offset;
};

static struct constraint_expr do_deref (struct constraint_expr);

/* Our set constraints are made up of two constraint expressions, one
   LHS, and one RHS.  

   As described in the introduction, our set constraints each represent an
   operation between set valued variables.
*/
struct constraint
{
  struct constraint_expr lhs;
  struct constraint_expr rhs;
};

/* List of constraints that we use to build the constraint graph from.  */

static VEC(constraint_t,heap) *constraints;
static alloc_pool constraint_pool;

/* An edge in the constraint graph.  We technically have no use for
   the src, since it will always be the same node that we are indexing
   into the pred/succ arrays with, but it's nice for checking
   purposes.  The edges are weighted, with a bit set in weights for
   each edge from src to dest with that weight.  */

struct constraint_edge
{
  unsigned int src;
  unsigned int dest;
  bitmap weights;
};

typedef struct constraint_edge *constraint_edge_t;
static alloc_pool constraint_edge_pool;

/* Return a new constraint edge from SRC to DEST.  */

static constraint_edge_t
new_constraint_edge (unsigned int src, unsigned int dest)
{
  constraint_edge_t ret = pool_alloc (constraint_edge_pool);
  ret->src = src;
  ret->dest = dest;
  ret->weights = NULL;
  return ret;
}

DEF_VEC_P(constraint_edge_t);
DEF_VEC_ALLOC_P(constraint_edge_t,heap);


/* The constraint graph is simply a set of adjacency vectors, one per
   variable. succs[x] is the vector of successors for variable x, and preds[x]
   is the vector of predecessors for variable x. 
   IOW, all edges are "forward" edges, which is not like our CFG.  
   So remember that
   preds[x]->src == x, and
   succs[x]->src == x.  */

struct constraint_graph
{
  VEC(constraint_edge_t,heap) **succs;
  VEC(constraint_edge_t,heap) **preds;
};

typedef struct constraint_graph *constraint_graph_t;

static constraint_graph_t graph;

/* Create a new constraint consisting of LHS and RHS expressions.  */

static constraint_t 
new_constraint (const struct constraint_expr lhs,
		const struct constraint_expr rhs)
{
  constraint_t ret = pool_alloc (constraint_pool);
  ret->lhs = lhs;
  ret->rhs = rhs;
  return ret;
}

/* Print out constraint C to FILE.  */

void
dump_constraint (FILE *file, constraint_t c)
{
  if (c->lhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->lhs.type == DEREF)
    fprintf (file, "*");  
  fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
  if (c->lhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
  fprintf (file, " = ");
  if (c->rhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->rhs.type == DEREF)
    fprintf (file, "*");
  fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
  if (c->rhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
  fprintf (file, "\n");
}

/* Print out constraint C to stderr.  */

void
debug_constraint (constraint_t c)
{
  dump_constraint (stderr, c);
}

/* Print out all constraints to FILE */

void
dump_constraints (FILE *file)
{
  int i;
  constraint_t c;
  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    dump_constraint (file, c);
}

/* Print out all constraints to stderr.  */

void
debug_constraints (void)
{
  dump_constraints (stderr);
}

/* SOLVER FUNCTIONS 

   The solver is a simple worklist solver, that works on the following
   algorithm:
   
   sbitmap changed_nodes = all ones;
   changed_count = number of nodes;
   For each node that was already collapsed:
       changed_count--;


   while (changed_count > 0)
   {
     compute topological ordering for constraint graph
  
     find and collapse cycles in the constraint graph (updating
     changed if necessary)
     
     for each node (n) in the graph in topological order:
       changed_count--;

       Process each complex constraint associated with the node,
       updating changed if necessary.

       For each outgoing edge from n, propagate the solution from n to
       the destination of the edge, updating changed as necessary.

   }  */

/* Return true if two constraint expressions A and B are equal.  */

static bool
constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
{
  return a.type == b.type
    && a.var == b.var
    && a.offset == b.offset;
}

/* Return true if constraint expression A is less than constraint expression
   B.  This is just arbitrary, but consistent, in order to give them an
   ordering.  */

static bool
constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
{
  if (a.type == b.type)
    {
      if (a.var == b.var)
	return a.offset < b.offset;
      else
	return a.var < b.var;
    }
  else
    return a.type < b.type;
}

/* Return true if constraint A is less than constraint B.  This is just
   arbitrary, but consistent, in order to give them an ordering.  */

static bool
constraint_less (const constraint_t a, const constraint_t b)
{
  if (constraint_expr_less (a->lhs, b->lhs))
    return true;
  else if (constraint_expr_less (b->lhs, a->lhs))
    return false;
  else
    return constraint_expr_less (a->rhs, b->rhs);
}

/* Return true if two constraints A and B are equal.  */
  
static bool
constraint_equal (struct constraint a, struct constraint b)
{
  return constraint_expr_equal (a.lhs, b.lhs) 
    && constraint_expr_equal (a.rhs, b.rhs);
}


/* Find a constraint LOOKFOR in the sorted constraint vector VEC */

static constraint_t
constraint_vec_find (VEC(constraint_t,heap) *vec,
		     struct constraint lookfor)
{
  unsigned int place;  
  constraint_t found;

  if (vec == NULL)
    return NULL;

  place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
  if (place >= VEC_length (constraint_t, vec))
    return NULL;
  found = VEC_index (constraint_t, vec, place);
  if (!constraint_equal (*found, lookfor))
    return NULL;
  return found;
}

/* Union two constraint vectors, TO and FROM.  Put the result in TO.  */

static void
constraint_set_union (VEC(constraint_t,heap) **to,
		      VEC(constraint_t,heap) **from)
{
  int i;
  constraint_t c;

  for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
    {
      if (constraint_vec_find (*to, *c) == NULL)
	{
	  unsigned int place = VEC_lower_bound (constraint_t, *to, c,
						constraint_less);
	  VEC_safe_insert (constraint_t, heap, *to, place, c);
	}
    }
}

/* Take a solution set SET, add OFFSET to each member of the set, and
   overwrite SET with the result when done.  */

static void
solution_set_add (bitmap set, unsigned HOST_WIDE_INT offset)
{
  bitmap result = BITMAP_ALLOC (&iteration_obstack);
  unsigned int i;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
    {
      /* If this is a properly sized variable, only add offset if it's
	 less than end.  Otherwise, it is globbed to a single
	 variable.  */
      
      if ((get_varinfo (i)->offset + offset) < get_varinfo (i)->fullsize)
	{
	  unsigned HOST_WIDE_INT fieldoffset = get_varinfo (i)->offset + offset;
	  varinfo_t v = first_vi_for_offset (get_varinfo (i), fieldoffset);
	  if (!v)
	    continue;
	  bitmap_set_bit (result, v->id);
	}
      else if (get_varinfo (i)->is_artificial_var 
	       || get_varinfo (i)->has_union
	       || get_varinfo (i)->is_unknown_size_var)
	{
	  bitmap_set_bit (result, i);
	}
    }
  
  bitmap_copy (set, result);  
  BITMAP_FREE (result);
}

/* Union solution sets TO and FROM, and add INC to each member of FROM in the
   process.  */

static bool
set_union_with_increment  (bitmap to, bitmap from, unsigned HOST_WIDE_INT inc)
{
  if (inc == 0)
    return bitmap_ior_into (to, from);
  else
    {
      bitmap tmp;
      bool res;

      tmp = BITMAP_ALLOC (&iteration_obstack);
      bitmap_copy (tmp, from);
      solution_set_add (tmp, inc);
      res = bitmap_ior_into (to, tmp);
      BITMAP_FREE (tmp);
      return res;
    }
}

/* Insert constraint C into the list of complex constraints for VAR.  */

static void
insert_into_complex (unsigned int var, constraint_t c)
{
  varinfo_t vi = get_varinfo (var);
  unsigned int place = VEC_lower_bound (constraint_t, vi->complex, c,
					constraint_less);
  VEC_safe_insert (constraint_t, heap, vi->complex, place, c);
}


/* Compare two constraint edges A and B, return true if they are equal.  */

static bool
constraint_edge_equal (struct constraint_edge a, struct constraint_edge b)
{
  return a.src == b.src && a.dest == b.dest;
}

/* Compare two constraint edges, return true if A is less than B */

static bool
constraint_edge_less (const constraint_edge_t a, const constraint_edge_t b)
{
  if (a->dest < b->dest)
    return true;
  else if (a->dest == b->dest)
    return a->src < b->src;
  else
    return false;
}

/* Find the constraint edge that matches LOOKFOR, in VEC.
   Return the edge, if found, NULL otherwise.  */

static constraint_edge_t 
constraint_edge_vec_find (VEC(constraint_edge_t,heap) *vec, 
			  struct constraint_edge lookfor)
{
  unsigned int place;  
  constraint_edge_t edge;

  place = VEC_lower_bound (constraint_edge_t, vec, &lookfor, 
			   constraint_edge_less);
  edge = VEC_index (constraint_edge_t, vec, place);
  if (!constraint_edge_equal (*edge, lookfor))
    return NULL;
  return edge;
}

/* Condense two variable nodes into a single variable node, by moving
   all associated info from SRC to TO.  */

static void 
condense_varmap_nodes (unsigned int to, unsigned int src)
{
  varinfo_t tovi = get_varinfo (to);
  varinfo_t srcvi = get_varinfo (src);
  unsigned int i;
  constraint_t c;
  bitmap_iterator bi;
  
  /* the src node, and all its variables, are now the to node.  */
  srcvi->node = to;
  EXECUTE_IF_SET_IN_BITMAP (srcvi->variables, 0, i, bi)
    get_varinfo (i)->node = to;
  
  /* Merge the src node variables and the to node variables.  */
  bitmap_set_bit (tovi->variables, src);
  bitmap_ior_into (tovi->variables, srcvi->variables);
  bitmap_clear (srcvi->variables);
  
  /* Move all complex constraints from src node into to node  */
  for (i = 0; VEC_iterate (constraint_t, srcvi->complex, i, c); i++)
    {
      /* In complex constraints for node src, we may have either
	 a = *src, and *src = a.  */
      
      if (c->rhs.type == DEREF)
	c->rhs.var = to;
      else
	c->lhs.var = to;
    }
  constraint_set_union (&tovi->complex, &srcvi->complex);
  VEC_free (constraint_t, heap, srcvi->complex);
  srcvi->complex = NULL;
}

/* Erase EDGE from GRAPH.  This routine only handles self-edges
   (e.g. an edge from a to a).  */

static void
erase_graph_self_edge (constraint_graph_t graph, struct constraint_edge edge)
{
  VEC(constraint_edge_t,heap) *predvec = graph->preds[edge.src];
  VEC(constraint_edge_t,heap) *succvec = graph->succs[edge.dest];
  unsigned int place;
  gcc_assert (edge.src == edge.dest);

  /* Remove from the successors.  */
  place = VEC_lower_bound (constraint_edge_t, succvec, &edge, 
			   constraint_edge_less);
  
  /* Make sure we found the edge.  */
#ifdef ENABLE_CHECKING
  {
    constraint_edge_t tmp = VEC_index (constraint_edge_t, succvec, place);
    gcc_assert (constraint_edge_equal (*tmp, edge));
  }
#endif
  VEC_ordered_remove (constraint_edge_t, succvec, place);

  /* Remove from the predecessors.  */
  place = VEC_lower_bound (constraint_edge_t, predvec, &edge,
			   constraint_edge_less);

  /* Make sure we found the edge.  */
#ifdef ENABLE_CHECKING
  {
    constraint_edge_t tmp = VEC_index (constraint_edge_t, predvec, place);
    gcc_assert (constraint_edge_equal (*tmp, edge));
  }
#endif
  VEC_ordered_remove (constraint_edge_t, predvec, place);
}

/* Remove edges involving NODE from GRAPH.  */

static void
clear_edges_for_node (constraint_graph_t graph, unsigned int node)
{
  VEC(constraint_edge_t,heap) *succvec = graph->succs[node];
  VEC(constraint_edge_t,heap) *predvec = graph->preds[node];
  constraint_edge_t c;
  int i;
  
  /* Walk the successors, erase the associated preds.  */
  for (i = 0; VEC_iterate (constraint_edge_t, succvec, i, c); i++)
    if (c->dest != node)
      {
	unsigned int place;
	struct constraint_edge lookfor;
	lookfor.src = c->dest;
	lookfor.dest = node;
	place = VEC_lower_bound (constraint_edge_t, graph->preds[c->dest], 
				 &lookfor, constraint_edge_less);
	VEC_ordered_remove (constraint_edge_t, graph->preds[c->dest], place);
      }
  /* Walk the preds, erase the associated succs.  */
  for (i =0; VEC_iterate (constraint_edge_t, predvec, i, c); i++)
    if (c->dest != node)
      {
	unsigned int place;
	struct constraint_edge lookfor;
	lookfor.src = c->dest;
	lookfor.dest = node;
	place = VEC_lower_bound (constraint_edge_t, graph->succs[c->dest],
				 &lookfor, constraint_edge_less);
	VEC_ordered_remove (constraint_edge_t, graph->succs[c->dest], place);
      }    
  
  VEC_free (constraint_edge_t, heap, graph->preds[node]);
  VEC_free (constraint_edge_t, heap, graph->succs[node]);
  graph->preds[node] = NULL;
  graph->succs[node] = NULL;
}

static bool edge_added = false;
  
/* Add edge NEWE to the graph.  */

static bool
add_graph_edge (constraint_graph_t graph, struct constraint_edge newe)
{
  unsigned int place;
  unsigned int src = newe.src;
  unsigned int dest = newe.dest;
  VEC(constraint_edge_t,heap) *vec;

  vec = graph->preds[src];
  place = VEC_lower_bound (constraint_edge_t, vec, &newe, 
			   constraint_edge_less);
  if (place == VEC_length (constraint_edge_t, vec)
      || VEC_index (constraint_edge_t, vec, place)->dest != dest)
    {
      constraint_edge_t edge = new_constraint_edge (src, dest);
      bitmap weightbitmap;

      weightbitmap = BITMAP_ALLOC (&ptabitmap_obstack);
      edge->weights = weightbitmap;
      VEC_safe_insert (constraint_edge_t, heap, graph->preds[edge->src], 
		       place, edge);
      edge = new_constraint_edge (dest, src);
      edge->weights = weightbitmap;
      place = VEC_lower_bound (constraint_edge_t, graph->succs[edge->src],
			       edge, constraint_edge_less);
      VEC_safe_insert (constraint_edge_t, heap, graph->succs[edge->src], 
		       place, edge);
      edge_added = true;
      return true;
    }
  else
    return false;
}


/* Return the bitmap representing the weights of edge LOOKFOR */

static bitmap
get_graph_weights (constraint_graph_t graph, struct constraint_edge lookfor)
{
  constraint_edge_t edge;
  unsigned int src = lookfor.src;
  VEC(constraint_edge_t,heap) *vec;
  vec = graph->preds[src];
  edge = constraint_edge_vec_find (vec, lookfor);
  gcc_assert (edge != NULL);
  return edge->weights;
}


/* Merge GRAPH nodes FROM and TO into node TO.  */

static void
merge_graph_nodes (constraint_graph_t graph, unsigned int to, 
		   unsigned int from)
{
  VEC(constraint_edge_t,heap) *succvec = graph->succs[from];
  VEC(constraint_edge_t,heap) *predvec = graph->preds[from];
  int i;
  constraint_edge_t c;
  
  /* Merge all the predecessor edges.  */

  for (i = 0; VEC_iterate (constraint_edge_t, predvec, i, c); i++)
    {
      unsigned int d = c->dest;
      struct constraint_edge olde;
      struct constraint_edge newe;
      bitmap temp;
      bitmap weights;
      if (c->dest == from)
	d = to;
      newe.src = to;
      newe.dest = d;
      add_graph_edge (graph, newe);
      olde.src = from;
      olde.dest = c->dest;
      olde.weights = NULL;
      temp = get_graph_weights (graph, olde);
      weights = get_graph_weights (graph, newe);
      bitmap_ior_into (weights, temp);
    }
  
  /* Merge all the successor edges.  */
  for (i = 0; VEC_iterate (constraint_edge_t, succvec, i, c); i++)
    {
      unsigned int d = c->dest;
      struct constraint_edge olde;
      struct constraint_edge newe;
      bitmap temp;
      bitmap weights;
      if (c->dest == from)
	d = to;
      newe.src = d;
      newe.dest = to;
      add_graph_edge (graph, newe);
      olde.src = c->dest;
      olde.dest = from;
      olde.weights = NULL;
      temp = get_graph_weights (graph, olde);
      weights = get_graph_weights (graph, newe);
      bitmap_ior_into (weights, temp);
    }
  clear_edges_for_node (graph, from);
}

/* Add a graph edge to GRAPH, going from TO to FROM, with WEIGHT, if
   it doesn't exist in the graph already.
   Return false if the edge already existed, true otherwise.  */

static bool
int_add_graph_edge (constraint_graph_t graph, unsigned int to, 
		    unsigned int from, unsigned HOST_WIDE_INT weight)
{
  if (to == from && weight == 0)
    {
      return false;
    }
  else
    {
      bool r;
      struct constraint_edge edge;
      edge.src = to;
      edge.dest = from;
      edge.weights = NULL;
      r = add_graph_edge (graph, edge);
      r |= !bitmap_bit_p (get_graph_weights (graph, edge), weight);
      bitmap_set_bit (get_graph_weights (graph, edge), weight);
      return r;
    }
}


/* Return true if LOOKFOR is an existing graph edge.  */

static bool
valid_graph_edge (constraint_graph_t graph, struct constraint_edge lookfor)
{
  return constraint_edge_vec_find (graph->preds[lookfor.src], lookfor) != NULL;
}


/* Build the constraint graph.  */

static void
build_constraint_graph (void)
{
  int i = 0;
  constraint_t c;

  graph = xmalloc (sizeof (struct constraint_graph));
  graph->succs = xcalloc (VEC_length (varinfo_t, varmap),
			  sizeof (*graph->succs));
  graph->preds = xcalloc (VEC_length (varinfo_t, varmap),
			  sizeof (*graph->preds));

  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    {
      struct constraint_expr lhs = c->lhs;
      struct constraint_expr rhs = c->rhs;
      if (lhs.type == DEREF)
	{
	  /* *x = y or *x = &y (complex) */
	  if (rhs.type == ADDRESSOF || rhs.var > anything_id)
	    insert_into_complex (lhs.var, c);
	}
      else if (rhs.type == DEREF)
	{
	  /* !special var= *y */
	  if (!(get_varinfo (lhs.var)->is_special_var))
	    insert_into_complex (rhs.var, c);
	}
      else if (rhs.type == ADDRESSOF)
	{
	  /* x = &y */
	  bitmap_set_bit (get_varinfo (lhs.var)->solution, rhs.var);
	}
      else if (lhs.var > anything_id)
	{
	  /* Ignore 0 weighted self edges, as they can't possibly contribute
	     anything */
	  if (lhs.var != rhs.var || rhs.offset != 0 || lhs.offset != 0)
	    {
	      
	      struct constraint_edge edge;
	      edge.src = lhs.var;
	      edge.dest = rhs.var;
	      /* x = y (simple) */
	      add_graph_edge (graph, edge);
	      bitmap_set_bit (get_graph_weights (graph, edge),
			      rhs.offset);
	    }
	  
	}
    }
}


/* Changed variables on the last iteration.  */
static unsigned int changed_count;
static sbitmap changed;

DEF_VEC_I(unsigned);
DEF_VEC_ALLOC_I(unsigned,heap);


/* Strongly Connected Component visitation info.  */

struct scc_info
{
  sbitmap visited;
  sbitmap in_component;
  int current_index;
  unsigned int *visited_index;
  VEC(unsigned,heap) *scc_stack;
  VEC(unsigned,heap) *unification_queue;
};


/* Recursive routine to find strongly connected components in GRAPH.
   SI is the SCC info to store the information in, and N is the id of current
   graph node we are processing.
   
   This is Tarjan's strongly connected component finding algorithm, as
   modified by Nuutila to keep only non-root nodes on the stack.  
   The algorithm can be found in "On finding the strongly connected
   connected components in a directed graph" by Esko Nuutila and Eljas
   Soisalon-Soininen, in Information Processing Letters volume 49,
   number 1, pages 9-14.  */

static void
scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  constraint_edge_t c;
  int i;

  gcc_assert (get_varinfo (n)->node == n);
  SET_BIT (si->visited, n);
  RESET_BIT (si->in_component, n);
  si->visited_index[n] = si->current_index ++;
  
  /* Visit all the successors.  */
  for (i = 0; VEC_iterate (constraint_edge_t, graph->succs[n], i, c); i++)
    {
      /* We only want to find and collapse the zero weight edges. */
      if (bitmap_bit_p (c->weights, 0))
	{
	  unsigned int w = c->dest;
	  if (!TEST_BIT (si->visited, w))
	    scc_visit (graph, si, w);
	  if (!TEST_BIT (si->in_component, w))
	    {
	      unsigned int t = get_varinfo (w)->node;
	      unsigned int nnode = get_varinfo (n)->node;
	      if (si->visited_index[t] < si->visited_index[nnode])
		get_varinfo (n)->node = t;
	    }
	}
    }
  
  /* See if any components have been identified.  */
  if (get_varinfo (n)->node == n)
    {
      unsigned int t = si->visited_index[n];
      SET_BIT (si->in_component, n);
      while (VEC_length (unsigned, si->scc_stack) != 0 
	     && t < si->visited_index[VEC_last (unsigned, si->scc_stack)])
	{
	  unsigned int w = VEC_pop (unsigned, si->scc_stack);
	  get_varinfo (w)->node = n;
	  SET_BIT (si->in_component, w);
	  /* Mark this node for collapsing.  */
	  VEC_safe_push (unsigned, heap, si->unification_queue, w);
	} 
    }
  else
    VEC_safe_push (unsigned, heap, si->scc_stack, n);
}


/* Collapse two variables into one variable.  */

static void
collapse_nodes (constraint_graph_t graph, unsigned int to, unsigned int from)
{
  bitmap tosol, fromsol;
  struct constraint_edge edge;


  condense_varmap_nodes (to, from);
  tosol = get_varinfo (to)->solution;
  fromsol = get_varinfo (from)->solution;
  bitmap_ior_into (tosol, fromsol);
  merge_graph_nodes (graph, to, from);
  edge.src = to;
  edge.dest = to;
  edge.weights = NULL;
  if (valid_graph_edge (graph, edge))
    {
      bitmap weights = get_graph_weights (graph, edge);
      bitmap_clear_bit (weights, 0);
      if (bitmap_empty_p (weights))
	erase_graph_self_edge (graph, edge);
    }
  bitmap_clear (fromsol);
  get_varinfo (to)->address_taken |= get_varinfo (from)->address_taken;
  get_varinfo (to)->indirect_target |= get_varinfo (from)->indirect_target;
}


/* Unify nodes in GRAPH that we have found to be part of a cycle.
   SI is the Strongly Connected Components information structure that tells us
   what components to unify.
   UPDATE_CHANGED should be set to true if the changed sbitmap and changed
   count should be updated to reflect the unification.  */

static void
process_unification_queue (constraint_graph_t graph, struct scc_info *si,
			   bool update_changed)
{
  size_t i = 0;
  bitmap tmp = BITMAP_ALLOC (update_changed ? &iteration_obstack : NULL);
  bitmap_clear (tmp);

  /* We proceed as follows:

     For each component in the queue (components are delineated by
     when current_queue_element->node != next_queue_element->node):

        rep = representative node for component

        For each node (tounify) to be unified in the component,
           merge the solution for tounify into tmp bitmap

           clear solution for tounify

           merge edges from tounify into rep

	   merge complex constraints from tounify into rep

	   update changed count to note that tounify will never change
	   again

	Merge tmp into solution for rep, marking rep changed if this
	changed rep's solution.
	
	Delete any 0 weighted self-edges we now have for rep.  */
  while (i != VEC_length (unsigned, si->unification_queue))
    {
      unsigned int tounify = VEC_index (unsigned, si->unification_queue, i);
      unsigned int n = get_varinfo (tounify)->node;

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Unifying %s to %s\n", 
		 get_varinfo (tounify)->name,
		 get_varinfo (n)->name);
      if (update_changed)
	stats.unified_vars_dynamic++;
      else
	stats.unified_vars_static++;
      bitmap_ior_into (tmp, get_varinfo (tounify)->solution);
      merge_graph_nodes (graph, n, tounify);
      condense_varmap_nodes (n, tounify);
      
      if (update_changed && TEST_BIT (changed, tounify))
	{
	  RESET_BIT (changed, tounify);
	  if (!TEST_BIT (changed, n))
	    SET_BIT (changed, n);
	  else
	    {
	      gcc_assert (changed_count > 0);
	      changed_count--;
	    }
	}

      bitmap_clear (get_varinfo (tounify)->solution);
      ++i;

      /* If we've either finished processing the entire queue, or
	 finished processing all nodes for component n, update the solution for
	 n.  */
      if (i == VEC_length (unsigned, si->unification_queue)
	  || get_varinfo (VEC_index (unsigned, si->unification_queue, i))->node != n)
	{
	  struct constraint_edge edge;

	  /* If the solution changes because of the merging, we need to mark
	     the variable as changed.  */
	  if (bitmap_ior_into (get_varinfo (n)->solution, tmp))
	    {
	      if (update_changed && !TEST_BIT (changed, n))
		{
		  SET_BIT (changed, n);
		  changed_count++;
		}
	    }
	  bitmap_clear (tmp);
	  edge.src = n;
	  edge.dest = n;
	  edge.weights = NULL;
	  if (valid_graph_edge (graph, edge))
	    {
	      bitmap weights = get_graph_weights (graph, edge);
	      bitmap_clear_bit (weights, 0);
	      if (bitmap_empty_p (weights))
		erase_graph_self_edge (graph, edge);
	    }
	}
    }
  BITMAP_FREE (tmp);
}


/* Information needed to compute the topological ordering of a graph.  */

struct topo_info
{
  /* sbitmap of visited nodes.  */
  sbitmap visited;
  /* Array that stores the topological order of the graph, *in
     reverse*.  */
  VEC(unsigned,heap) *topo_order;
};


/* Initialize and return a topological info structure.  */

static struct topo_info *
init_topo_info (void)
{
  size_t size = VEC_length (varinfo_t, varmap);
  struct topo_info *ti = xmalloc (sizeof (struct topo_info));
  ti->visited = sbitmap_alloc (size);
  sbitmap_zero (ti->visited);
  ti->topo_order = VEC_alloc (unsigned, heap, 1);
  return ti;
}


/* Free the topological sort info pointed to by TI.  */

static void
free_topo_info (struct topo_info *ti)
{
  sbitmap_free (ti->visited);
  VEC_free (unsigned, heap, ti->topo_order);
  free (ti);
}

/* Visit the graph in topological order, and store the order in the
   topo_info structure.  */

static void
topo_visit (constraint_graph_t graph, struct topo_info *ti,
	    unsigned int n)
{
  VEC(constraint_edge_t,heap) *succs = graph->succs[n];
  constraint_edge_t c;
  int i;
  SET_BIT (ti->visited, n);
  for (i = 0; VEC_iterate (constraint_edge_t, succs, i, c); i++)
    {
      if (!TEST_BIT (ti->visited, c->dest))
	topo_visit (graph, ti, c->dest);
    }
  VEC_safe_push (unsigned, heap, ti->topo_order, n);
}

/* Return true if variable N + OFFSET is a legal field of N.  */

static bool 
type_safe (unsigned int n, unsigned HOST_WIDE_INT *offset)
{
  varinfo_t ninfo = get_varinfo (n);

  /* For things we've globbed to single variables, any offset into the
     variable acts like the entire variable, so that it becomes offset
     0.  */
  if (ninfo->is_special_var
      || ninfo->is_artificial_var
      || ninfo->is_unknown_size_var)
    {
      *offset = 0;
      return true;
    }
  return (get_varinfo (n)->offset + *offset) < get_varinfo (n)->fullsize;
}

/* Process a constraint C that represents *x = &y.  */

static void
do_da_constraint (constraint_graph_t graph ATTRIBUTE_UNUSED,
		  constraint_t c, bitmap delta)
{
  unsigned int rhs = c->rhs.var;
  unsigned int j;
  bitmap_iterator bi;

  /* For each member j of Delta (Sol(x)), add x to Sol(j)  */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      unsigned HOST_WIDE_INT offset = c->lhs.offset;
      if (type_safe (j, &offset) && !(get_varinfo (j)->is_special_var))
	{
	/* *x != NULL && *x != ANYTHING*/
	  varinfo_t v;
	  unsigned int t;
	  bitmap sol;
	  unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + offset;

	  v = first_vi_for_offset (get_varinfo (j), fieldoffset);
	  if (!v)
	    continue;
	  t = v->node;
	  sol = get_varinfo (t)->solution;
	  if (!bitmap_bit_p (sol, rhs))
	    {		  
	      bitmap_set_bit (sol, rhs);
	      if (!TEST_BIT (changed, t))
		{
		  SET_BIT (changed, t);
		  changed_count++;
		}
	    }
	}
      else if (dump_file && !(get_varinfo (j)->is_special_var))
	fprintf (dump_file, "Untypesafe usage in do_da_constraint.\n");
      
    }
}

/* Process a constraint C that represents x = *y, using DELTA as the
   starting solution.  */

static void
do_sd_constraint (constraint_graph_t graph, constraint_t c,
		  bitmap delta)
{
  unsigned int lhs = get_varinfo (c->lhs.var)->node;
  bool flag = false;
  bitmap sol = get_varinfo (lhs)->solution;
  unsigned int j;
  bitmap_iterator bi;
  
  /* For each variable j in delta (Sol(y)), add    
     an edge in the graph from j to x, and union Sol(j) into Sol(x).  */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      unsigned HOST_WIDE_INT roffset = c->rhs.offset;
      if (type_safe (j, &roffset))
	{
	  varinfo_t v;
	  unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + roffset;
	  unsigned int t;

	  v = first_vi_for_offset (get_varinfo (j), fieldoffset);	  
	  if (!v)
	    continue;
	  t = v->node;
	  if (int_add_graph_edge (graph, lhs, t, 0))
	    flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);	  
	}
      else if (dump_file && !(get_varinfo (j)->is_special_var))
	fprintf (dump_file, "Untypesafe usage in do_sd_constraint\n");
      
    }

  /* If the LHS solution changed, mark the var as changed.  */
  if (flag)
    {
      get_varinfo (lhs)->solution = sol;
      if (!TEST_BIT (changed, lhs))
	{
	  SET_BIT (changed, lhs);
	  changed_count++;
	}
    }    
}

/* Process a constraint C that represents *x = y.  */

static void
do_ds_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
{
  unsigned int rhs = get_varinfo (c->rhs.var)->node;
  unsigned HOST_WIDE_INT roff = c->rhs.offset;
  bitmap sol = get_varinfo (rhs)->solution;
  unsigned int j;
  bitmap_iterator bi;

  /* For each member j of delta (Sol(x)), add an edge from y to j and
     union Sol(y) into Sol(j) */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      unsigned HOST_WIDE_INT loff = c->lhs.offset;
      if (type_safe (j, &loff) && !(get_varinfo(j)->is_special_var))
	{
	  varinfo_t v;
	  unsigned int t;
	  unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + loff;

	  v = first_vi_for_offset (get_varinfo (j), fieldoffset);
	  if (!v)
	    continue;
	  t = v->node;
	  if (int_add_graph_edge (graph, t, rhs, roff))
	    {
	      bitmap tmp = get_varinfo (t)->solution;
	      if (set_union_with_increment (tmp, sol, roff))
		{
		  get_varinfo (t)->solution = tmp;
		  if (t == rhs)
		    {
		      sol = get_varinfo (rhs)->solution;
		    }
		  if (!TEST_BIT (changed, t))
		    {
		      SET_BIT (changed, t);
		      changed_count++;
		    }
		}
	    }
	}    
      else if (dump_file && !(get_varinfo (j)->is_special_var))
	fprintf (dump_file, "Untypesafe usage in do_ds_constraint\n");
    }
}

/* Handle a non-simple (simple meaning requires no iteration), non-copy
   constraint (IE *x = &y, x = *y, and *x = y).  */
   
static void
do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
{
  if (c->lhs.type == DEREF)
    {
      if (c->rhs.type == ADDRESSOF)
	{
	  /* *x = &y */
	  do_da_constraint (graph, c, delta);
	}
      else
	{
	  /* *x = y */
	  do_ds_constraint (graph, c, delta);
	}
    }
  else
    {
      /* x = *y */
      if (!(get_varinfo (c->lhs.var)->is_special_var))
	do_sd_constraint (graph, c, delta);
    }
}

/* Initialize and return a new SCC info structure.  */

static struct scc_info *
init_scc_info (void)
{
  struct scc_info *si = xmalloc (sizeof (struct scc_info));
  size_t size = VEC_length (varinfo_t, varmap);

  si->current_index = 0;
  si->visited = sbitmap_alloc (size);
  sbitmap_zero (si->visited);
  si->in_component = sbitmap_alloc (size);
  sbitmap_ones (si->in_component);
  si->visited_index = xcalloc (sizeof (unsigned int), size + 1);
  si->scc_stack = VEC_alloc (unsigned, heap, 1);
  si->unification_queue = VEC_alloc (unsigned, heap, 1);
  return si;
}

/* Free an SCC info structure pointed to by SI */

static void
free_scc_info (struct scc_info *si)
{  
  sbitmap_free (si->visited);
  sbitmap_free (si->in_component);
  free (si->visited_index);
  VEC_free (unsigned, heap, si->scc_stack);
  VEC_free (unsigned, heap, si->unification_queue);
  free(si); 
}


/* Find cycles in GRAPH that occur, using strongly connected components, and
   collapse the cycles into a single representative node.  if UPDATE_CHANGED
   is true, then update the changed sbitmap to note those nodes whose
   solutions have changed as a result of collapsing.  */

static void
find_and_collapse_graph_cycles (constraint_graph_t graph, bool update_changed)
{
  unsigned int i;
  unsigned int size = VEC_length (varinfo_t, varmap);
  struct scc_info *si = init_scc_info ();

  for (i = 0; i != size; ++i)
    if (!TEST_BIT (si->visited, i) && get_varinfo (i)->node == i)
      scc_visit (graph, si, i);
  process_unification_queue (graph, si, update_changed);
  free_scc_info (si);
}

/* Compute a topological ordering for GRAPH, and store the result in the
   topo_info structure TI.  */

static void 
compute_topo_order (constraint_graph_t graph,
		    struct topo_info *ti)
{
  unsigned int i;
  unsigned int size = VEC_length (varinfo_t, varmap);
  
  for (i = 0; i != size; ++i)
    if (!TEST_BIT (ti->visited, i) && get_varinfo (i)->node == i)
      topo_visit (graph, ti, i);
}

/* Return true if bitmap B is empty, or a bitmap other than bit 0 is set. */

static bool
bitmap_other_than_zero_bit_set (bitmap b)
{
  unsigned int i;
  bitmap_iterator bi;

  if (bitmap_empty_p (b))
    return false;
  EXECUTE_IF_SET_IN_BITMAP (b, 1, i, bi)
    return true;
  return false;
}

/* Perform offline variable substitution.
   
   This is a linear time way of identifying variables that must have
   equivalent points-to sets, including those caused by static cycles,
   and single entry subgraphs, in the constraint graph.

   The technique is described in "Off-line variable substitution for
   scaling points-to analysis" by Atanas Rountev and Satish Chandra,
   in "ACM SIGPLAN Notices" volume 35, number 5, pages 47-56.  */

static void
perform_var_substitution (constraint_graph_t graph)
{
  struct topo_info *ti = init_topo_info ();
 
  /* Compute the topological ordering of the graph, then visit each
     node in topological order.  */
  compute_topo_order (graph, ti);
 
  while (VEC_length (unsigned, ti->topo_order) != 0)
    {
      unsigned int i = VEC_pop (unsigned, ti->topo_order);
      unsigned int pred;
      varinfo_t vi = get_varinfo (i);
      bool okay_to_elim = false;
      unsigned int root = VEC_length (varinfo_t, varmap);
      VEC(constraint_edge_t,heap) *predvec = graph->preds[i];
      constraint_edge_t ce;
      bitmap tmp;

      /* We can't eliminate things whose address is taken, or which is
	 the target of a dereference.  */
      if (vi->address_taken || vi->indirect_target)
	continue;

      /* See if all predecessors of I are ripe for elimination */
      for (pred = 0; VEC_iterate (constraint_edge_t, predvec, pred, ce); pred++)
	{
	  bitmap weight;
	  unsigned int w;
	  weight = get_graph_weights (graph, *ce);
	
	  /* We can't eliminate variables that have nonzero weighted
	     edges between them.  */
	  if (bitmap_other_than_zero_bit_set (weight))
	    {
	      okay_to_elim = false;
	      break;
	    }
	  w = get_varinfo (ce->dest)->node;

	  /* We can't eliminate the node if one of the predecessors is
	     part of a different strongly connected component.  */
	  if (!okay_to_elim)
	    {
	      root = w;
	      okay_to_elim = true;
	    }
	  else if (w != root)
	    {
	      okay_to_elim = false;
	      break;
	    }

	  /* Theorem 4 in Rountev and Chandra: If i is a direct node,
	     then Solution(i) is a subset of Solution (w), where w is a
	     predecessor in the graph.  
	     Corollary: If all predecessors of i have the same
	     points-to set, then i has that same points-to set as
	     those predecessors.  */
	  tmp = BITMAP_ALLOC (NULL);
	  bitmap_and_compl (tmp, get_varinfo (i)->solution,
			    get_varinfo (w)->solution);
	  if (!bitmap_empty_p (tmp))
	    {
	      okay_to_elim = false;
	      BITMAP_FREE (tmp);
	      break;
	    }
	  BITMAP_FREE (tmp);
	}

      /* See if the root is different than the original node. 
	 If so, we've found an equivalence.  */
      if (root != get_varinfo (i)->node && okay_to_elim)
	{
	  /* Found an equivalence */
	  get_varinfo (i)->node = root;
	  collapse_nodes (graph, root, i);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Collapsing %s into %s\n",
		     get_varinfo (i)->name,
		     get_varinfo (root)->name);
	  stats.collapsed_vars++;
	}
    }

  free_topo_info (ti);
}


/* Solve the constraint graph GRAPH using our worklist solver.
   This is based on the PW* family of solvers from the "Efficient Field
   Sensitive Pointer Analysis for C" paper.
   It works by iterating over all the graph nodes, processing the complex
   constraints and propagating the copy constraints, until everything stops
   changed.  This corresponds to steps 6-8 in the solving list given above.  */

static void
solve_graph (constraint_graph_t graph)
{
  unsigned int size = VEC_length (varinfo_t, varmap);
  unsigned int i;

  changed_count = size;
  changed = sbitmap_alloc (size);
  sbitmap_ones (changed);
  
  /* The already collapsed/unreachable nodes will never change, so we
     need to  account for them in changed_count.  */
  for (i = 0; i < size; i++)
    if (get_varinfo (i)->node != i)
      changed_count--;
  
  while (changed_count > 0)
    {
      unsigned int i;
      struct topo_info *ti = init_topo_info ();
      stats.iterations++;
      
      bitmap_obstack_initialize (&iteration_obstack);
      
      if (edge_added)
	{
	  /* We already did cycle elimination once, when we did
	     variable substitution, so we don't need it again for the
	     first iteration.  */
	  if (stats.iterations > 1)
	    find_and_collapse_graph_cycles (graph, true);
	  
	  edge_added = false;
	}

      compute_topo_order (graph, ti);

      while (VEC_length (unsigned, ti->topo_order) != 0)
	{
	  i = VEC_pop (unsigned, ti->topo_order);
	  gcc_assert (get_varinfo (i)->node == i);

	  /* If the node has changed, we need to process the
	     complex constraints and outgoing edges again.  */
	  if (TEST_BIT (changed, i))
	    {
	      unsigned int j;
	      constraint_t c;
	      constraint_edge_t e;
	      bitmap solution;
	      VEC(constraint_t,heap) *complex = get_varinfo (i)->complex;
	      VEC(constraint_edge_t,heap) *succs;

	      RESET_BIT (changed, i);
	      changed_count--;

	      /* Process the complex constraints */
	      solution = get_varinfo (i)->solution;
	      for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
		do_complex_constraint (graph, c, solution);

	      /* Propagate solution to all successors.  */
	      succs = graph->succs[i];
	      for (j = 0; VEC_iterate (constraint_edge_t, succs, j, e); j++)
		{
		  bitmap tmp = get_varinfo (e->dest)->solution;
		  bool flag = false;
		  unsigned int k;
		  bitmap weights = e->weights;
		  bitmap_iterator bi;

		  gcc_assert (!bitmap_empty_p (weights));
		  EXECUTE_IF_SET_IN_BITMAP (weights, 0, k, bi)
		    flag |= set_union_with_increment (tmp, solution, k);

		  if (flag)
		    {
		      get_varinfo (e->dest)->solution = tmp;		    
		      if (!TEST_BIT (changed, e->dest))
			{
			  SET_BIT (changed, e->dest);
			  changed_count++;
			}
		    }
		}
	    }
	}
      free_topo_info (ti);
      bitmap_obstack_release (&iteration_obstack);
    }

  sbitmap_free (changed);
}


/* CONSTRAINT AND VARIABLE GENERATION FUNCTIONS */

/* Map from trees to variable ids.  */    
static htab_t id_for_tree;

typedef struct tree_id
{
  tree t;
  unsigned int id;
} *tree_id_t;

/* Hash a tree id structure.  */

static hashval_t 
tree_id_hash (const void *p)
{
  const tree_id_t ta = (tree_id_t) p;
  return htab_hash_pointer (ta->t);
}

/* Return true if the tree in P1 and the tree in P2 are the same.  */

static int
tree_id_eq (const void *p1, const void *p2)
{
  const tree_id_t ta1 = (tree_id_t) p1;
  const tree_id_t ta2 = (tree_id_t) p2;
  return ta1->t == ta2->t;
}

/* Insert ID as the variable id for tree T in the hashtable.  */

static void 
insert_id_for_tree (tree t, int id)
{
  void **slot;
  struct tree_id finder;
  tree_id_t new_pair;
  
  finder.t = t;
  slot = htab_find_slot (id_for_tree, &finder, INSERT);
  gcc_assert (*slot == NULL);
  new_pair = xmalloc (sizeof (struct tree_id));
  new_pair->t = t;
  new_pair->id = id;
  *slot = (void *)new_pair;
}

/* Find the variable id for tree T in ID_FOR_TREE.  If T does not
   exist in the hash table, return false, otherwise, return true and
   set *ID to the id we found.  */

static bool
lookup_id_for_tree (tree t, unsigned int *id)
{
  tree_id_t pair;
  struct tree_id finder;

  finder.t = t;
  pair = htab_find (id_for_tree,  &finder);
  if (pair == NULL)
    return false;
  *id = pair->id;
  return true;
}

/* Return a printable name for DECL  */

static const char *
alias_get_name (tree decl)
{
  const char *res = get_name (decl);
  char *temp;
  int num_printed = 0;

  if (res != NULL)
    return res;

  res = "NULL";
  if (TREE_CODE (decl) == SSA_NAME)
    {
      num_printed = asprintf (&temp, "%s_%u", 
			      alias_get_name (SSA_NAME_VAR (decl)),
			      SSA_NAME_VERSION (decl));
    }
  else if (DECL_P (decl))
    {
      num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
    }
  if (num_printed > 0)
    {
      res = ggc_strdup (temp);
      free (temp);
    }
  return res;
}

/* Find the variable id for tree T in the hashtable.
   If T doesn't exist in the hash table, create an entry for it.  */

static unsigned int
get_id_for_tree (tree t)
{
  tree_id_t pair;
  struct tree_id finder;

  finder.t = t;
  pair = htab_find (id_for_tree,  &finder);
  if (pair == NULL)
    return create_variable_info_for (t, alias_get_name (t));
  
  return pair->id;
}

/* Get a constraint expression from an SSA_VAR_P node.  */

static struct constraint_expr
get_constraint_exp_from_ssa_var (tree t)
{
  struct constraint_expr cexpr;

  gcc_assert (SSA_VAR_P (t) || DECL_P (t));

  /* For parameters, get at the points-to set for the actual parm
     decl.  */
  if (TREE_CODE (t) == SSA_NAME 
      && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL 
      && default_def (SSA_NAME_VAR (t)) == t)
    return get_constraint_exp_from_ssa_var (SSA_NAME_VAR (t));

  cexpr.type = SCALAR;
  
  cexpr.var = get_id_for_tree (t);
  /* If we determine the result is "anything", and we know this is readonly,
     say it points to readonly memory instead.  */
  if (cexpr.var == anything_id && TREE_READONLY (t))
    {
      cexpr.type = ADDRESSOF;
      cexpr.var = readonly_id;
    }
    
  cexpr.offset = 0;
  return cexpr;
}

/* Process a completed constraint T, and add it to the constraint
   list.  */

static void
process_constraint (constraint_t t)
{
  struct constraint_expr rhs = t->rhs;
  struct constraint_expr lhs = t->lhs;
  
  gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
  gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));

  /* ANYTHING == ANYTHING is pointless.  */
  if (lhs.var == anything_id && rhs.var == anything_id)
    return;

  /* If we have &ANYTHING = something, convert to SOMETHING = &ANYTHING) */
  else if (lhs.var == anything_id && lhs.type == ADDRESSOF)
    {
      rhs = t->lhs;
      t->lhs = t->rhs;
      t->rhs = rhs;
      process_constraint (t);
    }   
  /* This can happen in our IR with things like n->a = *p */
  else if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
    {
      /* Split into tmp = *rhs, *lhs = tmp */
      tree rhsdecl = get_varinfo (rhs.var)->decl;
      tree pointertype = TREE_TYPE (rhsdecl);
      tree pointedtotype = TREE_TYPE (pointertype);
      tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
      struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
      
      /* If this is an aggregate of known size, we should have passed
	 this off to do_structure_copy, and it should have broken it
	 up.  */
      gcc_assert (!AGGREGATE_TYPE_P (pointedtotype) 
		  || get_varinfo (rhs.var)->is_unknown_size_var);
      
      process_constraint (new_constraint (tmplhs, rhs));
      process_constraint (new_constraint (lhs, tmplhs));
    }
  else if (rhs.type == ADDRESSOF)
    {
      varinfo_t vi;
      gcc_assert (rhs.offset == 0);
      
      for (vi = get_varinfo (rhs.var); vi != NULL; vi = vi->next)
	vi->address_taken = true;

      VEC_safe_push (constraint_t, heap, constraints, t);
    }
  else
    {
      if (lhs.type != DEREF && rhs.type == DEREF)
	get_varinfo (lhs.var)->indirect_target = true;
      VEC_safe_push (constraint_t, heap, constraints, t);
    }
}


/* Return the position, in bits, of FIELD_DECL from the beginning of its
   structure.  */

static unsigned HOST_WIDE_INT
bitpos_of_field (const tree fdecl)
{

  if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
      || TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
    return -1;
  
  return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8) 
         + tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
}


/* Return true if an access to [ACCESSPOS, ACCESSSIZE]
   overlaps with a field at [FIELDPOS, FIELDSIZE] */

static bool
offset_overlaps_with_access (const unsigned HOST_WIDE_INT fieldpos,
			     const unsigned HOST_WIDE_INT fieldsize,
			     const unsigned HOST_WIDE_INT accesspos,
			     const unsigned HOST_WIDE_INT accesssize)
{
  if (fieldpos == accesspos && fieldsize == accesssize)
    return true;
  if (accesspos >= fieldpos && accesspos < (fieldpos + fieldsize))
    return true;
  if (accesspos < fieldpos && (accesspos + accesssize > fieldpos))
    return true;
  
  return false;
}

/* Given a COMPONENT_REF T, return the constraint_expr for it.  */

static struct constraint_expr
get_constraint_for_component_ref (tree t)
{
  struct constraint_expr result;
  HOST_WIDE_INT bitsize;
  HOST_WIDE_INT bitpos;
  tree offset;
  enum machine_mode mode;
  int unsignedp;
  int volatilep;
  tree forzero;
  
  result.offset = 0;
  result.type = SCALAR;
  result.var = 0;

  /* Some people like to do cute things like take the address of
     &0->a.b */
  forzero = t;
  while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
      forzero = TREE_OPERAND (forzero, 0);

  if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero)) 
    {
      result.offset = 0;
      result.var = integer_id;
      result.type = SCALAR;
      return result;
    }
 
  t = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
			   &unsignedp, &volatilep, false);
  result = get_constraint_for (t);

  /* This can also happen due to weird offsetof type macros.  */
  if (TREE_CODE (t) != ADDR_EXPR && result.type == ADDRESSOF)
    result.type = SCALAR;
  
  /* If we know where this goes, then yay. Otherwise, booo. */

  if (offset == NULL && bitsize != -1)
    {
      result.offset = bitpos;
    }	
  else
    {
      result.var = anything_id;
      result.offset = 0;      
    }

  if (result.type == SCALAR)
    {
      /* In languages like C, you can access one past the end of an
	 array.  You aren't allowed to dereference it, so we can
	 ignore this constraint. When we handle pointer subtraction,
	 we may have to do something cute here.  */
      
      if (result.offset < get_varinfo (result.var)->fullsize)	
	{
	  /* It's also not true that the constraint will actually start at the
	     right offset, it may start in some padding.  We only care about
	     setting the constraint to the first actual field it touches, so
	     walk to find it.  */ 
	  varinfo_t curr;
	  for (curr = get_varinfo (result.var); curr; curr = curr->next)
	    {
	      if (offset_overlaps_with_access (curr->offset, curr->size,
					       result.offset, bitsize))
		{
		  result.var = curr->id;
		  break;

		}
	    }
	  /* assert that we found *some* field there. The user couldn't be
	     accessing *only* padding.  */
	     
	  gcc_assert (curr);
	}
      else
	if (dump_file && (dump_flags & TDF_DETAILS))
	  fprintf (dump_file, "Access to past the end of variable, ignoring\n");

      result.offset = 0;
    }
  
  return result;
}


/* Dereference the constraint expression CONS, and return the result.
   DEREF (ADDRESSOF) = SCALAR
   DEREF (SCALAR) = DEREF
   DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
   This is needed so that we can handle dereferencing DEREF constraints.  */

static struct constraint_expr
do_deref (struct constraint_expr cons)
{
  if (cons.type == SCALAR)
    {
      cons.type = DEREF;
      return cons;
    }
  else if (cons.type == ADDRESSOF)
    {
      cons.type = SCALAR;
      return cons;
    }
  else if (cons.type == DEREF)
    {
      tree tmpvar = create_tmp_var_raw (ptr_type_node, "derefmp");
      struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
      process_constraint (new_constraint (tmplhs, cons));
      cons.var = tmplhs.var;
      return cons;
    }
  gcc_unreachable ();
}


/* Given a tree T, return the constraint expression for it.  */

static struct constraint_expr
get_constraint_for (tree t)
{
  struct constraint_expr temp;

  /* x = integer is all glommed to a single variable, which doesn't
     point to anything by itself.  That is, of course, unless it is an
     integer constant being treated as a pointer, in which case, we
     will return that this is really the addressof anything.  This
     happens below, since it will fall into the default case. The only
     case we know something about an integer treated like a pointer is
     when it is the NULL pointer, and then we just say it points to
     NULL.  */
  if (TREE_CODE (t) == INTEGER_CST
      && !POINTER_TYPE_P (TREE_TYPE (t)))
    {
      temp.var = integer_id;
      temp.type = SCALAR;
      temp.offset = 0;
      return temp;
    }
  else if (TREE_CODE (t) == INTEGER_CST
	   && integer_zerop (t))
    {
      temp.var = nothing_id;
      temp.type = ADDRESSOF;
      temp.offset = 0;
      return temp;
    }

  switch (TREE_CODE_CLASS (TREE_CODE (t)))
    {
    case tcc_expression:
      {
	switch (TREE_CODE (t))
	  {
	  case ADDR_EXPR:
	    {
	      temp = get_constraint_for (TREE_OPERAND (t, 0));
	       if (temp.type == DEREF)
		 temp.type = SCALAR;
	       else
		 temp.type = ADDRESSOF;
	      return temp;
	    }
	    break;
	  case CALL_EXPR:
	    
	    /* XXX: In interprocedural mode, if we didn't have the
	       body, we would need to do *each pointer argument =
	       &ANYTHING added.  */
	    if (call_expr_flags (t) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA))
	      {
		varinfo_t vi;
		tree heapvar;
		
		heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
		DECL_EXTERNAL (heapvar) = 1;
		add_referenced_tmp_var (heapvar);
		temp.var = create_variable_info_for (heapvar,
						     alias_get_name (heapvar));
		
		vi = get_varinfo (temp.var);
		vi->is_artificial_var = 1;
		vi->is_heap_var = 1;
		temp.type = ADDRESSOF;
		temp.offset = 0;
		return temp;
	      }
	    /* FALLTHRU */
	  default:
	    {
	      temp.type = ADDRESSOF;
	      temp.var = anything_id;
	      temp.offset = 0;
	      return temp;
	    }
	  }
      }
    case tcc_reference:
      {
	switch (TREE_CODE (t))
	  {
	  case INDIRECT_REF:
	    {
	      temp = get_constraint_for (TREE_OPERAND (t, 0));
	      temp = do_deref (temp);
	      return temp;
	    }
	  case ARRAY_REF:
	  case COMPONENT_REF:
	    temp = get_constraint_for_component_ref (t);
	    return temp;
	  default:
	    {
	      temp.type = ADDRESSOF;
	      temp.var = anything_id;
	      temp.offset = 0;
	      return temp;
	    }
	  }
      }
    case tcc_unary:
      {
	switch (TREE_CODE (t))
	  {
	  case NOP_EXPR:
	  case CONVERT_EXPR:
	  case NON_LVALUE_EXPR:
	    {
	      tree op = TREE_OPERAND (t, 0);
	      
	      /* Cast from non-pointer to pointers are bad news for us.
		 Anything else, we see through */
	      if (!(POINTER_TYPE_P (TREE_TYPE (t))
		    && ! POINTER_TYPE_P (TREE_TYPE (op))))
		return get_constraint_for (op);

	      /* FALLTHRU  */
	    }
	  default:
	    {
	      temp.type = ADDRESSOF;
	      temp.var = anything_id;
	      temp.offset = 0;
	      return temp;
	    }
	  }
      }
    case tcc_exceptional:
      {
	switch (TREE_CODE (t))
	  {
	  case PHI_NODE:	   
	    return get_constraint_for (PHI_RESULT (t));
	  case SSA_NAME:
	    return get_constraint_exp_from_ssa_var (t);
	  default:
	    {
	      temp.type = ADDRESSOF;
	      temp.var = anything_id;
	      temp.offset = 0;
	      return temp;
	    }
	  }
      }
    case tcc_declaration:
      return get_constraint_exp_from_ssa_var (t);
    default:
      {
	temp.type = ADDRESSOF;
	temp.var = anything_id;
	temp.offset = 0;
	return temp;
      }
    }
}


/* Handle the structure copy case where we have a simple structure copy
   between LHS and RHS that is of SIZE (in bits) 
  
   For each field of the lhs variable (lhsfield)
     For each field of the rhs variable at lhsfield.offset (rhsfield)
       add the constraint lhsfield = rhsfield
*/

static void
do_simple_structure_copy (const struct constraint_expr lhs,
			  const struct constraint_expr rhs,
			  const unsigned HOST_WIDE_INT size)
{
  varinfo_t p = get_varinfo (lhs.var);
  unsigned HOST_WIDE_INT pstart, last;
  pstart = p->offset;
  last = p->offset + size;
  for (; p && p->offset < last; p = p->next)
    {
      varinfo_t q;
      struct constraint_expr templhs = lhs;
      struct constraint_expr temprhs = rhs;
      unsigned HOST_WIDE_INT fieldoffset;

      templhs.var = p->id;            
      q = get_varinfo (temprhs.var);
      fieldoffset = p->offset - pstart;
      q = first_vi_for_offset (q, q->offset + fieldoffset);
      temprhs.var = q->id;
      process_constraint (new_constraint (templhs, temprhs));
    }
}


/* Handle the structure copy case where we have a  structure copy between a
   aggregate on the LHS and a dereference of a pointer on the RHS
   that is of SIZE (in bits) 
  
   For each field of the lhs variable (lhsfield)
       rhs.offset = lhsfield->offset
       add the constraint lhsfield = rhs
*/

static void
do_rhs_deref_structure_copy (const struct constraint_expr lhs,
			     const struct constraint_expr rhs,
			     const unsigned HOST_WIDE_INT size)
{
  varinfo_t p = get_varinfo (lhs.var);
  unsigned HOST_WIDE_INT pstart,last;
  pstart = p->offset;
  last = p->offset + size;

  for (; p && p->offset < last; p = p->next)
    {
      varinfo_t q;
      struct constraint_expr templhs = lhs;
      struct constraint_expr temprhs = rhs;
      unsigned HOST_WIDE_INT fieldoffset;


      if (templhs.type == SCALAR)
	templhs.var = p->id;      
      else
	templhs.offset = p->offset;
      
      q = get_varinfo (temprhs.var);
      fieldoffset = p->offset - pstart;      
      temprhs.offset += fieldoffset;
      process_constraint (new_constraint (templhs, temprhs));
    }
}

/* Handle the structure copy case where we have a structure copy
   between a aggregate on the RHS and a dereference of a pointer on
   the LHS that is of SIZE (in bits) 

   For each field of the rhs variable (rhsfield)
       lhs.offset = rhsfield->offset
       add the constraint lhs = rhsfield
*/

static void
do_lhs_deref_structure_copy (const struct constraint_expr lhs,
			     const struct constraint_expr rhs,
			     const unsigned HOST_WIDE_INT size)
{
  varinfo_t p = get_varinfo (rhs.var);
  unsigned HOST_WIDE_INT pstart,last;
  pstart = p->offset;
  last = p->offset + size;

  for (; p && p->offset < last; p = p->next)
    {
      varinfo_t q;
      struct constraint_expr templhs = lhs;
      struct constraint_expr temprhs = rhs;
      unsigned HOST_WIDE_INT fieldoffset;


      if (temprhs.type == SCALAR)
	temprhs.var = p->id;      
      else
	temprhs.offset = p->offset;
      
      q = get_varinfo (templhs.var);
      fieldoffset = p->offset - pstart;      
      templhs.offset += fieldoffset;
      process_constraint (new_constraint (templhs, temprhs));
    }
}


/* Handle aggregate copies by expanding into copies of the respective
   fields of the structures.  */

static void
do_structure_copy (tree lhsop, tree rhsop)
{
  struct constraint_expr lhs, rhs, tmp;
  varinfo_t p;
  unsigned HOST_WIDE_INT lhssize;
  unsigned HOST_WIDE_INT rhssize;

  lhs = get_constraint_for (lhsop);  
  rhs = get_constraint_for (rhsop);
  
  /* If we have special var = x, swap it around.  */
  if (lhs.var <= integer_id && !(get_varinfo (rhs.var)->is_special_var))
    {
      tmp = lhs;
      lhs = rhs;
      rhs = tmp;
    }
  
  /*  This is fairly conservative for the RHS == ADDRESSOF case, in that it's
      possible it's something we could handle.  However, most cases falling
      into this are dealing with transparent unions, which are slightly
      weird. */
  if (rhs.type == ADDRESSOF && !(get_varinfo (rhs.var)->is_special_var))
    {
      rhs.type = ADDRESSOF;
      rhs.var = anything_id;
    }

  /* If the RHS is a special var, or an addressof, set all the LHS fields to
     that special var.  */
  if (rhs.var <= integer_id)
    {
      for (p = get_varinfo (lhs.var); p; p = p->next)
	{
	  struct constraint_expr templhs = lhs;
	  struct constraint_expr temprhs = rhs;
	  if (templhs.type == SCALAR )
	    templhs.var = p->id;
	  else
	    templhs.offset += p->offset;
	  process_constraint (new_constraint (templhs, temprhs));
	}
    }
  else
    {
      tree rhstype = TREE_TYPE (rhsop);
      tree lhstype = TREE_TYPE (lhsop);
      tree rhstypesize = TYPE_SIZE (rhstype);
      tree lhstypesize = TYPE_SIZE (lhstype);

      /* If we have a variably sized types on the rhs or lhs, and a deref
	 constraint, add the constraint, lhsconstraint = &ANYTHING.
	 This is conservatively correct because either the lhs is an unknown
	 sized var (if the constraint is SCALAR), or the lhs is a DEREF
	 constraint, and every variable it can point to must be unknown sized
	 anyway, so we don't need to worry about fields at all.  */
      if ((rhs.type == DEREF && TREE_CODE (rhstypesize) != INTEGER_CST)
	  || (lhs.type == DEREF && TREE_CODE (lhstypesize) != INTEGER_CST))
	{
	  rhs.var = anything_id;
	  rhs.type = ADDRESSOF;
	  rhs.offset = 0;
	  process_constraint (new_constraint (lhs, rhs));
	  return;
	}

      /* The size only really matters insofar as we don't set more or less of
	 the variable.  If we hit an unknown size var, the size should be the
	 whole darn thing.  */
      if (get_varinfo (rhs.var)->is_unknown_size_var)
	rhssize = ~0;
      else
	rhssize = TREE_INT_CST_LOW (rhstypesize);

      if (get_varinfo (lhs.var)->is_unknown_size_var)
	lhssize = ~0;
      else
	lhssize = TREE_INT_CST_LOW (lhstypesize);

  
      if (rhs.type == SCALAR && lhs.type == SCALAR)  
	do_simple_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
      else if (lhs.type != DEREF && rhs.type == DEREF)
	do_rhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
      else if (lhs.type == DEREF && rhs.type != DEREF)
	do_lhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
      else
	{
	  tree pointedtotype = lhstype;
	  tree tmpvar;  

	  gcc_assert (rhs.type == DEREF && lhs.type == DEREF);
	  tmpvar = create_tmp_var_raw (pointedtotype, "structcopydereftmp");
	  do_structure_copy (tmpvar, rhsop);
	  do_structure_copy (lhsop, tmpvar);
	}
    }
}


/* Return true if REF, a COMPONENT_REF, has an INDIRECT_REF somewhere
   in it.  */

static inline bool
ref_contains_indirect_ref (tree ref)
{
  while (handled_component_p (ref))
    {
      if (TREE_CODE (ref) == INDIRECT_REF)
	return true;
      ref = TREE_OPERAND (ref, 0);
    }
  return false;
}


/* Update related alias information kept in AI.  This is used when
   building name tags, alias sets and deciding grouping heuristics.
   STMT is the statement to process.  This function also updates
   ADDRESSABLE_VARS.  */

static void
update_alias_info (tree stmt, struct alias_info *ai)
{
  bitmap addr_taken;
  use_operand_p use_p;
  ssa_op_iter iter;
  bool stmt_escapes_p = is_escape_site (stmt, ai);
  tree op;

  /* Mark all the variables whose address are taken by the statement.  */
  addr_taken = addresses_taken (stmt);
  if (addr_taken)
    {
      bitmap_ior_into (addressable_vars, addr_taken);

      /* If STMT is an escape point, all the addresses taken by it are
	 call-clobbered.  */
      if (stmt_escapes_p)
	{
	  bitmap_iterator bi;
	  unsigned i;

	  EXECUTE_IF_SET_IN_BITMAP (addr_taken, 0, i, bi)
	    mark_call_clobbered (referenced_var (i));
	}
    }

  /* Process each operand use.  If an operand may be aliased, keep
     track of how many times it's being used.  For pointers, determine
     whether they are dereferenced by the statement, or whether their
     value escapes, etc.  */
  FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
    {
      tree op, var;
      var_ann_t v_ann;
      struct ptr_info_def *pi;
      bool is_store, is_potential_deref;
      unsigned num_uses, num_derefs;

      op = USE_FROM_PTR (use_p);

      /* If STMT is a PHI node, OP may be an ADDR_EXPR.  If so, add it
	 to the set of addressable variables.  */
      if (TREE_CODE (op) == ADDR_EXPR)
	{
	  gcc_assert (TREE_CODE (stmt) == PHI_NODE);

	  /* PHI nodes don't have annotations for pinning the set
	     of addresses taken, so we collect them here.

	     FIXME, should we allow PHI nodes to have annotations
	     so that they can be treated like regular statements?
	     Currently, they are treated as second-class
	     statements.  */
	  add_to_addressable_set (TREE_OPERAND (op, 0), &addressable_vars);
	  continue;
	}

      /* Ignore constants.  */
      if (TREE_CODE (op) != SSA_NAME)
	continue;

      var = SSA_NAME_VAR (op);
      v_ann = var_ann (var);

      /* If the operand's variable may be aliased, keep track of how
	 many times we've referenced it.  This is used for alias
	 grouping in compute_flow_insensitive_aliasing.  */
      if (may_be_aliased (var))
	NUM_REFERENCES_INC (v_ann);

      /* We are only interested in pointers.  */
      if (!POINTER_TYPE_P (TREE_TYPE (op)))
	continue;

      pi = get_ptr_info (op);

      /* Add OP to AI->PROCESSED_PTRS, if it's not there already.  */
      if (!TEST_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op)))
	{
	  SET_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op));
	  VARRAY_PUSH_TREE (ai->processed_ptrs, op);
	}

      /* If STMT is a PHI node, then it will not have pointer
	 dereferences and it will not be an escape point.  */
      if (TREE_CODE (stmt) == PHI_NODE)
	continue;

      /* Determine whether OP is a dereferenced pointer, and if STMT
	 is an escape point, whether OP escapes.  */
      count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);

      /* Handle a corner case involving address expressions of the
	 form '&PTR->FLD'.  The problem with these expressions is that
	 they do not represent a dereference of PTR.  However, if some
	 other transformation propagates them into an INDIRECT_REF
	 expression, we end up with '*(&PTR->FLD)' which is folded
	 into 'PTR->FLD'.

	 So, if the original code had no other dereferences of PTR,
	 the aliaser will not create memory tags for it, and when
	 &PTR->FLD gets propagated to INDIRECT_REF expressions, the
	 memory operations will receive no V_MAY_DEF/VUSE operands.

	 One solution would be to have count_uses_and_derefs consider
	 &PTR->FLD a dereference of PTR.  But that is wrong, since it
	 is not really a dereference but an offset calculation.

	 What we do here is to recognize these special ADDR_EXPR
	 nodes.  Since these expressions are never GIMPLE values (they
	 are not GIMPLE invariants), they can only appear on the RHS
	 of an assignment and their base address is always an
	 INDIRECT_REF expression.  */
      is_potential_deref = false;
      if (TREE_CODE (stmt) == MODIFY_EXPR
	  && TREE_CODE (TREE_OPERAND (stmt, 1)) == ADDR_EXPR
	  && !is_gimple_val (TREE_OPERAND (stmt, 1)))
	{
	  /* If the RHS if of the form &PTR->FLD and PTR == OP, then
	     this represents a potential dereference of PTR.  */
	  tree rhs = TREE_OPERAND (stmt, 1);
	  tree base = get_base_address (TREE_OPERAND (rhs, 0));
	  if (TREE_CODE (base) == INDIRECT_REF
	      && TREE_OPERAND (base, 0) == op)
	    is_potential_deref = true;
	}

      if (num_derefs > 0 || is_potential_deref)
	{
	  /* Mark OP as dereferenced.  In a subsequent pass,
	     dereferenced pointers that point to a set of
	     variables will be assigned a name tag to alias
	     all the variables OP points to.  */
	  pi->is_dereferenced = 1;

	  /* Keep track of how many time we've dereferenced each
	     pointer.  */
	  NUM_REFERENCES_INC (v_ann);

	  /* If this is a store operation, mark OP as being
	     dereferenced to store, otherwise mark it as being
	     dereferenced to load.  */
	  if (is_store)
	    bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
	  else
	    bitmap_set_bit (ai->dereferenced_ptrs_load, DECL_UID (var));
	}

      if (stmt_escapes_p && num_derefs < num_uses)
	{
	  /* If STMT is an escape point and STMT contains at
	     least one direct use of OP, then the value of OP
	     escapes and so the pointed-to variables need to
	     be marked call-clobbered.  */
	  pi->value_escapes_p = 1;

	  /* If the statement makes a function call, assume
	     that pointer OP will be dereferenced in a store
	     operation inside the called function.  */
	  if (get_call_expr_in (stmt))
	    {
	      bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
	      pi->is_dereferenced = 1;
	    }
	}
    }

  if (TREE_CODE (stmt) == PHI_NODE)
    return;

  /* Update reference counter for definitions to any
     potentially aliased variable.  This is used in the alias
     grouping heuristics.  */
  FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
    {
      tree var = SSA_NAME_VAR (op);
      var_ann_t ann = var_ann (var);
      bitmap_set_bit (ai->written_vars, DECL_UID (var));
      if (may_be_aliased (var))
	NUM_REFERENCES_INC (ann);
      
    }
  
  /* Mark variables in V_MAY_DEF operands as being written to.  */
  FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
    {
      tree var = DECL_P (op) ? op : SSA_NAME_VAR (op);
      bitmap_set_bit (ai->written_vars, DECL_UID (var));
    }
}


/* Handle pointer arithmetic EXPR when creating aliasing constraints.
   Expressions of the type PTR + CST can be handled in two ways:

   1- If the constraint for PTR is ADDRESSOF for a non-structure
      variable, then we can use it directly because adding or
      subtracting a constant may not alter the original ADDRESSOF
      constraint (i.e., pointer arithmetic may not legally go outside
      an object's boundaries).

   2- If the constraint for PTR is ADDRESSOF for a structure variable,
      then if CST is a compile-time constant that can be used as an
      offset, we can determine which sub-variable will be pointed-to
      by the expression.

   Return true if the expression is handled.  For any other kind of
   expression, return false so that each operand can be added as a
   separate constraint by the caller.  */

static bool
handle_ptr_arith (struct constraint_expr lhs, tree expr)
{
  tree op0, op1;
  struct constraint_expr base, offset;

  if (TREE_CODE (expr) != PLUS_EXPR)
    return false;

  op0 = TREE_OPERAND (expr, 0);
  op1 = TREE_OPERAND (expr, 1);

  base = get_constraint_for (op0);

  offset.var = anyoffset_id;
  offset.type = ADDRESSOF;
  offset.offset = 0;

  process_constraint (new_constraint (lhs, base));
  process_constraint (new_constraint (lhs, offset));

  return true;
}


/* Walk statement T setting up aliasing constraints according to the
   references found in T.  This function is the main part of the
   constraint builder.  AI points to auxiliary alias information used
   when building alias sets and computing alias grouping heuristics.  */

static void
find_func_aliases (tree t, struct alias_info *ai)
{
  struct constraint_expr lhs, rhs;

  /* Update various related attributes like escaped addresses, pointer
     dereferences for loads and stores.  This is used when creating
     name tags and alias sets.  */
  update_alias_info (t, ai);

  /* Now build constraints expressions.  */
  if (TREE_CODE (t) == PHI_NODE)
    {
      /* Only care about pointers and structures containing
	 pointers.  */
      if (POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (t)))
	  || AGGREGATE_TYPE_P (TREE_TYPE (PHI_RESULT (t))))
	{
	  int i;

	  lhs = get_constraint_for (PHI_RESULT (t));
	  for (i = 0; i < PHI_NUM_ARGS (t); i++)
	    {
	      rhs = get_constraint_for (PHI_ARG_DEF (t, i));
	      process_constraint (new_constraint (lhs, rhs));
	    }
	}
    }
  else if (TREE_CODE (t) == MODIFY_EXPR)
    {
      tree lhsop = TREE_OPERAND (t, 0);
      tree rhsop = TREE_OPERAND (t, 1);
      int i;	

      if (AGGREGATE_TYPE_P (TREE_TYPE (lhsop)) 
	  && AGGREGATE_TYPE_P (TREE_TYPE (rhsop)))
	{
	  do_structure_copy (lhsop, rhsop);
	}
      else
	{
	  /* Only care about operations with pointers, structures
	     containing pointers, dereferences, and call expressions.  */
	  if (POINTER_TYPE_P (TREE_TYPE (lhsop))
	      || AGGREGATE_TYPE_P (TREE_TYPE (lhsop))
	      || ref_contains_indirect_ref (lhsop)
	      || TREE_CODE (rhsop) == CALL_EXPR)
	    {
	      lhs = get_constraint_for (lhsop);
	      switch (TREE_CODE_CLASS (TREE_CODE (rhsop)))
		{
		  /* RHS that consist of unary operations,
		     exceptional types, or bare decls/constants, get
		     handled directly by get_constraint_for.  */ 
		  case tcc_reference:
		  case tcc_declaration:
		  case tcc_constant:
		  case tcc_exceptional:
		  case tcc_expression:
		  case tcc_unary:
		      {
			rhs = get_constraint_for (rhsop);
			process_constraint (new_constraint (lhs, rhs));

			/* When taking the address of an aggregate
			   type, from the LHS we can access any field
			   of the RHS.  */
			if (rhs.type == ADDRESSOF
			    && !(get_varinfo (rhs.var)->is_special_var)
			    && AGGREGATE_TYPE_P (TREE_TYPE (TREE_TYPE (rhsop))))
			  {
			    rhs.var = anyoffset_id;
			    rhs.type = ADDRESSOF;
			    rhs.offset = 0;
			    process_constraint (new_constraint (lhs, rhs));
			  }
		      }
		    break;

		  case tcc_binary:
		      {
			/* For pointer arithmetic of the form
			   PTR + CST, we can simply use PTR's
			   constraint because pointer arithmetic is
			   not allowed to go out of bounds.  */
			if (handle_ptr_arith (lhs, rhsop))
			  break;
		      }
		    /* FALLTHRU  */

		  /* Otherwise, walk each operand.  Notice that we
		     can't use the operand interface because we need
		     to process expressions other than simple operands
		     (e.g. INDIRECT_REF, ADDR_EXPR, CALL_EXPR).  */
		  default:
		    for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (rhsop)); i++)
		      {
			tree op = TREE_OPERAND (rhsop, i);
			rhs = get_constraint_for (op);
			process_constraint (new_constraint (lhs, rhs));
		      }
		}      
	    }
	}
    }

  /* After promoting variables and computing aliasing we will
     need to re-scan most statements.  FIXME: Try to minimize the
     number of statements re-scanned.  It's not really necessary to
     re-scan *all* statements.  */
  mark_stmt_modified (t);
}


/* Find the first varinfo in the same variable as START that overlaps with
   OFFSET.
   Effectively, walk the chain of fields for the variable START to find the
   first field that overlaps with OFFSET.
   Return NULL if we can't find one.  */

static varinfo_t 
first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
{
  varinfo_t curr = start;
  while (curr)
    {
      /* We may not find a variable in the field list with the actual
	 offset when when we have glommed a structure to a variable.
	 In that case, however, offset should still be within the size
	 of the variable. */
      if (offset >= curr->offset && offset < (curr->offset +  curr->size))
	return curr;
      curr = curr->next;
    }
  return NULL;
}


/* Insert the varinfo FIELD into the field list for BASE, ordered by
   offset.  */

static void
insert_into_field_list (varinfo_t base, varinfo_t field)
{
  varinfo_t prev = base;
  varinfo_t curr = base->next;
  
  if (curr == NULL)
    {
      prev->next = field;
      field->next = NULL;
    }
  else
    {
      while (curr)
	{
	  if (field->offset <= curr->offset)
	    break;
	  prev = curr;
	  curr = curr->next;
	}
      field->next = prev->next;
      prev->next = field;
    }
}

/* qsort comparison function for two fieldoff's PA and PB */

static int 
fieldoff_compare (const void *pa, const void *pb)
{
  const fieldoff_s *foa = (const fieldoff_s *)pa;
  const fieldoff_s *fob = (const fieldoff_s *)pb;
  HOST_WIDE_INT foasize, fobsize;
  
  if (foa->offset != fob->offset)
    return foa->offset - fob->offset;

  foasize = TREE_INT_CST_LOW (DECL_SIZE (foa->field));
  fobsize = TREE_INT_CST_LOW (DECL_SIZE (fob->field));
  return foasize - fobsize;
}

/* Sort a fieldstack according to the field offset and sizes.  */
void sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
{
  qsort (VEC_address (fieldoff_s, fieldstack), 
	 VEC_length (fieldoff_s, fieldstack), 
	 sizeof (fieldoff_s),
	 fieldoff_compare);
}

/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields
   of TYPE onto fieldstack, recording their offsets along the way.
   OFFSET is used to keep track of the offset in this entire structure, rather
   than just the immediately containing structure.  Returns the number
   of fields pushed.
   HAS_UNION is set to true if we find a union type as a field of
   TYPE.  */

int
push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack, 
			     HOST_WIDE_INT offset, bool *has_union)
{
  tree field;
  int count = 0;

  for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL)
      {
	bool push = false;
	int pushed = 0;
	
	if (has_union 
	    && (TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
		|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
	  *has_union = true;
	
	if (!var_can_have_subvars (field))
	  push = true;
	else if (!(pushed = push_fields_onto_fieldstack
		   (TREE_TYPE (field), fieldstack,
		    offset + bitpos_of_field (field), has_union))
		 && DECL_SIZE (field)
		 && !integer_zerop (DECL_SIZE (field)))
	  /* Empty structures may have actual size, like in C++. So
	     see if we didn't push any subfields and the size is
	     nonzero, push the field onto the stack */
	  push = true;
	
	if (push)
	  {
	    fieldoff_s *pair;

	    pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
	    pair->field = field;
	    pair->offset = offset + bitpos_of_field (field);
	    count++;
	  }
	else
	  count += pushed;
      }

  return count;
}

static void
make_constraint_to_anything (varinfo_t vi)
{
  struct constraint_expr lhs, rhs;
  
  lhs.var = vi->id;
  lhs.offset = 0;
  lhs.type = SCALAR;
  
  rhs.var = anything_id;
  rhs.offset =0 ;
  rhs.type = ADDRESSOF;
  process_constraint (new_constraint (lhs, rhs));
}

/* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
   This will also create any varinfo structures necessary for fields
   of DECL.  */

static unsigned int
create_variable_info_for (tree decl, const char *name)
{
  unsigned int index = VEC_length (varinfo_t, varmap);
  varinfo_t vi;
  tree decltype = TREE_TYPE (decl);
  bool notokay = false;
  bool hasunion;
  bool is_global = DECL_P (decl) ? is_global_var (decl) : false;
  VEC (fieldoff_s,heap) *fieldstack = NULL;
  

  hasunion = TREE_CODE (decltype) == UNION_TYPE
             || TREE_CODE (decltype) == QUAL_UNION_TYPE;
  if (var_can_have_subvars (decl) && use_field_sensitive && !hasunion)
    {
      push_fields_onto_fieldstack (decltype, &fieldstack, 0, &hasunion);
      if (hasunion)
	{
	  VEC_free (fieldoff_s, heap, fieldstack);
	  notokay = true;
	}	 
    }
  

  /* If the variable doesn't have subvars, we may end up needing to
     sort the field list and create fake variables for all the
     fields.  */
  vi = new_var_info (decl, index, name, index);
  vi->decl = decl;
  vi->offset = 0;
  vi->has_union = hasunion;
  if (!TYPE_SIZE (decltype) 
      || TREE_CODE (TYPE_SIZE (decltype)) != INTEGER_CST
      || TREE_CODE (decltype) == ARRAY_TYPE
      || TREE_CODE (decltype) == UNION_TYPE
      || TREE_CODE (decltype) == QUAL_UNION_TYPE)
    {
      vi->is_unknown_size_var = true;
      vi->fullsize = ~0;
      vi->size = ~0;
    }
  else
    {
      vi->fullsize = TREE_INT_CST_LOW (TYPE_SIZE (decltype));
      vi->size = vi->fullsize;
    }
  
  insert_id_for_tree (vi->decl, index);  
  VEC_safe_push (varinfo_t, heap, varmap, vi);
  if (is_global)
    make_constraint_to_anything (vi);

  stats.total_vars++;
  if (use_field_sensitive 
      && !notokay 
      && !vi->is_unknown_size_var 
      && var_can_have_subvars (decl))
    {
      unsigned int newindex = VEC_length (varinfo_t, varmap);
      fieldoff_s *fo = NULL;
      unsigned int i;
      tree field;

      for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
	{
	  if (!DECL_SIZE (fo->field) 
	      || TREE_CODE (DECL_SIZE (fo->field)) != INTEGER_CST
	      || TREE_CODE (TREE_TYPE (fo->field)) == ARRAY_TYPE
	      || fo->offset < 0)
	    {
	      notokay = true;
	      break;
	    }
	}

      /* We can't sort them if we have a field with a variable sized type,
	 which will make notokay = true.  In that case, we are going to return
	 without creating varinfos for the fields anyway, so sorting them is a
	 waste to boot.  */
      if (!notokay)	
	sort_fieldstack (fieldstack);
      
      if (VEC_length (fieldoff_s, fieldstack) != 0)
	fo = VEC_index (fieldoff_s, fieldstack, 0);

      if (fo == NULL || notokay)
	{
	  vi->is_unknown_size_var = 1;
	  vi->fullsize = ~0;
	  vi->size = ~0;
	  VEC_free (fieldoff_s, heap, fieldstack);
	  return index;
	}
      
      field = fo->field;
      vi->size = TREE_INT_CST_LOW (DECL_SIZE (field));
      vi->offset = fo->offset;
      for (i = 1; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
	{
	  varinfo_t newvi;
	  const char *newname;
	  char *tempname;

	  field = fo->field;
	  newindex = VEC_length (varinfo_t, varmap);
	  asprintf (&tempname, "%s.%s", vi->name, alias_get_name (field));
	  newname = ggc_strdup (tempname);
	  free (tempname);
	  newvi = new_var_info (decl, newindex, newname, newindex);
	  newvi->offset = fo->offset;
	  newvi->size = TREE_INT_CST_LOW (DECL_SIZE (field));
	  newvi->fullsize = vi->fullsize;
	  insert_into_field_list (vi, newvi);
	  VEC_safe_push (varinfo_t, heap, varmap, newvi);
	  if (is_global)
	    make_constraint_to_anything (newvi);

	  stats.total_vars++;	  
	}
      VEC_free (fieldoff_s, heap, fieldstack);
    }
  return index;
}

/* Print out the points-to solution for VAR to FILE.  */

void
dump_solution_for_var (FILE *file, unsigned int var)
{
  varinfo_t vi = get_varinfo (var);
  unsigned int i;
  bitmap_iterator bi; 
  
  fprintf (file, "%s = { ", vi->name);
  EXECUTE_IF_SET_IN_BITMAP (get_varinfo (vi->node)->solution, 0, i, bi)
    {
      fprintf (file, "%s ", get_varinfo (i)->name);
    }
  fprintf (file, "}\n");
}

/* Print the points-to solution for VAR to stdout.  */

void
debug_solution_for_var (unsigned int var)
{
  dump_solution_for_var (stdout, var);
}


/* Create varinfo structures for all of the variables in the
   function for intraprocedural mode.  */

static void
intra_create_variable_infos (void)
{
  tree t;

  /* For each incoming argument arg, ARG = &ANYTHING */
  for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
    {
      struct constraint_expr lhs;
      struct constraint_expr rhs;
      varinfo_t p;
      
      lhs.offset = 0;
      lhs.type = SCALAR;
      lhs.var  = create_variable_info_for (t, alias_get_name (t));
      
      rhs.var = anything_id;
      rhs.type = ADDRESSOF;
      rhs.offset = 0;

      for (p = get_varinfo (lhs.var); p; p = p->next)
	{
	  struct constraint_expr temp = lhs;
	  temp.var = p->id;
	  process_constraint (new_constraint (temp, rhs));
	}
    }	

}

/* Set bits in INTO corresponding to the variable uids in solution set
   FROM  */

static void
set_uids_in_ptset (bitmap into, bitmap from)
{
  unsigned int i;
  bitmap_iterator bi;
  bool found_anyoffset = false;
  subvar_t sv;

  EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      /* If we find ANYOFFSET in the solution and the solution
	 includes SFTs for some structure, then all the SFTs in that
	 structure will need to be added to the alias set.  */
      if (vi->id == anyoffset_id)
	{
	  found_anyoffset = true;
	  continue;
	}

      /* The only artificial variables that are allowed in a may-alias
	 set are heap variables.  */
      if (vi->is_artificial_var && !vi->is_heap_var)
	continue;
      
      if (vi->has_union && get_subvars_for_var (vi->decl) != NULL)
	{
	  /* Variables containing unions may need to be converted to
	     their SFT's, because SFT's can have unions and we cannot.  */
	  for (sv = get_subvars_for_var (vi->decl); sv; sv = sv->next)
	    bitmap_set_bit (into, DECL_UID (sv->var));
	}
      else if (TREE_CODE (vi->decl) == VAR_DECL 
	       || TREE_CODE (vi->decl) == PARM_DECL)
	{
	  if (found_anyoffset
	      && var_can_have_subvars (vi->decl)
	      && get_subvars_for_var (vi->decl))
	    {
	      /* If ANYOFFSET is in the solution set and VI->DECL is
		 an aggregate variable with sub-variables, then any of
		 the SFTs inside VI->DECL may have been accessed.  Add
		 all the sub-vars for VI->DECL.  */
	      for (sv = get_subvars_for_var (vi->decl); sv; sv = sv->next)
		bitmap_set_bit (into, DECL_UID (sv->var));
	    }
	  else if (var_can_have_subvars (vi->decl)
		   && get_subvars_for_var (vi->decl))
	    {
	      /* If VI->DECL is an aggregate for which we created
		 SFTs, add the SFT corresponding to VI->OFFSET.  */
	      tree sft = get_subvar_at (vi->decl, vi->offset);
	      bitmap_set_bit (into, DECL_UID (sft));
	    }
	  else
	    {
	      /* Otherwise, just add VI->DECL to the alias set.  */
	      bitmap_set_bit (into, DECL_UID (vi->decl));
	    }
	}
    }
}


static bool have_alias_info = false;

/* Given a pointer variable P, fill in its points-to set, or return
   false if we can't.  */

bool
find_what_p_points_to (tree p)
{
  unsigned int id = 0;

  if (!have_alias_info)
    return false;

  if (lookup_id_for_tree (p, &id))
    {
      varinfo_t vi = get_varinfo (id);
      
      if (vi->is_artificial_var)
	return false;

      /* See if this is a field or a structure.  */
      if (vi->size != vi->fullsize)
	{
	  /* Nothing currently asks about structure fields directly,
	     but when they do, we need code here to hand back the
	     points-to set.  */
	  if (!var_can_have_subvars (vi->decl)
	      || get_subvars_for_var (vi->decl) == NULL)
	    return false;
	} 
      else
	{
	  struct ptr_info_def *pi = get_ptr_info (p);
	  unsigned int i;
	  bitmap_iterator bi;

	  /* This variable may have been collapsed, let's get the real
	     variable.  */
	  vi = get_varinfo (vi->node);
	  
	  /* Translate artificial variables into SSA_NAME_PTR_INFO
	     attributes.  */
	  EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
	    {
	      varinfo_t vi = get_varinfo (i);

	      if (vi->is_artificial_var)
		{
		  /* FIXME.  READONLY should be handled better so that
		     flow insensitive aliasing can disregard writable
		     aliases.  */
		  if (vi->id == nothing_id)
		    pi->pt_null = 1;
		  else if (vi->id == anything_id)
		    pi->pt_anything = 1;
		  else if (vi->id == readonly_id)
		    pi->pt_anything = 1;
		  else if (vi->id == integer_id)
		    pi->pt_anything = 1;
		  else if (vi->is_heap_var)
		    pi->pt_global_mem = 1;
		}
	    }

	  if (pi->pt_anything)
	    return false;

	  if (!pi->pt_vars)
	    pi->pt_vars = BITMAP_GGC_ALLOC ();

	  set_uids_in_ptset (pi->pt_vars, vi->solution);

	  if (bitmap_empty_p (pi->pt_vars))
	    pi->pt_vars = NULL;

	  return true;
	}
    }

  return false;
}


/* Initialize things necessary to perform PTA */

static void
init_alias_vars (void)
{
  bitmap_obstack_initialize (&ptabitmap_obstack);
}


/* Dump points-to information to OUTFILE.  */

void
dump_sa_points_to_info (FILE *outfile)
{
  unsigned int i;

  fprintf (outfile, "\nPoints-to sets\n\n");

  if (dump_flags & TDF_STATS)
    {
      fprintf (outfile, "Stats:\n");
      fprintf (outfile, "Total vars:               %d\n", stats.total_vars);
      fprintf (outfile, "Statically unified vars:  %d\n",
	       stats.unified_vars_static);
      fprintf (outfile, "Collapsed vars:           %d\n", stats.collapsed_vars);
      fprintf (outfile, "Dynamically unified vars: %d\n",
	       stats.unified_vars_dynamic);
      fprintf (outfile, "Iterations:               %d\n", stats.iterations);
    }

  for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
    dump_solution_for_var (outfile, i);
}


/* Debug points-to information to stderr.  */

void
debug_sa_points_to_info (void)
{
  dump_sa_points_to_info (stderr);
}


/* Initialize the always-existing constraint variables for NULL
   ANYTHING, READONLY, and INTEGER */

static void
init_base_vars (void)
{
  struct constraint_expr lhs, rhs;

  /* Create the NULL variable, used to represent that a variable points
     to NULL.  */
  nothing_tree = create_tmp_var_raw (void_type_node, "NULL");
  var_nothing = new_var_info (nothing_tree, 0, "NULL", 0);
  insert_id_for_tree (nothing_tree, 0);
  var_nothing->is_artificial_var = 1;
  var_nothing->offset = 0;
  var_nothing->size = ~0;
  var_nothing->fullsize = ~0;
  var_nothing->is_special_var = 1;
  nothing_id = 0;
  VEC_safe_push (varinfo_t, heap, varmap, var_nothing);

  /* Create the ANYTHING variable, used to represent that a variable
     points to some unknown piece of memory.  */
  anything_tree = create_tmp_var_raw (void_type_node, "ANYTHING");
  var_anything = new_var_info (anything_tree, 1, "ANYTHING", 1); 
  insert_id_for_tree (anything_tree, 1);
  var_anything->is_artificial_var = 1;
  var_anything->size = ~0;
  var_anything->offset = 0;
  var_anything->next = NULL;
  var_anything->fullsize = ~0;
  var_anything->is_special_var = 1;
  anything_id = 1;

  /* Anything points to anything.  This makes deref constraints just
     work in the presence of linked list and other p = *p type loops, 
     by saying that *ANYTHING = ANYTHING. */
  VEC_safe_push (varinfo_t, heap, varmap, var_anything);
  lhs.type = SCALAR;
  lhs.var = anything_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = anything_id;
  rhs.offset = 0;
  var_anything->address_taken = true;

  /* This specifically does not use process_constraint because
     process_constraint ignores all anything = anything constraints, since all
     but this one are redundant.  */
  VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
  
  /* Create the READONLY variable, used to represent that a variable
     points to readonly memory.  */
  readonly_tree = create_tmp_var_raw (void_type_node, "READONLY");
  var_readonly = new_var_info (readonly_tree, 2, "READONLY", 2);
  var_readonly->is_artificial_var = 1;
  var_readonly->offset = 0;
  var_readonly->size = ~0;
  var_readonly->fullsize = ~0;
  var_readonly->next = NULL;
  var_readonly->is_special_var = 1;
  insert_id_for_tree (readonly_tree, 2);
  readonly_id = 2;
  VEC_safe_push (varinfo_t, heap, varmap, var_readonly);

  /* readonly memory points to anything, in order to make deref
     easier.  In reality, it points to anything the particular
     readonly variable can point to, but we don't track this
     separately. */
  lhs.type = SCALAR;
  lhs.var = readonly_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = anything_id;
  rhs.offset = 0;
  
  process_constraint (new_constraint (lhs, rhs));
  
  /* Create the INTEGER variable, used to represent that a variable points
     to an INTEGER.  */
  integer_tree = create_tmp_var_raw (void_type_node, "INTEGER");
  var_integer = new_var_info (integer_tree, 3, "INTEGER", 3);
  insert_id_for_tree (integer_tree, 3);
  var_integer->is_artificial_var = 1;
  var_integer->size = ~0;
  var_integer->fullsize = ~0;
  var_integer->offset = 0;
  var_integer->next = NULL;
  var_integer->is_special_var = 1;
  integer_id = 3;
  VEC_safe_push (varinfo_t, heap, varmap, var_integer);

  /* *INTEGER = ANYTHING, because we don't know where a dereference of a random
     integer will point to.  */
  lhs.type = SCALAR;
  lhs.var = integer_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = anything_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));

  /* Create the ANYOFFSET variable, used to represent an arbitrary offset
     inside an object.  This is similar to ANYTHING, but less drastic.
     It means that the pointer can point anywhere inside an object,
     but not outside of it.  */
  anyoffset_tree = create_tmp_var_raw (void_type_node, "ANYOFFSET");
  anyoffset_id = 4;
  var_anyoffset = new_var_info (anyoffset_tree, anyoffset_id, "ANYOFFSET",
                                anyoffset_id); 
  insert_id_for_tree (anyoffset_tree, anyoffset_id);
  var_anyoffset->is_artificial_var = 1;
  var_anyoffset->size = ~0;
  var_anyoffset->offset = 0;
  var_anyoffset->next = NULL;
  var_anyoffset->fullsize = ~0;
  var_anyoffset->is_special_var = 1;
  VEC_safe_push (varinfo_t, heap, varmap, var_anyoffset);

  /* ANYOFFSET points to ANYOFFSET.  */
  lhs.type = SCALAR;
  lhs.var = anyoffset_id;
  lhs.offset = 0;
  rhs.type = ADDRESSOF;
  rhs.var = anyoffset_id;
  rhs.offset = 0;
  process_constraint (new_constraint (lhs, rhs));
}  

/* Return true if we actually need to solve the constraint graph in order to
   get our points-to sets.  This is false when, for example, no addresses are
   taken other than special vars, or all points-to sets with members already
   contain the anything variable and there are no predecessors for other
   sets.  */

static bool
need_to_solve (void)
{
  int i;
  varinfo_t v;
  bool found_address_taken = false;
  bool found_non_anything = false;

  for (i = 0; VEC_iterate (varinfo_t, varmap, i, v); i++)
    {
      if (v->is_special_var)
	continue;

      if (v->address_taken)
	found_address_taken = true;

      if (v->solution 
	  && !bitmap_empty_p (v->solution) 
	  && !bitmap_bit_p (v->solution, anything_id))
	found_non_anything = true;
      else if (bitmap_empty_p (v->solution)
	       && VEC_length (constraint_edge_t, graph->preds[v->id]) != 0)
	found_non_anything = true;

      if (found_address_taken && found_non_anything)
	return true;
    }

  return false;
}

/* Create points-to sets for the current function.  See the comments
   at the start of the file for an algorithmic overview.  */

void
compute_points_to_sets (struct alias_info *ai)
{
  basic_block bb;

  timevar_push (TV_TREE_PTA);

  init_alias_vars ();

  constraint_pool = create_alloc_pool ("Constraint pool", 
				       sizeof (struct constraint), 30);
  variable_info_pool = create_alloc_pool ("Variable info pool",
					  sizeof (struct variable_info), 30);
  constraint_edge_pool = create_alloc_pool ("Constraint edges",
					    sizeof (struct constraint_edge), 30);
  
  constraints = VEC_alloc (constraint_t, heap, 8);
  varmap = VEC_alloc (varinfo_t, heap, 8);
  id_for_tree = htab_create (10, tree_id_hash, tree_id_eq, free);
  memset (&stats, 0, sizeof (stats));

  init_base_vars ();

  intra_create_variable_infos ();

  /* Now walk all statements and derive aliases.  */
  FOR_EACH_BB (bb)
    {
      block_stmt_iterator bsi; 
      tree phi;

      for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
	if (is_gimple_reg (PHI_RESULT (phi)))
	  find_func_aliases (phi, ai);

      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
	find_func_aliases (bsi_stmt (bsi), ai);
    }

  build_constraint_graph ();

  if (dump_file)
    {
      fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
      dump_constraints (dump_file);
    }
  
  if (need_to_solve ())
    {
      if (dump_file)
	fprintf (dump_file, "\nCollapsing static cycles and doing variable "
		 "substitution:\n");
      
      find_and_collapse_graph_cycles (graph, false);
      perform_var_substitution (graph);
      
      if (dump_file)
	fprintf (dump_file, "\nSolving graph:\n");
      
      solve_graph (graph);
    }
  
  if (dump_file)
    dump_sa_points_to_info (dump_file);
  
  have_alias_info = true;

  timevar_pop (TV_TREE_PTA);
}


/* Delete created points-to sets.  */

void
delete_points_to_sets (void)
{
  varinfo_t v;
  int i;

  htab_delete (id_for_tree);
  bitmap_obstack_release (&ptabitmap_obstack);
  VEC_free (constraint_t, heap, constraints);
  
  for (i = 0; VEC_iterate (varinfo_t, varmap, i, v); i++)
    {
      VEC_free (constraint_edge_t, heap, graph->succs[i]);
      VEC_free (constraint_edge_t, heap, graph->preds[i]);
      VEC_free (constraint_t, heap, v->complex);
    }
  free (graph->succs);
  free (graph->preds);
  free (graph);

  VEC_free (varinfo_t, heap, varmap);
  free_alloc_pool (variable_info_pool);
  free_alloc_pool (constraint_pool); 
  free_alloc_pool (constraint_edge_pool);

  have_alias_info = false;
}