summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-sccvn.c
blob: 925fcf1850328efa720a1e4678bb075e937b19b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
/* SCC value numbering for trees
   Copyright (C) 2006-2013 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dan@dberlin.org>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "stor-layout.h"
#include "basic-block.h"
#include "gimple-pretty-print.h"
#include "tree-inline.h"
#include "gimple.h"
#include "gimplify.h"
#include "gimple-ssa.h"
#include "tree-phinodes.h"
#include "ssa-iterators.h"
#include "stringpool.h"
#include "tree-ssanames.h"
#include "expr.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "dumpfile.h"
#include "hash-table.h"
#include "alloc-pool.h"
#include "flags.h"
#include "cfgloop.h"
#include "params.h"
#include "tree-ssa-propagate.h"
#include "tree-ssa-sccvn.h"

/* This algorithm is based on the SCC algorithm presented by Keith
   Cooper and L. Taylor Simpson in "SCC-Based Value numbering"
   (http://citeseer.ist.psu.edu/41805.html).  In
   straight line code, it is equivalent to a regular hash based value
   numbering that is performed in reverse postorder.

   For code with cycles, there are two alternatives, both of which
   require keeping the hashtables separate from the actual list of
   value numbers for SSA names.

   1. Iterate value numbering in an RPO walk of the blocks, removing
   all the entries from the hashtable after each iteration (but
   keeping the SSA name->value number mapping between iterations).
   Iterate until it does not change.

   2. Perform value numbering as part of an SCC walk on the SSA graph,
   iterating only the cycles in the SSA graph until they do not change
   (using a separate, optimistic hashtable for value numbering the SCC
   operands).

   The second is not just faster in practice (because most SSA graph
   cycles do not involve all the variables in the graph), it also has
   some nice properties.

   One of these nice properties is that when we pop an SCC off the
   stack, we are guaranteed to have processed all the operands coming from
   *outside of that SCC*, so we do not need to do anything special to
   ensure they have value numbers.

   Another nice property is that the SCC walk is done as part of a DFS
   of the SSA graph, which makes it easy to perform combining and
   simplifying operations at the same time.

   The code below is deliberately written in a way that makes it easy
   to separate the SCC walk from the other work it does.

   In order to propagate constants through the code, we track which
   expressions contain constants, and use those while folding.  In
   theory, we could also track expressions whose value numbers are
   replaced, in case we end up folding based on expression
   identities.

   In order to value number memory, we assign value numbers to vuses.
   This enables us to note that, for example, stores to the same
   address of the same value from the same starting memory states are
   equivalent.
   TODO:

   1. We can iterate only the changing portions of the SCC's, but
   I have not seen an SCC big enough for this to be a win.
   2. If you differentiate between phi nodes for loops and phi nodes
   for if-then-else, you can properly consider phi nodes in different
   blocks for equivalence.
   3. We could value number vuses in more cases, particularly, whole
   structure copies.
*/


/* vn_nary_op hashtable helpers.  */

struct vn_nary_op_hasher : typed_noop_remove <vn_nary_op_s>
{
  typedef vn_nary_op_s value_type;
  typedef vn_nary_op_s compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
};

/* Return the computed hashcode for nary operation P1.  */

inline hashval_t
vn_nary_op_hasher::hash (const value_type *vno1)
{
  return vno1->hashcode;
}

/* Compare nary operations P1 and P2 and return true if they are
   equivalent.  */

inline bool
vn_nary_op_hasher::equal (const value_type *vno1, const compare_type *vno2)
{
  return vn_nary_op_eq (vno1, vno2);
}

typedef hash_table <vn_nary_op_hasher> vn_nary_op_table_type;
typedef vn_nary_op_table_type::iterator vn_nary_op_iterator_type;


/* vn_phi hashtable helpers.  */

static int
vn_phi_eq (const_vn_phi_t const vp1, const_vn_phi_t const vp2);

struct vn_phi_hasher
{ 
  typedef vn_phi_s value_type;
  typedef vn_phi_s compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
  static inline void remove (value_type *);
};

/* Return the computed hashcode for phi operation P1.  */

inline hashval_t
vn_phi_hasher::hash (const value_type *vp1)
{
  return vp1->hashcode;
}

/* Compare two phi entries for equality, ignoring VN_TOP arguments.  */

inline bool
vn_phi_hasher::equal (const value_type *vp1, const compare_type *vp2)
{
  return vn_phi_eq (vp1, vp2);
}

/* Free a phi operation structure VP.  */

inline void
vn_phi_hasher::remove (value_type *phi)
{
  phi->phiargs.release ();
}

typedef hash_table <vn_phi_hasher> vn_phi_table_type;
typedef vn_phi_table_type::iterator vn_phi_iterator_type;


/* Compare two reference operands P1 and P2 for equality.  Return true if
   they are equal, and false otherwise.  */

static int
vn_reference_op_eq (const void *p1, const void *p2)
{
  const_vn_reference_op_t const vro1 = (const_vn_reference_op_t) p1;
  const_vn_reference_op_t const vro2 = (const_vn_reference_op_t) p2;

  return (vro1->opcode == vro2->opcode
	  /* We do not care for differences in type qualification.  */
	  && (vro1->type == vro2->type
	      || (vro1->type && vro2->type
		  && types_compatible_p (TYPE_MAIN_VARIANT (vro1->type),
					 TYPE_MAIN_VARIANT (vro2->type))))
	  && expressions_equal_p (vro1->op0, vro2->op0)
	  && expressions_equal_p (vro1->op1, vro2->op1)
	  && expressions_equal_p (vro1->op2, vro2->op2));
}

/* Free a reference operation structure VP.  */

static inline void
free_reference (vn_reference_s *vr)
{
  vr->operands.release ();
}


/* vn_reference hashtable helpers.  */

struct vn_reference_hasher
{
  typedef vn_reference_s value_type;
  typedef vn_reference_s compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
  static inline void remove (value_type *);
};

/* Return the hashcode for a given reference operation P1.  */

inline hashval_t
vn_reference_hasher::hash (const value_type *vr1)
{
  return vr1->hashcode;
}

inline bool
vn_reference_hasher::equal (const value_type *v, const compare_type *c)
{
  return vn_reference_eq (v, c);
}

inline void
vn_reference_hasher::remove (value_type *v)
{
  free_reference (v);
}

typedef hash_table <vn_reference_hasher> vn_reference_table_type;
typedef vn_reference_table_type::iterator vn_reference_iterator_type;


/* The set of hashtables and alloc_pool's for their items.  */

typedef struct vn_tables_s
{
  vn_nary_op_table_type nary;
  vn_phi_table_type phis;
  vn_reference_table_type references;
  struct obstack nary_obstack;
  alloc_pool phis_pool;
  alloc_pool references_pool;
} *vn_tables_t;


/* vn_constant hashtable helpers.  */

struct vn_constant_hasher : typed_free_remove <vn_constant_s>
{ 
  typedef vn_constant_s value_type;
  typedef vn_constant_s compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
};

/* Hash table hash function for vn_constant_t.  */

inline hashval_t
vn_constant_hasher::hash (const value_type *vc1)
{
  return vc1->hashcode;
}

/* Hash table equality function for vn_constant_t.  */

inline bool
vn_constant_hasher::equal (const value_type *vc1, const compare_type *vc2)
{
  if (vc1->hashcode != vc2->hashcode)
    return false;

  return vn_constant_eq_with_type (vc1->constant, vc2->constant);
}

static hash_table <vn_constant_hasher> constant_to_value_id;
static bitmap constant_value_ids;


/* Valid hashtables storing information we have proven to be
   correct.  */

static vn_tables_t valid_info;

/* Optimistic hashtables storing information we are making assumptions about
   during iterations.  */

static vn_tables_t optimistic_info;

/* Pointer to the set of hashtables that is currently being used.
   Should always point to either the optimistic_info, or the
   valid_info.  */

static vn_tables_t current_info;


/* Reverse post order index for each basic block.  */

static int *rpo_numbers;

#define SSA_VAL(x) (VN_INFO ((x))->valnum)

/* This represents the top of the VN lattice, which is the universal
   value.  */

tree VN_TOP;

/* Unique counter for our value ids.  */

static unsigned int next_value_id;

/* Next DFS number and the stack for strongly connected component
   detection. */

static unsigned int next_dfs_num;
static vec<tree> sccstack;



/* Table of vn_ssa_aux_t's, one per ssa_name.  The vn_ssa_aux_t objects
   are allocated on an obstack for locality reasons, and to free them
   without looping over the vec.  */

static vec<vn_ssa_aux_t> vn_ssa_aux_table;
static struct obstack vn_ssa_aux_obstack;

/* Return the value numbering information for a given SSA name.  */

vn_ssa_aux_t
VN_INFO (tree name)
{
  vn_ssa_aux_t res = vn_ssa_aux_table[SSA_NAME_VERSION (name)];
  gcc_checking_assert (res);
  return res;
}

/* Set the value numbering info for a given SSA name to a given
   value.  */

static inline void
VN_INFO_SET (tree name, vn_ssa_aux_t value)
{
  vn_ssa_aux_table[SSA_NAME_VERSION (name)] = value;
}

/* Initialize the value numbering info for a given SSA name.
   This should be called just once for every SSA name.  */

vn_ssa_aux_t
VN_INFO_GET (tree name)
{
  vn_ssa_aux_t newinfo;

  newinfo = XOBNEW (&vn_ssa_aux_obstack, struct vn_ssa_aux);
  memset (newinfo, 0, sizeof (struct vn_ssa_aux));
  if (SSA_NAME_VERSION (name) >= vn_ssa_aux_table.length ())
    vn_ssa_aux_table.safe_grow (SSA_NAME_VERSION (name) + 1);
  vn_ssa_aux_table[SSA_NAME_VERSION (name)] = newinfo;
  return newinfo;
}


/* Get the representative expression for the SSA_NAME NAME.  Returns
   the representative SSA_NAME if there is no expression associated with it.  */

tree
vn_get_expr_for (tree name)
{
  vn_ssa_aux_t vn = VN_INFO (name);
  gimple def_stmt;
  tree expr = NULL_TREE;
  enum tree_code code;

  if (vn->valnum == VN_TOP)
    return name;

  /* If the value-number is a constant it is the representative
     expression.  */
  if (TREE_CODE (vn->valnum) != SSA_NAME)
    return vn->valnum;

  /* Get to the information of the value of this SSA_NAME.  */
  vn = VN_INFO (vn->valnum);

  /* If the value-number is a constant it is the representative
     expression.  */
  if (TREE_CODE (vn->valnum) != SSA_NAME)
    return vn->valnum;

  /* Else if we have an expression, return it.  */
  if (vn->expr != NULL_TREE)
    return vn->expr;

  /* Otherwise use the defining statement to build the expression.  */
  def_stmt = SSA_NAME_DEF_STMT (vn->valnum);

  /* If the value number is not an assignment use it directly.  */
  if (!is_gimple_assign (def_stmt))
    return vn->valnum;

  /* FIXME tuples.  This is incomplete and likely will miss some
     simplifications.  */
  code = gimple_assign_rhs_code (def_stmt);
  switch (TREE_CODE_CLASS (code))
    {
    case tcc_reference:
      if ((code == REALPART_EXPR
	   || code == IMAGPART_EXPR
	   || code == VIEW_CONVERT_EXPR)
	  && TREE_CODE (TREE_OPERAND (gimple_assign_rhs1 (def_stmt),
				      0)) == SSA_NAME)
	expr = fold_build1 (code,
			    gimple_expr_type (def_stmt),
			    TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0));
      break;

    case tcc_unary:
      expr = fold_build1 (code,
			  gimple_expr_type (def_stmt),
			  gimple_assign_rhs1 (def_stmt));
      break;

    case tcc_binary:
      expr = fold_build2 (code,
			  gimple_expr_type (def_stmt),
			  gimple_assign_rhs1 (def_stmt),
			  gimple_assign_rhs2 (def_stmt));
      break;

    case tcc_exceptional:
      if (code == CONSTRUCTOR
	  && TREE_CODE
	       (TREE_TYPE (gimple_assign_rhs1 (def_stmt))) == VECTOR_TYPE)
	expr = gimple_assign_rhs1 (def_stmt);
      break;

    default:;
    }
  if (expr == NULL_TREE)
    return vn->valnum;

  /* Cache the expression.  */
  vn->expr = expr;

  return expr;
}

/* Return the vn_kind the expression computed by the stmt should be
   associated with.  */

enum vn_kind
vn_get_stmt_kind (gimple stmt)
{
  switch (gimple_code (stmt))
    {
    case GIMPLE_CALL:
      return VN_REFERENCE;
    case GIMPLE_PHI:
      return VN_PHI;
    case GIMPLE_ASSIGN:
      {
	enum tree_code code = gimple_assign_rhs_code (stmt);
	tree rhs1 = gimple_assign_rhs1 (stmt);
	switch (get_gimple_rhs_class (code))
	  {
	  case GIMPLE_UNARY_RHS:
	  case GIMPLE_BINARY_RHS:
	  case GIMPLE_TERNARY_RHS:
	    return VN_NARY;
	  case GIMPLE_SINGLE_RHS:
	    switch (TREE_CODE_CLASS (code))
	      {
	      case tcc_reference:
		/* VOP-less references can go through unary case.  */
		if ((code == REALPART_EXPR
		     || code == IMAGPART_EXPR
		     || code == VIEW_CONVERT_EXPR
		     || code == BIT_FIELD_REF)
		    && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
		  return VN_NARY;

		/* Fallthrough.  */
	      case tcc_declaration:
		return VN_REFERENCE;

	      case tcc_constant:
		return VN_CONSTANT;

	      default:
		if (code == ADDR_EXPR)
		  return (is_gimple_min_invariant (rhs1)
			  ? VN_CONSTANT : VN_REFERENCE);
		else if (code == CONSTRUCTOR)
		  return VN_NARY;
		return VN_NONE;
	      }
	  default:
	    return VN_NONE;
	  }
      }
    default:
      return VN_NONE;
    }
}

/* Lookup a value id for CONSTANT and return it.  If it does not
   exist returns 0.  */

unsigned int
get_constant_value_id (tree constant)
{
  vn_constant_s **slot;
  struct vn_constant_s vc;

  vc.hashcode = vn_hash_constant_with_type (constant);
  vc.constant = constant;
  slot = constant_to_value_id.find_slot_with_hash (&vc, vc.hashcode, NO_INSERT);
  if (slot)
    return (*slot)->value_id;
  return 0;
}

/* Lookup a value id for CONSTANT, and if it does not exist, create a
   new one and return it.  If it does exist, return it.  */

unsigned int
get_or_alloc_constant_value_id (tree constant)
{
  vn_constant_s **slot;
  struct vn_constant_s vc;
  vn_constant_t vcp;

  vc.hashcode = vn_hash_constant_with_type (constant);
  vc.constant = constant;
  slot = constant_to_value_id.find_slot_with_hash (&vc, vc.hashcode, INSERT);
  if (*slot)
    return (*slot)->value_id;

  vcp = XNEW (struct vn_constant_s);
  vcp->hashcode = vc.hashcode;
  vcp->constant = constant;
  vcp->value_id = get_next_value_id ();
  *slot = vcp;
  bitmap_set_bit (constant_value_ids, vcp->value_id);
  return vcp->value_id;
}

/* Return true if V is a value id for a constant.  */

bool
value_id_constant_p (unsigned int v)
{
  return bitmap_bit_p (constant_value_ids, v);
}

/* Compute the hash for a reference operand VRO1.  */

static hashval_t
vn_reference_op_compute_hash (const vn_reference_op_t vro1, hashval_t result)
{
  result = iterative_hash_hashval_t (vro1->opcode, result);
  if (vro1->op0)
    result = iterative_hash_expr (vro1->op0, result);
  if (vro1->op1)
    result = iterative_hash_expr (vro1->op1, result);
  if (vro1->op2)
    result = iterative_hash_expr (vro1->op2, result);
  return result;
}

/* Compute a hash for the reference operation VR1 and return it.  */

hashval_t
vn_reference_compute_hash (const vn_reference_t vr1)
{
  hashval_t result = 0;
  int i;
  vn_reference_op_t vro;
  HOST_WIDE_INT off = -1;
  bool deref = false;

  FOR_EACH_VEC_ELT (vr1->operands, i, vro)
    {
      if (vro->opcode == MEM_REF)
	deref = true;
      else if (vro->opcode != ADDR_EXPR)
	deref = false;
      if (vro->off != -1)
	{
	  if (off == -1)
	    off = 0;
	  off += vro->off;
	}
      else
	{
	  if (off != -1
	      && off != 0)
	    result = iterative_hash_hashval_t (off, result);
	  off = -1;
	  if (deref
	      && vro->opcode == ADDR_EXPR)
	    {
	      if (vro->op0)
		{
		  tree op = TREE_OPERAND (vro->op0, 0);
		  result = iterative_hash_hashval_t (TREE_CODE (op), result);
		  result = iterative_hash_expr (op, result);
		}
	    }
	  else
	    result = vn_reference_op_compute_hash (vro, result);
	}
    }
  if (vr1->vuse)
    result += SSA_NAME_VERSION (vr1->vuse);

  return result;
}

/* Return true if reference operations VR1 and VR2 are equivalent.  This
   means they have the same set of operands and vuses.  */

bool
vn_reference_eq (const_vn_reference_t const vr1, const_vn_reference_t const vr2)
{
  unsigned i, j;

  if (vr1->hashcode != vr2->hashcode)
    return false;

  /* Early out if this is not a hash collision.  */
  if (vr1->hashcode != vr2->hashcode)
    return false;

  /* The VOP needs to be the same.  */
  if (vr1->vuse != vr2->vuse)
    return false;

  /* If the operands are the same we are done.  */
  if (vr1->operands == vr2->operands)
    return true;

  if (!expressions_equal_p (TYPE_SIZE (vr1->type), TYPE_SIZE (vr2->type)))
    return false;

  if (INTEGRAL_TYPE_P (vr1->type)
      && INTEGRAL_TYPE_P (vr2->type))
    {
      if (TYPE_PRECISION (vr1->type) != TYPE_PRECISION (vr2->type))
	return false;
    }
  else if (INTEGRAL_TYPE_P (vr1->type)
	   && (TYPE_PRECISION (vr1->type)
	       != TREE_INT_CST_LOW (TYPE_SIZE (vr1->type))))
    return false;
  else if (INTEGRAL_TYPE_P (vr2->type)
	   && (TYPE_PRECISION (vr2->type)
	       != TREE_INT_CST_LOW (TYPE_SIZE (vr2->type))))
    return false;

  i = 0;
  j = 0;
  do
    {
      HOST_WIDE_INT off1 = 0, off2 = 0;
      vn_reference_op_t vro1, vro2;
      vn_reference_op_s tem1, tem2;
      bool deref1 = false, deref2 = false;
      for (; vr1->operands.iterate (i, &vro1); i++)
	{
	  if (vro1->opcode == MEM_REF)
	    deref1 = true;
	  if (vro1->off == -1)
	    break;
	  off1 += vro1->off;
	}
      for (; vr2->operands.iterate (j, &vro2); j++)
	{
	  if (vro2->opcode == MEM_REF)
	    deref2 = true;
	  if (vro2->off == -1)
	    break;
	  off2 += vro2->off;
	}
      if (off1 != off2)
	return false;
      if (deref1 && vro1->opcode == ADDR_EXPR)
	{
	  memset (&tem1, 0, sizeof (tem1));
	  tem1.op0 = TREE_OPERAND (vro1->op0, 0);
	  tem1.type = TREE_TYPE (tem1.op0);
	  tem1.opcode = TREE_CODE (tem1.op0);
	  vro1 = &tem1;
	  deref1 = false;
	}
      if (deref2 && vro2->opcode == ADDR_EXPR)
	{
	  memset (&tem2, 0, sizeof (tem2));
	  tem2.op0 = TREE_OPERAND (vro2->op0, 0);
	  tem2.type = TREE_TYPE (tem2.op0);
	  tem2.opcode = TREE_CODE (tem2.op0);
	  vro2 = &tem2;
	  deref2 = false;
	}
      if (deref1 != deref2)
	return false;
      if (!vn_reference_op_eq (vro1, vro2))
	return false;
      ++j;
      ++i;
    }
  while (vr1->operands.length () != i
	 || vr2->operands.length () != j);

  return true;
}

/* Copy the operations present in load/store REF into RESULT, a vector of
   vn_reference_op_s's.  */

void
copy_reference_ops_from_ref (tree ref, vec<vn_reference_op_s> *result)
{
  if (TREE_CODE (ref) == TARGET_MEM_REF)
    {
      vn_reference_op_s temp;

      result->reserve (3);

      memset (&temp, 0, sizeof (temp));
      temp.type = TREE_TYPE (ref);
      temp.opcode = TREE_CODE (ref);
      temp.op0 = TMR_INDEX (ref);
      temp.op1 = TMR_STEP (ref);
      temp.op2 = TMR_OFFSET (ref);
      temp.off = -1;
      result->quick_push (temp);

      memset (&temp, 0, sizeof (temp));
      temp.type = NULL_TREE;
      temp.opcode = ERROR_MARK;
      temp.op0 = TMR_INDEX2 (ref);
      temp.off = -1;
      result->quick_push (temp);

      memset (&temp, 0, sizeof (temp));
      temp.type = NULL_TREE;
      temp.opcode = TREE_CODE (TMR_BASE (ref));
      temp.op0 = TMR_BASE (ref);
      temp.off = -1;
      result->quick_push (temp);
      return;
    }

  /* For non-calls, store the information that makes up the address.  */
  tree orig = ref;
  while (ref)
    {
      vn_reference_op_s temp;

      memset (&temp, 0, sizeof (temp));
      temp.type = TREE_TYPE (ref);
      temp.opcode = TREE_CODE (ref);
      temp.off = -1;

      switch (temp.opcode)
	{
	case MODIFY_EXPR:
	  temp.op0 = TREE_OPERAND (ref, 1);
	  break;
	case WITH_SIZE_EXPR:
	  temp.op0 = TREE_OPERAND (ref, 1);
	  temp.off = 0;
	  break;
	case MEM_REF:
	  /* The base address gets its own vn_reference_op_s structure.  */
	  temp.op0 = TREE_OPERAND (ref, 1);
	  if (tree_fits_shwi_p (TREE_OPERAND (ref, 1)))
	    temp.off = tree_to_shwi (TREE_OPERAND (ref, 1));
	  break;
	case BIT_FIELD_REF:
	  /* Record bits and position.  */
	  temp.op0 = TREE_OPERAND (ref, 1);
	  temp.op1 = TREE_OPERAND (ref, 2);
	  break;
	case COMPONENT_REF:
	  /* The field decl is enough to unambiguously specify the field,
	     a matching type is not necessary and a mismatching type
	     is always a spurious difference.  */
	  temp.type = NULL_TREE;
	  temp.op0 = TREE_OPERAND (ref, 1);
	  temp.op1 = TREE_OPERAND (ref, 2);
	  {
	    tree this_offset = component_ref_field_offset (ref);
	    if (this_offset
		&& TREE_CODE (this_offset) == INTEGER_CST)
	      {
		tree bit_offset = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
		if (TREE_INT_CST_LOW (bit_offset) % BITS_PER_UNIT == 0)
		  {
		    double_int off
		      = tree_to_double_int (this_offset)
			+ tree_to_double_int (bit_offset)
			.rshift (BITS_PER_UNIT == 8
				   ? 3 : exact_log2 (BITS_PER_UNIT));
		    if (off.fits_shwi ()
			/* Probibit value-numbering zero offset components
			   of addresses the same before the pass folding
			   __builtin_object_size had a chance to run
			   (checking cfun->after_inlining does the
			   trick here).  */
			&& (TREE_CODE (orig) != ADDR_EXPR
			    || !off.is_zero ()
			    || cfun->after_inlining))
		      temp.off = off.low;
		  }
	      }
	  }
	  break;
	case ARRAY_RANGE_REF:
	case ARRAY_REF:
	  /* Record index as operand.  */
	  temp.op0 = TREE_OPERAND (ref, 1);
	  /* Always record lower bounds and element size.  */
	  temp.op1 = array_ref_low_bound (ref);
	  temp.op2 = array_ref_element_size (ref);
	  if (TREE_CODE (temp.op0) == INTEGER_CST
	      && TREE_CODE (temp.op1) == INTEGER_CST
	      && TREE_CODE (temp.op2) == INTEGER_CST)
	    {
	      double_int off = tree_to_double_int (temp.op0);
	      off += -tree_to_double_int (temp.op1);
	      off *= tree_to_double_int (temp.op2);
	      if (off.fits_shwi ())
		temp.off = off.low;
	    }
	  break;
	case VAR_DECL:
	  if (DECL_HARD_REGISTER (ref))
	    {
	      temp.op0 = ref;
	      break;
	    }
	  /* Fallthru.  */
	case PARM_DECL:
	case CONST_DECL:
	case RESULT_DECL:
	  /* Canonicalize decls to MEM[&decl] which is what we end up with
	     when valueizing MEM[ptr] with ptr = &decl.  */
	  temp.opcode = MEM_REF;
	  temp.op0 = build_int_cst (build_pointer_type (TREE_TYPE (ref)), 0);
	  temp.off = 0;
	  result->safe_push (temp);
	  temp.opcode = ADDR_EXPR;
	  temp.op0 = build1 (ADDR_EXPR, TREE_TYPE (temp.op0), ref);
	  temp.type = TREE_TYPE (temp.op0);
	  temp.off = -1;
	  break;
	case STRING_CST:
	case INTEGER_CST:
	case COMPLEX_CST:
	case VECTOR_CST:
	case REAL_CST:
	case FIXED_CST:
	case CONSTRUCTOR:
	case SSA_NAME:
	  temp.op0 = ref;
	  break;
	case ADDR_EXPR:
	  if (is_gimple_min_invariant (ref))
	    {
	      temp.op0 = ref;
	      break;
	    }
	  /* Fallthrough.  */
	  /* These are only interesting for their operands, their
	     existence, and their type.  They will never be the last
	     ref in the chain of references (IE they require an
	     operand), so we don't have to put anything
	     for op* as it will be handled by the iteration  */
	case REALPART_EXPR:
	case VIEW_CONVERT_EXPR:
	  temp.off = 0;
	  break;
	case IMAGPART_EXPR:
	  /* This is only interesting for its constant offset.  */
	  temp.off = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (ref)));
	  break;
	default:
	  gcc_unreachable ();
	}
      result->safe_push (temp);

      if (REFERENCE_CLASS_P (ref)
	  || TREE_CODE (ref) == MODIFY_EXPR
	  || TREE_CODE (ref) == WITH_SIZE_EXPR
	  || (TREE_CODE (ref) == ADDR_EXPR
	      && !is_gimple_min_invariant (ref)))
	ref = TREE_OPERAND (ref, 0);
      else
	ref = NULL_TREE;
    }
}

/* Build a alias-oracle reference abstraction in *REF from the vn_reference
   operands in *OPS, the reference alias set SET and the reference type TYPE.
   Return true if something useful was produced.  */

bool
ao_ref_init_from_vn_reference (ao_ref *ref,
			       alias_set_type set, tree type,
			       vec<vn_reference_op_s> ops)
{
  vn_reference_op_t op;
  unsigned i;
  tree base = NULL_TREE;
  tree *op0_p = &base;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT max_size;
  HOST_WIDE_INT size = -1;
  tree size_tree = NULL_TREE;
  alias_set_type base_alias_set = -1;

  /* First get the final access size from just the outermost expression.  */
  op = &ops[0];
  if (op->opcode == COMPONENT_REF)
    size_tree = DECL_SIZE (op->op0);
  else if (op->opcode == BIT_FIELD_REF)
    size_tree = op->op0;
  else
    {
      enum machine_mode mode = TYPE_MODE (type);
      if (mode == BLKmode)
	size_tree = TYPE_SIZE (type);
      else
        size = GET_MODE_BITSIZE (mode);
    }
  if (size_tree != NULL_TREE)
    {
      if (!tree_fits_uhwi_p (size_tree))
	size = -1;
      else
	size = tree_to_uhwi (size_tree);
    }

  /* Initially, maxsize is the same as the accessed element size.
     In the following it will only grow (or become -1).  */
  max_size = size;

  /* Compute cumulative bit-offset for nested component-refs and array-refs,
     and find the ultimate containing object.  */
  FOR_EACH_VEC_ELT (ops, i, op)
    {
      switch (op->opcode)
	{
	/* These may be in the reference ops, but we cannot do anything
	   sensible with them here.  */
	case ADDR_EXPR:
	  /* Apart from ADDR_EXPR arguments to MEM_REF.  */
	  if (base != NULL_TREE
	      && TREE_CODE (base) == MEM_REF
	      && op->op0
	      && DECL_P (TREE_OPERAND (op->op0, 0)))
	    {
	      vn_reference_op_t pop = &ops[i-1];
	      base = TREE_OPERAND (op->op0, 0);
	      if (pop->off == -1)
		{
		  max_size = -1;
		  offset = 0;
		}
	      else
		offset += pop->off * BITS_PER_UNIT;
	      op0_p = NULL;
	      break;
	    }
	  /* Fallthru.  */
	case CALL_EXPR:
	  return false;

	/* Record the base objects.  */
	case MEM_REF:
	  base_alias_set = get_deref_alias_set (op->op0);
	  *op0_p = build2 (MEM_REF, op->type,
			   NULL_TREE, op->op0);
	  op0_p = &TREE_OPERAND (*op0_p, 0);
	  break;

	case VAR_DECL:
	case PARM_DECL:
	case RESULT_DECL:
	case SSA_NAME:
	  *op0_p = op->op0;
	  op0_p = NULL;
	  break;

	/* And now the usual component-reference style ops.  */
	case BIT_FIELD_REF:
	  offset += tree_to_shwi (op->op1);
	  break;

	case COMPONENT_REF:
	  {
	    tree field = op->op0;
	    /* We do not have a complete COMPONENT_REF tree here so we
	       cannot use component_ref_field_offset.  Do the interesting
	       parts manually.  */

	    if (op->op1
		|| !tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
	      max_size = -1;
	    else
	      {
		offset += (tree_to_uhwi (DECL_FIELD_OFFSET (field))
			   * BITS_PER_UNIT);
		offset += TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field));
	      }
	    break;
	  }

	case ARRAY_RANGE_REF:
	case ARRAY_REF:
	  /* We recorded the lower bound and the element size.  */
	  if (!tree_fits_shwi_p (op->op0)
	      || !tree_fits_shwi_p (op->op1)
	      || !tree_fits_shwi_p (op->op2))
	    max_size = -1;
	  else
	    {
	      HOST_WIDE_INT hindex = tree_to_shwi (op->op0);
	      hindex -= tree_to_shwi (op->op1);
	      hindex *= tree_to_shwi (op->op2);
	      hindex *= BITS_PER_UNIT;
	      offset += hindex;
	    }
	  break;

	case REALPART_EXPR:
	  break;

	case IMAGPART_EXPR:
	  offset += size;
	  break;

	case VIEW_CONVERT_EXPR:
	  break;

	case STRING_CST:
	case INTEGER_CST:
	case COMPLEX_CST:
	case VECTOR_CST:
	case REAL_CST:
	case CONSTRUCTOR:
	case CONST_DECL:
	  return false;

	default:
	  return false;
	}
    }

  if (base == NULL_TREE)
    return false;

  ref->ref = NULL_TREE;
  ref->base = base;
  ref->offset = offset;
  ref->size = size;
  ref->max_size = max_size;
  ref->ref_alias_set = set;
  if (base_alias_set != -1)
    ref->base_alias_set = base_alias_set;
  else
    ref->base_alias_set = get_alias_set (base);
  /* We discount volatiles from value-numbering elsewhere.  */
  ref->volatile_p = false;

  return true;
}

/* Copy the operations present in load/store/call REF into RESULT, a vector of
   vn_reference_op_s's.  */

void
copy_reference_ops_from_call (gimple call,
			      vec<vn_reference_op_s> *result)
{
  vn_reference_op_s temp;
  unsigned i;
  tree lhs = gimple_call_lhs (call);

  /* If 2 calls have a different non-ssa lhs, vdef value numbers should be
     different.  By adding the lhs here in the vector, we ensure that the
     hashcode is different, guaranteeing a different value number.  */
  if (lhs && TREE_CODE (lhs) != SSA_NAME)
    {
      memset (&temp, 0, sizeof (temp));
      temp.opcode = MODIFY_EXPR;
      temp.type = TREE_TYPE (lhs);
      temp.op0 = lhs;
      temp.off = -1;
      result->safe_push (temp);
    }

  /* Copy the type, opcode, function being called and static chain.  */
  memset (&temp, 0, sizeof (temp));
  temp.type = gimple_call_return_type (call);
  temp.opcode = CALL_EXPR;
  temp.op0 = gimple_call_fn (call);
  temp.op1 = gimple_call_chain (call);
  temp.off = -1;
  result->safe_push (temp);

  /* Copy the call arguments.  As they can be references as well,
     just chain them together.  */
  for (i = 0; i < gimple_call_num_args (call); ++i)
    {
      tree callarg = gimple_call_arg (call, i);
      copy_reference_ops_from_ref (callarg, result);
    }
}

/* Create a vector of vn_reference_op_s structures from CALL, a
   call statement.  The vector is not shared.  */

static vec<vn_reference_op_s> 
create_reference_ops_from_call (gimple call)
{
  vec<vn_reference_op_s> result = vNULL;

  copy_reference_ops_from_call (call, &result);
  return result;
}

/* Fold *& at position *I_P in a vn_reference_op_s vector *OPS.  Updates
   *I_P to point to the last element of the replacement.  */
void
vn_reference_fold_indirect (vec<vn_reference_op_s> *ops,
			    unsigned int *i_p)
{
  unsigned int i = *i_p;
  vn_reference_op_t op = &(*ops)[i];
  vn_reference_op_t mem_op = &(*ops)[i - 1];
  tree addr_base;
  HOST_WIDE_INT addr_offset = 0;

  /* The only thing we have to do is from &OBJ.foo.bar add the offset
     from .foo.bar to the preceding MEM_REF offset and replace the
     address with &OBJ.  */
  addr_base = get_addr_base_and_unit_offset (TREE_OPERAND (op->op0, 0),
					     &addr_offset);
  gcc_checking_assert (addr_base && TREE_CODE (addr_base) != MEM_REF);
  if (addr_base != TREE_OPERAND (op->op0, 0))
    {
      double_int off = tree_to_double_int (mem_op->op0);
      off = off.sext (TYPE_PRECISION (TREE_TYPE (mem_op->op0)));
      off += double_int::from_shwi (addr_offset);
      mem_op->op0 = double_int_to_tree (TREE_TYPE (mem_op->op0), off);
      op->op0 = build_fold_addr_expr (addr_base);
      if (tree_fits_shwi_p (mem_op->op0))
	mem_op->off = tree_to_shwi (mem_op->op0);
      else
	mem_op->off = -1;
    }
}

/* Fold *& at position *I_P in a vn_reference_op_s vector *OPS.  Updates
   *I_P to point to the last element of the replacement.  */
static void
vn_reference_maybe_forwprop_address (vec<vn_reference_op_s> *ops,
				     unsigned int *i_p)
{
  unsigned int i = *i_p;
  vn_reference_op_t op = &(*ops)[i];
  vn_reference_op_t mem_op = &(*ops)[i - 1];
  gimple def_stmt;
  enum tree_code code;
  double_int off;

  def_stmt = SSA_NAME_DEF_STMT (op->op0);
  if (!is_gimple_assign (def_stmt))
    return;

  code = gimple_assign_rhs_code (def_stmt);
  if (code != ADDR_EXPR
      && code != POINTER_PLUS_EXPR)
    return;

  off = tree_to_double_int (mem_op->op0);
  off = off.sext (TYPE_PRECISION (TREE_TYPE (mem_op->op0)));

  /* The only thing we have to do is from &OBJ.foo.bar add the offset
     from .foo.bar to the preceding MEM_REF offset and replace the
     address with &OBJ.  */
  if (code == ADDR_EXPR)
    {
      tree addr, addr_base;
      HOST_WIDE_INT addr_offset;

      addr = gimple_assign_rhs1 (def_stmt);
      addr_base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0),
						 &addr_offset);
      if (!addr_base
	  || TREE_CODE (addr_base) != MEM_REF)
	return;

      off += double_int::from_shwi (addr_offset);
      off += mem_ref_offset (addr_base);
      op->op0 = TREE_OPERAND (addr_base, 0);
    }
  else
    {
      tree ptr, ptroff;
      ptr = gimple_assign_rhs1 (def_stmt);
      ptroff = gimple_assign_rhs2 (def_stmt);
      if (TREE_CODE (ptr) != SSA_NAME
	  || TREE_CODE (ptroff) != INTEGER_CST)
	return;

      off += tree_to_double_int (ptroff);
      op->op0 = ptr;
    }

  mem_op->op0 = double_int_to_tree (TREE_TYPE (mem_op->op0), off);
  if (tree_fits_shwi_p (mem_op->op0))
    mem_op->off = tree_to_shwi (mem_op->op0);
  else
    mem_op->off = -1;
  if (TREE_CODE (op->op0) == SSA_NAME)
    op->op0 = SSA_VAL (op->op0);
  if (TREE_CODE (op->op0) != SSA_NAME)
    op->opcode = TREE_CODE (op->op0);

  /* And recurse.  */
  if (TREE_CODE (op->op0) == SSA_NAME)
    vn_reference_maybe_forwprop_address (ops, i_p);
  else if (TREE_CODE (op->op0) == ADDR_EXPR)
    vn_reference_fold_indirect (ops, i_p);
}

/* Optimize the reference REF to a constant if possible or return
   NULL_TREE if not.  */

tree
fully_constant_vn_reference_p (vn_reference_t ref)
{
  vec<vn_reference_op_s> operands = ref->operands;
  vn_reference_op_t op;

  /* Try to simplify the translated expression if it is
     a call to a builtin function with at most two arguments.  */
  op = &operands[0];
  if (op->opcode == CALL_EXPR
      && TREE_CODE (op->op0) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (op->op0, 0)) == FUNCTION_DECL
      && DECL_BUILT_IN (TREE_OPERAND (op->op0, 0))
      && operands.length () >= 2
      && operands.length () <= 3)
    {
      vn_reference_op_t arg0, arg1 = NULL;
      bool anyconst = false;
      arg0 = &operands[1];
      if (operands.length () > 2)
	arg1 = &operands[2];
      if (TREE_CODE_CLASS (arg0->opcode) == tcc_constant
	  || (arg0->opcode == ADDR_EXPR
	      && is_gimple_min_invariant (arg0->op0)))
	anyconst = true;
      if (arg1
	  && (TREE_CODE_CLASS (arg1->opcode) == tcc_constant
	      || (arg1->opcode == ADDR_EXPR
		  && is_gimple_min_invariant (arg1->op0))))
	anyconst = true;
      if (anyconst)
	{
	  tree folded = build_call_expr (TREE_OPERAND (op->op0, 0),
					 arg1 ? 2 : 1,
					 arg0->op0,
					 arg1 ? arg1->op0 : NULL);
	  if (folded
	      && TREE_CODE (folded) == NOP_EXPR)
	    folded = TREE_OPERAND (folded, 0);
	  if (folded
	      && is_gimple_min_invariant (folded))
	    return folded;
	}
    }

  /* Simplify reads from constant strings.  */
  else if (op->opcode == ARRAY_REF
	   && TREE_CODE (op->op0) == INTEGER_CST
	   && integer_zerop (op->op1)
	   && operands.length () == 2)
    {
      vn_reference_op_t arg0;
      arg0 = &operands[1];
      if (arg0->opcode == STRING_CST
	  && (TYPE_MODE (op->type)
	      == TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0->op0))))
	  && GET_MODE_CLASS (TYPE_MODE (op->type)) == MODE_INT
	  && GET_MODE_SIZE (TYPE_MODE (op->type)) == 1
	  && tree_int_cst_sgn (op->op0) >= 0
	  && compare_tree_int (op->op0, TREE_STRING_LENGTH (arg0->op0)) < 0)
	return build_int_cst_type (op->type,
				   (TREE_STRING_POINTER (arg0->op0)
				    [TREE_INT_CST_LOW (op->op0)]));
    }

  return NULL_TREE;
}

/* Transform any SSA_NAME's in a vector of vn_reference_op_s
   structures into their value numbers.  This is done in-place, and
   the vector passed in is returned.  *VALUEIZED_ANYTHING will specify
   whether any operands were valueized.  */

static vec<vn_reference_op_s> 
valueize_refs_1 (vec<vn_reference_op_s> orig, bool *valueized_anything)
{
  vn_reference_op_t vro;
  unsigned int i;

  *valueized_anything = false;

  FOR_EACH_VEC_ELT (orig, i, vro)
    {
      if (vro->opcode == SSA_NAME
	  || (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME))
	{
	  tree tem = SSA_VAL (vro->op0);
	  if (tem != vro->op0)
	    {
	      *valueized_anything = true;
	      vro->op0 = tem;
	    }
	  /* If it transforms from an SSA_NAME to a constant, update
	     the opcode.  */
	  if (TREE_CODE (vro->op0) != SSA_NAME && vro->opcode == SSA_NAME)
	    vro->opcode = TREE_CODE (vro->op0);
	}
      if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
	{
	  tree tem = SSA_VAL (vro->op1);
	  if (tem != vro->op1)
	    {
	      *valueized_anything = true;
	      vro->op1 = tem;
	    }
	}
      if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
	{
	  tree tem = SSA_VAL (vro->op2);
	  if (tem != vro->op2)
	    {
	      *valueized_anything = true;
	      vro->op2 = tem;
	    }
	}
      /* If it transforms from an SSA_NAME to an address, fold with
	 a preceding indirect reference.  */
      if (i > 0
	  && vro->op0
	  && TREE_CODE (vro->op0) == ADDR_EXPR
	  && orig[i - 1].opcode == MEM_REF)
	vn_reference_fold_indirect (&orig, &i);
      else if (i > 0
	       && vro->opcode == SSA_NAME
	       && orig[i - 1].opcode == MEM_REF)
	vn_reference_maybe_forwprop_address (&orig, &i);
      /* If it transforms a non-constant ARRAY_REF into a constant
	 one, adjust the constant offset.  */
      else if (vro->opcode == ARRAY_REF
	       && vro->off == -1
	       && TREE_CODE (vro->op0) == INTEGER_CST
	       && TREE_CODE (vro->op1) == INTEGER_CST
	       && TREE_CODE (vro->op2) == INTEGER_CST)
	{
	  double_int off = tree_to_double_int (vro->op0);
	  off += -tree_to_double_int (vro->op1);
	  off *= tree_to_double_int (vro->op2);
	  if (off.fits_shwi ())
	    vro->off = off.low;
	}
    }

  return orig;
}

static vec<vn_reference_op_s> 
valueize_refs (vec<vn_reference_op_s> orig)
{
  bool tem;
  return valueize_refs_1 (orig, &tem);
}

static vec<vn_reference_op_s> shared_lookup_references;

/* Create a vector of vn_reference_op_s structures from REF, a
   REFERENCE_CLASS_P tree.  The vector is shared among all callers of
   this function.  *VALUEIZED_ANYTHING will specify whether any
   operands were valueized.  */

static vec<vn_reference_op_s> 
valueize_shared_reference_ops_from_ref (tree ref, bool *valueized_anything)
{
  if (!ref)
    return vNULL;
  shared_lookup_references.truncate (0);
  copy_reference_ops_from_ref (ref, &shared_lookup_references);
  shared_lookup_references = valueize_refs_1 (shared_lookup_references,
					      valueized_anything);
  return shared_lookup_references;
}

/* Create a vector of vn_reference_op_s structures from CALL, a
   call statement.  The vector is shared among all callers of
   this function.  */

static vec<vn_reference_op_s> 
valueize_shared_reference_ops_from_call (gimple call)
{
  if (!call)
    return vNULL;
  shared_lookup_references.truncate (0);
  copy_reference_ops_from_call (call, &shared_lookup_references);
  shared_lookup_references = valueize_refs (shared_lookup_references);
  return shared_lookup_references;
}

/* Lookup a SCCVN reference operation VR in the current hash table.
   Returns the resulting value number if it exists in the hash table,
   NULL_TREE otherwise.  VNRESULT will be filled in with the actual
   vn_reference_t stored in the hashtable if something is found.  */

static tree
vn_reference_lookup_1 (vn_reference_t vr, vn_reference_t *vnresult)
{
  vn_reference_s **slot;
  hashval_t hash;

  hash = vr->hashcode;
  slot = current_info->references.find_slot_with_hash (vr, hash, NO_INSERT);
  if (!slot && current_info == optimistic_info)
    slot = valid_info->references.find_slot_with_hash (vr, hash, NO_INSERT);
  if (slot)
    {
      if (vnresult)
	*vnresult = (vn_reference_t)*slot;
      return ((vn_reference_t)*slot)->result;
    }

  return NULL_TREE;
}

static tree *last_vuse_ptr;
static vn_lookup_kind vn_walk_kind;
static vn_lookup_kind default_vn_walk_kind;

/* Callback for walk_non_aliased_vuses.  Adjusts the vn_reference_t VR_
   with the current VUSE and performs the expression lookup.  */

static void *
vn_reference_lookup_2 (ao_ref *op ATTRIBUTE_UNUSED, tree vuse,
		       unsigned int cnt, void *vr_)
{
  vn_reference_t vr = (vn_reference_t)vr_;
  vn_reference_s **slot;
  hashval_t hash;

  /* This bounds the stmt walks we perform on reference lookups
     to O(1) instead of O(N) where N is the number of dominating
     stores.  */
  if (cnt > (unsigned) PARAM_VALUE (PARAM_SCCVN_MAX_ALIAS_QUERIES_PER_ACCESS))
    return (void *)-1;

  if (last_vuse_ptr)
    *last_vuse_ptr = vuse;

  /* Fixup vuse and hash.  */
  if (vr->vuse)
    vr->hashcode = vr->hashcode - SSA_NAME_VERSION (vr->vuse);
  vr->vuse = SSA_VAL (vuse);
  if (vr->vuse)
    vr->hashcode = vr->hashcode + SSA_NAME_VERSION (vr->vuse);

  hash = vr->hashcode;
  slot = current_info->references.find_slot_with_hash (vr, hash, NO_INSERT);
  if (!slot && current_info == optimistic_info)
    slot = valid_info->references.find_slot_with_hash (vr, hash, NO_INSERT);
  if (slot)
    return *slot;

  return NULL;
}

/* Lookup an existing or insert a new vn_reference entry into the
   value table for the VUSE, SET, TYPE, OPERANDS reference which
   has the value VALUE which is either a constant or an SSA name.  */

static vn_reference_t
vn_reference_lookup_or_insert_for_pieces (tree vuse,
					  alias_set_type set,
					  tree type,
					  vec<vn_reference_op_s,
					        va_heap> operands,
					  tree value)
{
  struct vn_reference_s vr1;
  vn_reference_t result;
  unsigned value_id;
  vr1.vuse = vuse;
  vr1.operands = operands;
  vr1.type = type;
  vr1.set = set;
  vr1.hashcode = vn_reference_compute_hash (&vr1);
  if (vn_reference_lookup_1 (&vr1, &result))
    return result;
  if (TREE_CODE (value) == SSA_NAME)
    value_id = VN_INFO (value)->value_id;
  else
    value_id = get_or_alloc_constant_value_id (value);
  return vn_reference_insert_pieces (vuse, set, type,
				     operands.copy (), value, value_id);
}

/* Callback for walk_non_aliased_vuses.  Tries to perform a lookup
   from the statement defining VUSE and if not successful tries to
   translate *REFP and VR_ through an aggregate copy at the definition
   of VUSE.  */

static void *
vn_reference_lookup_3 (ao_ref *ref, tree vuse, void *vr_)
{
  vn_reference_t vr = (vn_reference_t)vr_;
  gimple def_stmt = SSA_NAME_DEF_STMT (vuse);
  tree base;
  HOST_WIDE_INT offset, maxsize;
  static vec<vn_reference_op_s>
    lhs_ops = vNULL;
  ao_ref lhs_ref;
  bool lhs_ref_ok = false;

  /* First try to disambiguate after value-replacing in the definitions LHS.  */
  if (is_gimple_assign (def_stmt))
    {
      vec<vn_reference_op_s> tem;
      tree lhs = gimple_assign_lhs (def_stmt);
      bool valueized_anything = false;
      /* Avoid re-allocation overhead.  */
      lhs_ops.truncate (0);
      copy_reference_ops_from_ref (lhs, &lhs_ops);
      tem = lhs_ops;
      lhs_ops = valueize_refs_1 (lhs_ops, &valueized_anything);
      gcc_assert (lhs_ops == tem);
      if (valueized_anything)
	{
	  lhs_ref_ok = ao_ref_init_from_vn_reference (&lhs_ref,
						      get_alias_set (lhs),
						      TREE_TYPE (lhs), lhs_ops);
	  if (lhs_ref_ok
	      && !refs_may_alias_p_1 (ref, &lhs_ref, true))
	    return NULL;
	}
      else
	{
	  ao_ref_init (&lhs_ref, lhs);
	  lhs_ref_ok = true;
	}
    }

  base = ao_ref_base (ref);
  offset = ref->offset;
  maxsize = ref->max_size;

  /* If we cannot constrain the size of the reference we cannot
     test if anything kills it.  */
  if (maxsize == -1)
    return (void *)-1;

  /* We can't deduce anything useful from clobbers.  */
  if (gimple_clobber_p (def_stmt))
    return (void *)-1;

  /* def_stmt may-defs *ref.  See if we can derive a value for *ref
     from that definition.
     1) Memset.  */
  if (is_gimple_reg_type (vr->type)
      && gimple_call_builtin_p (def_stmt, BUILT_IN_MEMSET)
      && integer_zerop (gimple_call_arg (def_stmt, 1))
      && tree_fits_uhwi_p (gimple_call_arg (def_stmt, 2))
      && TREE_CODE (gimple_call_arg (def_stmt, 0)) == ADDR_EXPR)
    {
      tree ref2 = TREE_OPERAND (gimple_call_arg (def_stmt, 0), 0);
      tree base2;
      HOST_WIDE_INT offset2, size2, maxsize2;
      base2 = get_ref_base_and_extent (ref2, &offset2, &size2, &maxsize2);
      size2 = tree_to_uhwi (gimple_call_arg (def_stmt, 2)) * 8;
      if ((unsigned HOST_WIDE_INT)size2 / 8
	  == tree_to_uhwi (gimple_call_arg (def_stmt, 2))
	  && maxsize2 != -1
	  && operand_equal_p (base, base2, 0)
	  && offset2 <= offset
	  && offset2 + size2 >= offset + maxsize)
	{
	  tree val = build_zero_cst (vr->type);
	  return vn_reference_lookup_or_insert_for_pieces
	           (vuse, vr->set, vr->type, vr->operands, val);
	}
    }

  /* 2) Assignment from an empty CONSTRUCTOR.  */
  else if (is_gimple_reg_type (vr->type)
	   && gimple_assign_single_p (def_stmt)
	   && gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR
	   && CONSTRUCTOR_NELTS (gimple_assign_rhs1 (def_stmt)) == 0)
    {
      tree base2;
      HOST_WIDE_INT offset2, size2, maxsize2;
      base2 = get_ref_base_and_extent (gimple_assign_lhs (def_stmt),
				       &offset2, &size2, &maxsize2);
      if (maxsize2 != -1
	  && operand_equal_p (base, base2, 0)
	  && offset2 <= offset
	  && offset2 + size2 >= offset + maxsize)
	{
	  tree val = build_zero_cst (vr->type);
	  return vn_reference_lookup_or_insert_for_pieces
	           (vuse, vr->set, vr->type, vr->operands, val);
	}
    }

  /* 3) Assignment from a constant.  We can use folds native encode/interpret
     routines to extract the assigned bits.  */
  else if (vn_walk_kind == VN_WALKREWRITE
	   && CHAR_BIT == 8 && BITS_PER_UNIT == 8
	   && ref->size == maxsize
	   && maxsize % BITS_PER_UNIT == 0
	   && offset % BITS_PER_UNIT == 0
	   && is_gimple_reg_type (vr->type)
	   && gimple_assign_single_p (def_stmt)
	   && is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
    {
      tree base2;
      HOST_WIDE_INT offset2, size2, maxsize2;
      base2 = get_ref_base_and_extent (gimple_assign_lhs (def_stmt),
				       &offset2, &size2, &maxsize2);
      if (maxsize2 != -1
	  && maxsize2 == size2
	  && size2 % BITS_PER_UNIT == 0
	  && offset2 % BITS_PER_UNIT == 0
	  && operand_equal_p (base, base2, 0)
	  && offset2 <= offset
	  && offset2 + size2 >= offset + maxsize)
	{
	  /* We support up to 512-bit values (for V8DFmode).  */
	  unsigned char buffer[64];
	  int len;

	  len = native_encode_expr (gimple_assign_rhs1 (def_stmt),
				    buffer, sizeof (buffer));
	  if (len > 0)
	    {
	      tree val = native_interpret_expr (vr->type,
						buffer
						+ ((offset - offset2)
						   / BITS_PER_UNIT),
						ref->size / BITS_PER_UNIT);
	      if (val)
		return vn_reference_lookup_or_insert_for_pieces
		         (vuse, vr->set, vr->type, vr->operands, val);
	    }
	}
    }

  /* 4) Assignment from an SSA name which definition we may be able
     to access pieces from.  */
  else if (ref->size == maxsize
	   && is_gimple_reg_type (vr->type)
	   && gimple_assign_single_p (def_stmt)
	   && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME)
    {
      tree rhs1 = gimple_assign_rhs1 (def_stmt);
      gimple def_stmt2 = SSA_NAME_DEF_STMT (rhs1);
      if (is_gimple_assign (def_stmt2)
	  && (gimple_assign_rhs_code (def_stmt2) == COMPLEX_EXPR
	      || gimple_assign_rhs_code (def_stmt2) == CONSTRUCTOR)
	  && types_compatible_p (vr->type, TREE_TYPE (TREE_TYPE (rhs1))))
	{
	  tree base2;
	  HOST_WIDE_INT offset2, size2, maxsize2, off;
	  base2 = get_ref_base_and_extent (gimple_assign_lhs (def_stmt),
					   &offset2, &size2, &maxsize2);
	  off = offset - offset2;
	  if (maxsize2 != -1
	      && maxsize2 == size2
	      && operand_equal_p (base, base2, 0)
	      && offset2 <= offset
	      && offset2 + size2 >= offset + maxsize)
	    {
	      tree val = NULL_TREE;
	      HOST_WIDE_INT elsz
		= TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (TREE_TYPE (rhs1))));
	      if (gimple_assign_rhs_code (def_stmt2) == COMPLEX_EXPR)
		{
		  if (off == 0)
		    val = gimple_assign_rhs1 (def_stmt2);
		  else if (off == elsz)
		    val = gimple_assign_rhs2 (def_stmt2);
		}
	      else if (gimple_assign_rhs_code (def_stmt2) == CONSTRUCTOR
		       && off % elsz == 0)
		{
		  tree ctor = gimple_assign_rhs1 (def_stmt2);
		  unsigned i = off / elsz;
		  if (i < CONSTRUCTOR_NELTS (ctor))
		    {
		      constructor_elt *elt = CONSTRUCTOR_ELT (ctor, i);
		      if (TREE_CODE (TREE_TYPE (rhs1)) == VECTOR_TYPE)
			{
			  if (TREE_CODE (TREE_TYPE (elt->value))
			      != VECTOR_TYPE)
			    val = elt->value;
			}
		    }
		}
	      if (val)
		return vn_reference_lookup_or_insert_for_pieces
		         (vuse, vr->set, vr->type, vr->operands, val);
	    }
	}
    }

  /* 5) For aggregate copies translate the reference through them if
     the copy kills ref.  */
  else if (vn_walk_kind == VN_WALKREWRITE
	   && gimple_assign_single_p (def_stmt)
	   && (DECL_P (gimple_assign_rhs1 (def_stmt))
	       || TREE_CODE (gimple_assign_rhs1 (def_stmt)) == MEM_REF
	       || handled_component_p (gimple_assign_rhs1 (def_stmt))))
    {
      tree base2;
      HOST_WIDE_INT offset2, size2, maxsize2;
      int i, j;
      auto_vec<vn_reference_op_s> rhs;
      vn_reference_op_t vro;
      ao_ref r;

      if (!lhs_ref_ok)
	return (void *)-1;

      /* See if the assignment kills REF.  */
      base2 = ao_ref_base (&lhs_ref);
      offset2 = lhs_ref.offset;
      size2 = lhs_ref.size;
      maxsize2 = lhs_ref.max_size;
      if (maxsize2 == -1
	  || (base != base2 && !operand_equal_p (base, base2, 0))
	  || offset2 > offset
	  || offset2 + size2 < offset + maxsize)
	return (void *)-1;

      /* Find the common base of ref and the lhs.  lhs_ops already
         contains valueized operands for the lhs.  */
      i = vr->operands.length () - 1;
      j = lhs_ops.length () - 1;
      while (j >= 0 && i >= 0
	     && vn_reference_op_eq (&vr->operands[i], &lhs_ops[j]))
	{
	  i--;
	  j--;
	}

      /* ???  The innermost op should always be a MEM_REF and we already
         checked that the assignment to the lhs kills vr.  Thus for
	 aggregate copies using char[] types the vn_reference_op_eq
	 may fail when comparing types for compatibility.  But we really
	 don't care here - further lookups with the rewritten operands
	 will simply fail if we messed up types too badly.  */
      if (j == 0 && i >= 0
	  && lhs_ops[0].opcode == MEM_REF
	  && lhs_ops[0].off != -1
	  && (lhs_ops[0].off == vr->operands[i].off))
	i--, j--;

      /* i now points to the first additional op.
	 ???  LHS may not be completely contained in VR, one or more
	 VIEW_CONVERT_EXPRs could be in its way.  We could at least
	 try handling outermost VIEW_CONVERT_EXPRs.  */
      if (j != -1)
	return (void *)-1;

      /* Now re-write REF to be based on the rhs of the assignment.  */
      copy_reference_ops_from_ref (gimple_assign_rhs1 (def_stmt), &rhs);
      /* We need to pre-pend vr->operands[0..i] to rhs.  */
      if (i + 1 + rhs.length () > vr->operands.length ())
	{
	  vec<vn_reference_op_s> old = vr->operands;
	  vr->operands.safe_grow (i + 1 + rhs.length ());
	  if (old == shared_lookup_references
	      && vr->operands != old)
	    shared_lookup_references = vNULL;
	}
      else
	vr->operands.truncate (i + 1 + rhs.length ());
      FOR_EACH_VEC_ELT (rhs, j, vro)
	vr->operands[i + 1 + j] = *vro;
      vr->operands = valueize_refs (vr->operands);
      vr->hashcode = vn_reference_compute_hash (vr);

      /* Adjust *ref from the new operands.  */
      if (!ao_ref_init_from_vn_reference (&r, vr->set, vr->type, vr->operands))
	return (void *)-1;
      /* This can happen with bitfields.  */
      if (ref->size != r.size)
	return (void *)-1;
      *ref = r;

      /* Do not update last seen VUSE after translating.  */
      last_vuse_ptr = NULL;

      /* Keep looking for the adjusted *REF / VR pair.  */
      return NULL;
    }

  /* 6) For memcpy copies translate the reference through them if
     the copy kills ref.  */
  else if (vn_walk_kind == VN_WALKREWRITE
	   && is_gimple_reg_type (vr->type)
	   /* ???  Handle BCOPY as well.  */
	   && (gimple_call_builtin_p (def_stmt, BUILT_IN_MEMCPY)
	       || gimple_call_builtin_p (def_stmt, BUILT_IN_MEMPCPY)
	       || gimple_call_builtin_p (def_stmt, BUILT_IN_MEMMOVE))
	   && (TREE_CODE (gimple_call_arg (def_stmt, 0)) == ADDR_EXPR
	       || TREE_CODE (gimple_call_arg (def_stmt, 0)) == SSA_NAME)
	   && (TREE_CODE (gimple_call_arg (def_stmt, 1)) == ADDR_EXPR
	       || TREE_CODE (gimple_call_arg (def_stmt, 1)) == SSA_NAME)
	   && tree_fits_uhwi_p (gimple_call_arg (def_stmt, 2)))
    {
      tree lhs, rhs;
      ao_ref r;
      HOST_WIDE_INT rhs_offset, copy_size, lhs_offset;
      vn_reference_op_s op;
      HOST_WIDE_INT at;


      /* Only handle non-variable, addressable refs.  */
      if (ref->size != maxsize
	  || offset % BITS_PER_UNIT != 0
	  || ref->size % BITS_PER_UNIT != 0)
	return (void *)-1;

      /* Extract a pointer base and an offset for the destination.  */
      lhs = gimple_call_arg (def_stmt, 0);
      lhs_offset = 0;
      if (TREE_CODE (lhs) == SSA_NAME)
	lhs = SSA_VAL (lhs);
      if (TREE_CODE (lhs) == ADDR_EXPR)
	{
	  tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (lhs, 0),
						    &lhs_offset);
	  if (!tem)
	    return (void *)-1;
	  if (TREE_CODE (tem) == MEM_REF
	      && tree_fits_uhwi_p (TREE_OPERAND (tem, 1)))
	    {
	      lhs = TREE_OPERAND (tem, 0);
	      lhs_offset += tree_to_uhwi (TREE_OPERAND (tem, 1));
	    }
	  else if (DECL_P (tem))
	    lhs = build_fold_addr_expr (tem);
	  else
	    return (void *)-1;
	}
      if (TREE_CODE (lhs) != SSA_NAME
	  && TREE_CODE (lhs) != ADDR_EXPR)
	return (void *)-1;

      /* Extract a pointer base and an offset for the source.  */
      rhs = gimple_call_arg (def_stmt, 1);
      rhs_offset = 0;
      if (TREE_CODE (rhs) == SSA_NAME)
	rhs = SSA_VAL (rhs);
      if (TREE_CODE (rhs) == ADDR_EXPR)
	{
	  tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs, 0),
						    &rhs_offset);
	  if (!tem)
	    return (void *)-1;
	  if (TREE_CODE (tem) == MEM_REF
	      && tree_fits_uhwi_p (TREE_OPERAND (tem, 1)))
	    {
	      rhs = TREE_OPERAND (tem, 0);
	      rhs_offset += tree_to_uhwi (TREE_OPERAND (tem, 1));
	    }
	  else if (DECL_P (tem))
	    rhs = build_fold_addr_expr (tem);
	  else
	    return (void *)-1;
	}
      if (TREE_CODE (rhs) != SSA_NAME
	  && TREE_CODE (rhs) != ADDR_EXPR)
	return (void *)-1;

      copy_size = tree_to_uhwi (gimple_call_arg (def_stmt, 2));

      /* The bases of the destination and the references have to agree.  */
      if ((TREE_CODE (base) != MEM_REF
	   && !DECL_P (base))
	  || (TREE_CODE (base) == MEM_REF
	      && (TREE_OPERAND (base, 0) != lhs
		  || !tree_fits_uhwi_p (TREE_OPERAND (base, 1))))
	  || (DECL_P (base)
	      && (TREE_CODE (lhs) != ADDR_EXPR
		  || TREE_OPERAND (lhs, 0) != base)))
	return (void *)-1;

      /* And the access has to be contained within the memcpy destination.  */
      at = offset / BITS_PER_UNIT;
      if (TREE_CODE (base) == MEM_REF)
	at += tree_to_uhwi (TREE_OPERAND (base, 1));
      if (lhs_offset > at
	  || lhs_offset + copy_size < at + maxsize / BITS_PER_UNIT)
	return (void *)-1;

      /* Make room for 2 operands in the new reference.  */
      if (vr->operands.length () < 2)
	{
	  vec<vn_reference_op_s> old = vr->operands;
	  vr->operands.safe_grow_cleared (2);
	  if (old == shared_lookup_references
	      && vr->operands != old)
	    shared_lookup_references.create (0);
	}
      else
	vr->operands.truncate (2);

      /* The looked-through reference is a simple MEM_REF.  */
      memset (&op, 0, sizeof (op));
      op.type = vr->type;
      op.opcode = MEM_REF;
      op.op0 = build_int_cst (ptr_type_node, at - rhs_offset);
      op.off = at - lhs_offset + rhs_offset;
      vr->operands[0] = op;
      op.type = TREE_TYPE (rhs);
      op.opcode = TREE_CODE (rhs);
      op.op0 = rhs;
      op.off = -1;
      vr->operands[1] = op;
      vr->hashcode = vn_reference_compute_hash (vr);

      /* Adjust *ref from the new operands.  */
      if (!ao_ref_init_from_vn_reference (&r, vr->set, vr->type, vr->operands))
	return (void *)-1;
      /* This can happen with bitfields.  */
      if (ref->size != r.size)
	return (void *)-1;
      *ref = r;

      /* Do not update last seen VUSE after translating.  */
      last_vuse_ptr = NULL;

      /* Keep looking for the adjusted *REF / VR pair.  */
      return NULL;
    }

  /* Bail out and stop walking.  */
  return (void *)-1;
}

/* Lookup a reference operation by it's parts, in the current hash table.
   Returns the resulting value number if it exists in the hash table,
   NULL_TREE otherwise.  VNRESULT will be filled in with the actual
   vn_reference_t stored in the hashtable if something is found.  */

tree
vn_reference_lookup_pieces (tree vuse, alias_set_type set, tree type,
			    vec<vn_reference_op_s> operands,
			    vn_reference_t *vnresult, vn_lookup_kind kind)
{
  struct vn_reference_s vr1;
  vn_reference_t tmp;
  tree cst;

  if (!vnresult)
    vnresult = &tmp;
  *vnresult = NULL;

  vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  shared_lookup_references.truncate (0);
  shared_lookup_references.safe_grow (operands.length ());
  memcpy (shared_lookup_references.address (),
	  operands.address (),
	  sizeof (vn_reference_op_s)
	  * operands.length ());
  vr1.operands = operands = shared_lookup_references
    = valueize_refs (shared_lookup_references);
  vr1.type = type;
  vr1.set = set;
  vr1.hashcode = vn_reference_compute_hash (&vr1);
  if ((cst = fully_constant_vn_reference_p (&vr1)))
    return cst;

  vn_reference_lookup_1 (&vr1, vnresult);
  if (!*vnresult
      && kind != VN_NOWALK
      && vr1.vuse)
    {
      ao_ref r;
      vn_walk_kind = kind;
      if (ao_ref_init_from_vn_reference (&r, set, type, vr1.operands))
	*vnresult =
	  (vn_reference_t)walk_non_aliased_vuses (&r, vr1.vuse,
						  vn_reference_lookup_2,
						  vn_reference_lookup_3, &vr1);
      if (vr1.operands != operands)
	vr1.operands.release ();
    }

  if (*vnresult)
     return (*vnresult)->result;

  return NULL_TREE;
}

/* Lookup OP in the current hash table, and return the resulting value
   number if it exists in the hash table.  Return NULL_TREE if it does
   not exist in the hash table or if the result field of the structure
   was NULL..  VNRESULT will be filled in with the vn_reference_t
   stored in the hashtable if one exists.  */

tree
vn_reference_lookup (tree op, tree vuse, vn_lookup_kind kind,
		     vn_reference_t *vnresult)
{
  vec<vn_reference_op_s> operands;
  struct vn_reference_s vr1;
  tree cst;
  bool valuezied_anything;

  if (vnresult)
    *vnresult = NULL;

  vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1.operands = operands
    = valueize_shared_reference_ops_from_ref (op, &valuezied_anything);
  vr1.type = TREE_TYPE (op);
  vr1.set = get_alias_set (op);
  vr1.hashcode = vn_reference_compute_hash (&vr1);
  if ((cst = fully_constant_vn_reference_p (&vr1)))
    return cst;

  if (kind != VN_NOWALK
      && vr1.vuse)
    {
      vn_reference_t wvnresult;
      ao_ref r;
      /* Make sure to use a valueized reference if we valueized anything.
         Otherwise preserve the full reference for advanced TBAA.  */
      if (!valuezied_anything
	  || !ao_ref_init_from_vn_reference (&r, vr1.set, vr1.type,
					     vr1.operands))
	ao_ref_init (&r, op);
      vn_walk_kind = kind;
      wvnresult =
	(vn_reference_t)walk_non_aliased_vuses (&r, vr1.vuse,
						vn_reference_lookup_2,
						vn_reference_lookup_3, &vr1);
      if (vr1.operands != operands)
	vr1.operands.release ();
      if (wvnresult)
	{
	  if (vnresult)
	    *vnresult = wvnresult;
	  return wvnresult->result;
	}

      return NULL_TREE;
    }

  return vn_reference_lookup_1 (&vr1, vnresult);
}


/* Insert OP into the current hash table with a value number of
   RESULT, and return the resulting reference structure we created.  */

vn_reference_t
vn_reference_insert (tree op, tree result, tree vuse, tree vdef)
{
  vn_reference_s **slot;
  vn_reference_t vr1;
  bool tem;

  vr1 = (vn_reference_t) pool_alloc (current_info->references_pool);
  if (TREE_CODE (result) == SSA_NAME)
    vr1->value_id = VN_INFO (result)->value_id;
  else
    vr1->value_id = get_or_alloc_constant_value_id (result);
  vr1->vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1->operands = valueize_shared_reference_ops_from_ref (op, &tem).copy ();
  vr1->type = TREE_TYPE (op);
  vr1->set = get_alias_set (op);
  vr1->hashcode = vn_reference_compute_hash (vr1);
  vr1->result = TREE_CODE (result) == SSA_NAME ? SSA_VAL (result) : result;
  vr1->result_vdef = vdef;

  slot = current_info->references.find_slot_with_hash (vr1, vr1->hashcode,
						       INSERT);

  /* Because we lookup stores using vuses, and value number failures
     using the vdefs (see visit_reference_op_store for how and why),
     it's possible that on failure we may try to insert an already
     inserted store.  This is not wrong, there is no ssa name for a
     store that we could use as a differentiator anyway.  Thus, unlike
     the other lookup functions, you cannot gcc_assert (!*slot)
     here.  */

  /* But free the old slot in case of a collision.  */
  if (*slot)
    free_reference (*slot);

  *slot = vr1;
  return vr1;
}

/* Insert a reference by it's pieces into the current hash table with
   a value number of RESULT.  Return the resulting reference
   structure we created.  */

vn_reference_t
vn_reference_insert_pieces (tree vuse, alias_set_type set, tree type,
			    vec<vn_reference_op_s> operands,
			    tree result, unsigned int value_id)

{
  vn_reference_s **slot;
  vn_reference_t vr1;

  vr1 = (vn_reference_t) pool_alloc (current_info->references_pool);
  vr1->value_id = value_id;
  vr1->vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1->operands = valueize_refs (operands);
  vr1->type = type;
  vr1->set = set;
  vr1->hashcode = vn_reference_compute_hash (vr1);
  if (result && TREE_CODE (result) == SSA_NAME)
    result = SSA_VAL (result);
  vr1->result = result;

  slot = current_info->references.find_slot_with_hash (vr1, vr1->hashcode,
						       INSERT);

  /* At this point we should have all the things inserted that we have
     seen before, and we should never try inserting something that
     already exists.  */
  gcc_assert (!*slot);
  if (*slot)
    free_reference (*slot);

  *slot = vr1;
  return vr1;
}

/* Compute and return the hash value for nary operation VBO1.  */

hashval_t
vn_nary_op_compute_hash (const vn_nary_op_t vno1)
{
  hashval_t hash;
  unsigned i;

  for (i = 0; i < vno1->length; ++i)
    if (TREE_CODE (vno1->op[i]) == SSA_NAME)
      vno1->op[i] = SSA_VAL (vno1->op[i]);

  if (vno1->length == 2
      && commutative_tree_code (vno1->opcode)
      && tree_swap_operands_p (vno1->op[0], vno1->op[1], false))
    {
      tree temp = vno1->op[0];
      vno1->op[0] = vno1->op[1];
      vno1->op[1] = temp;
    }

  hash = iterative_hash_hashval_t (vno1->opcode, 0);
  for (i = 0; i < vno1->length; ++i)
    hash = iterative_hash_expr (vno1->op[i], hash);

  return hash;
}

/* Compare nary operations VNO1 and VNO2 and return true if they are
   equivalent.  */

bool
vn_nary_op_eq (const_vn_nary_op_t const vno1, const_vn_nary_op_t const vno2)
{
  unsigned i;

  if (vno1->hashcode != vno2->hashcode)
    return false;

  if (vno1->length != vno2->length)
    return false;

  if (vno1->opcode != vno2->opcode
      || !types_compatible_p (vno1->type, vno2->type))
    return false;

  for (i = 0; i < vno1->length; ++i)
    if (!expressions_equal_p (vno1->op[i], vno2->op[i]))
      return false;

  return true;
}

/* Initialize VNO from the pieces provided.  */

static void
init_vn_nary_op_from_pieces (vn_nary_op_t vno, unsigned int length,
			     enum tree_code code, tree type, tree *ops)
{
  vno->opcode = code;
  vno->length = length;
  vno->type = type;
  memcpy (&vno->op[0], ops, sizeof (tree) * length);
}

/* Initialize VNO from OP.  */

static void
init_vn_nary_op_from_op (vn_nary_op_t vno, tree op)
{
  unsigned i;

  vno->opcode = TREE_CODE (op);
  vno->length = TREE_CODE_LENGTH (TREE_CODE (op));
  vno->type = TREE_TYPE (op);
  for (i = 0; i < vno->length; ++i)
    vno->op[i] = TREE_OPERAND (op, i);
}

/* Return the number of operands for a vn_nary ops structure from STMT.  */

static unsigned int
vn_nary_length_from_stmt (gimple stmt)
{
  switch (gimple_assign_rhs_code (stmt))
    {
    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case VIEW_CONVERT_EXPR:
      return 1;

    case BIT_FIELD_REF:
      return 3;

    case CONSTRUCTOR:
      return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));

    default:
      return gimple_num_ops (stmt) - 1;
    }
}

/* Initialize VNO from STMT.  */

static void
init_vn_nary_op_from_stmt (vn_nary_op_t vno, gimple stmt)
{
  unsigned i;

  vno->opcode = gimple_assign_rhs_code (stmt);
  vno->type = gimple_expr_type (stmt);
  switch (vno->opcode)
    {
    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case VIEW_CONVERT_EXPR:
      vno->length = 1;
      vno->op[0] = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
      break;

    case BIT_FIELD_REF:
      vno->length = 3;
      vno->op[0] = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
      vno->op[1] = TREE_OPERAND (gimple_assign_rhs1 (stmt), 1);
      vno->op[2] = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
      break;

    case CONSTRUCTOR:
      vno->length = CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
      for (i = 0; i < vno->length; ++i)
	vno->op[i] = CONSTRUCTOR_ELT (gimple_assign_rhs1 (stmt), i)->value;
      break;

    default:
      gcc_checking_assert (!gimple_assign_single_p (stmt));
      vno->length = gimple_num_ops (stmt) - 1;
      for (i = 0; i < vno->length; ++i)
	vno->op[i] = gimple_op (stmt, i + 1);
    }
}

/* Compute the hashcode for VNO and look for it in the hash table;
   return the resulting value number if it exists in the hash table.
   Return NULL_TREE if it does not exist in the hash table or if the
   result field of the operation is NULL.  VNRESULT will contain the
   vn_nary_op_t from the hashtable if it exists.  */

static tree
vn_nary_op_lookup_1 (vn_nary_op_t vno, vn_nary_op_t *vnresult)
{
  vn_nary_op_s **slot;

  if (vnresult)
    *vnresult = NULL;

  vno->hashcode = vn_nary_op_compute_hash (vno);
  slot = current_info->nary.find_slot_with_hash (vno, vno->hashcode, NO_INSERT);
  if (!slot && current_info == optimistic_info)
    slot = valid_info->nary.find_slot_with_hash (vno, vno->hashcode, NO_INSERT);
  if (!slot)
    return NULL_TREE;
  if (vnresult)
    *vnresult = *slot;
  return (*slot)->result;
}

/* Lookup a n-ary operation by its pieces and return the resulting value
   number if it exists in the hash table.  Return NULL_TREE if it does
   not exist in the hash table or if the result field of the operation
   is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
   if it exists.  */

tree
vn_nary_op_lookup_pieces (unsigned int length, enum tree_code code,
			  tree type, tree *ops, vn_nary_op_t *vnresult)
{
  vn_nary_op_t vno1 = XALLOCAVAR (struct vn_nary_op_s,
				  sizeof_vn_nary_op (length));
  init_vn_nary_op_from_pieces (vno1, length, code, type, ops);
  return vn_nary_op_lookup_1 (vno1, vnresult);
}

/* Lookup OP in the current hash table, and return the resulting value
   number if it exists in the hash table.  Return NULL_TREE if it does
   not exist in the hash table or if the result field of the operation
   is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
   if it exists.  */

tree
vn_nary_op_lookup (tree op, vn_nary_op_t *vnresult)
{
  vn_nary_op_t vno1
    = XALLOCAVAR (struct vn_nary_op_s,
		  sizeof_vn_nary_op (TREE_CODE_LENGTH (TREE_CODE (op))));
  init_vn_nary_op_from_op (vno1, op);
  return vn_nary_op_lookup_1 (vno1, vnresult);
}

/* Lookup the rhs of STMT in the current hash table, and return the resulting
   value number if it exists in the hash table.  Return NULL_TREE if
   it does not exist in the hash table.  VNRESULT will contain the
   vn_nary_op_t from the hashtable if it exists.  */

tree
vn_nary_op_lookup_stmt (gimple stmt, vn_nary_op_t *vnresult)
{
  vn_nary_op_t vno1
    = XALLOCAVAR (struct vn_nary_op_s,
		  sizeof_vn_nary_op (vn_nary_length_from_stmt (stmt)));
  init_vn_nary_op_from_stmt (vno1, stmt);
  return vn_nary_op_lookup_1 (vno1, vnresult);
}

/* Allocate a vn_nary_op_t with LENGTH operands on STACK.  */

static vn_nary_op_t
alloc_vn_nary_op_noinit (unsigned int length, struct obstack *stack)
{
  return (vn_nary_op_t) obstack_alloc (stack, sizeof_vn_nary_op (length));
}

/* Allocate and initialize a vn_nary_op_t on CURRENT_INFO's
   obstack.  */

static vn_nary_op_t
alloc_vn_nary_op (unsigned int length, tree result, unsigned int value_id)
{
  vn_nary_op_t vno1 = alloc_vn_nary_op_noinit (length,
					       &current_info->nary_obstack);

  vno1->value_id = value_id;
  vno1->length = length;
  vno1->result = result;

  return vno1;
}

/* Insert VNO into TABLE.  If COMPUTE_HASH is true, then compute
   VNO->HASHCODE first.  */

static vn_nary_op_t
vn_nary_op_insert_into (vn_nary_op_t vno, vn_nary_op_table_type table,
			bool compute_hash)
{
  vn_nary_op_s **slot;

  if (compute_hash)
    vno->hashcode = vn_nary_op_compute_hash (vno);

  slot = table.find_slot_with_hash (vno, vno->hashcode, INSERT);
  gcc_assert (!*slot);

  *slot = vno;
  return vno;
}

/* Insert a n-ary operation into the current hash table using it's
   pieces.  Return the vn_nary_op_t structure we created and put in
   the hashtable.  */

vn_nary_op_t
vn_nary_op_insert_pieces (unsigned int length, enum tree_code code,
			  tree type, tree *ops,
			  tree result, unsigned int value_id)
{
  vn_nary_op_t vno1 = alloc_vn_nary_op (length, result, value_id);
  init_vn_nary_op_from_pieces (vno1, length, code, type, ops);
  return vn_nary_op_insert_into (vno1, current_info->nary, true);
}

/* Insert OP into the current hash table with a value number of
   RESULT.  Return the vn_nary_op_t structure we created and put in
   the hashtable.  */

vn_nary_op_t
vn_nary_op_insert (tree op, tree result)
{
  unsigned length = TREE_CODE_LENGTH (TREE_CODE (op));
  vn_nary_op_t vno1;

  vno1 = alloc_vn_nary_op (length, result, VN_INFO (result)->value_id);
  init_vn_nary_op_from_op (vno1, op);
  return vn_nary_op_insert_into (vno1, current_info->nary, true);
}

/* Insert the rhs of STMT into the current hash table with a value number of
   RESULT.  */

vn_nary_op_t
vn_nary_op_insert_stmt (gimple stmt, tree result)
{
  vn_nary_op_t vno1
    = alloc_vn_nary_op (vn_nary_length_from_stmt (stmt),
			result, VN_INFO (result)->value_id);
  init_vn_nary_op_from_stmt (vno1, stmt);
  return vn_nary_op_insert_into (vno1, current_info->nary, true);
}

/* Compute a hashcode for PHI operation VP1 and return it.  */

static inline hashval_t
vn_phi_compute_hash (vn_phi_t vp1)
{
  hashval_t result;
  int i;
  tree phi1op;
  tree type;

  result = vp1->block->index;

  /* If all PHI arguments are constants we need to distinguish
     the PHI node via its type.  */
  type = vp1->type;
  result += vn_hash_type (type);

  FOR_EACH_VEC_ELT (vp1->phiargs, i, phi1op)
    {
      if (phi1op == VN_TOP)
	continue;
      result = iterative_hash_expr (phi1op, result);
    }

  return result;
}

/* Compare two phi entries for equality, ignoring VN_TOP arguments.  */

static int
vn_phi_eq (const_vn_phi_t const vp1, const_vn_phi_t const vp2)
{
  if (vp1->hashcode != vp2->hashcode)
    return false;

  if (vp1->block == vp2->block)
    {
      int i;
      tree phi1op;

      /* If the PHI nodes do not have compatible types
	 they are not the same.  */
      if (!types_compatible_p (vp1->type, vp2->type))
	return false;

      /* Any phi in the same block will have it's arguments in the
	 same edge order, because of how we store phi nodes.  */
      FOR_EACH_VEC_ELT (vp1->phiargs, i, phi1op)
	{
	  tree phi2op = vp2->phiargs[i];
	  if (phi1op == VN_TOP || phi2op == VN_TOP)
	    continue;
	  if (!expressions_equal_p (phi1op, phi2op))
	    return false;
	}
      return true;
    }
  return false;
}

static vec<tree> shared_lookup_phiargs;

/* Lookup PHI in the current hash table, and return the resulting
   value number if it exists in the hash table.  Return NULL_TREE if
   it does not exist in the hash table. */

static tree
vn_phi_lookup (gimple phi)
{
  vn_phi_s **slot;
  struct vn_phi_s vp1;
  unsigned i;

  shared_lookup_phiargs.truncate (0);

  /* Canonicalize the SSA_NAME's to their value number.  */
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
      tree def = PHI_ARG_DEF (phi, i);
      def = TREE_CODE (def) == SSA_NAME ? SSA_VAL (def) : def;
      shared_lookup_phiargs.safe_push (def);
    }
  vp1.type = TREE_TYPE (gimple_phi_result (phi));
  vp1.phiargs = shared_lookup_phiargs;
  vp1.block = gimple_bb (phi);
  vp1.hashcode = vn_phi_compute_hash (&vp1);
  slot = current_info->phis.find_slot_with_hash (&vp1, vp1.hashcode, NO_INSERT);
  if (!slot && current_info == optimistic_info)
    slot = valid_info->phis.find_slot_with_hash (&vp1, vp1.hashcode, NO_INSERT);
  if (!slot)
    return NULL_TREE;
  return (*slot)->result;
}

/* Insert PHI into the current hash table with a value number of
   RESULT.  */

static vn_phi_t
vn_phi_insert (gimple phi, tree result)
{
  vn_phi_s **slot;
  vn_phi_t vp1 = (vn_phi_t) pool_alloc (current_info->phis_pool);
  unsigned i;
  vec<tree> args = vNULL;

  /* Canonicalize the SSA_NAME's to their value number.  */
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
      tree def = PHI_ARG_DEF (phi, i);
      def = TREE_CODE (def) == SSA_NAME ? SSA_VAL (def) : def;
      args.safe_push (def);
    }
  vp1->value_id = VN_INFO (result)->value_id;
  vp1->type = TREE_TYPE (gimple_phi_result (phi));
  vp1->phiargs = args;
  vp1->block = gimple_bb (phi);
  vp1->result = result;
  vp1->hashcode = vn_phi_compute_hash (vp1);

  slot = current_info->phis.find_slot_with_hash (vp1, vp1->hashcode, INSERT);

  /* Because we iterate over phi operations more than once, it's
     possible the slot might already exist here, hence no assert.*/
  *slot = vp1;
  return vp1;
}


/* Print set of components in strongly connected component SCC to OUT. */

static void
print_scc (FILE *out, vec<tree> scc)
{
  tree var;
  unsigned int i;

  fprintf (out, "SCC consists of:");
  FOR_EACH_VEC_ELT (scc, i, var)
    {
      fprintf (out, " ");
      print_generic_expr (out, var, 0);
    }
  fprintf (out, "\n");
}

/* Set the value number of FROM to TO, return true if it has changed
   as a result.  */

static inline bool
set_ssa_val_to (tree from, tree to)
{
  tree currval = SSA_VAL (from);
  HOST_WIDE_INT toff, coff;

  if (from != to)
    {
      if (currval == from)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Not changing value number of ");
	      print_generic_expr (dump_file, from, 0);
	      fprintf (dump_file, " from VARYING to ");
	      print_generic_expr (dump_file, to, 0);
	      fprintf (dump_file, "\n");
	    }
	  return false;
	}
      else if (TREE_CODE (to) == SSA_NAME
	       && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (to))
	to = from;
    }

  /* The only thing we allow as value numbers are VN_TOP, ssa_names
     and invariants.  So assert that here.  */
  gcc_assert (to != NULL_TREE
	      && (to == VN_TOP
		  || TREE_CODE (to) == SSA_NAME
		  || is_gimple_min_invariant (to)));

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Setting value number of ");
      print_generic_expr (dump_file, from, 0);
      fprintf (dump_file, " to ");
      print_generic_expr (dump_file, to, 0);
    }

  if (currval != to
      && !operand_equal_p (currval, to, 0)
      /* ???  For addresses involving volatile objects or types operand_equal_p
         does not reliably detect ADDR_EXPRs as equal.  We know we are only
	 getting invariant gimple addresses here, so can use
	 get_addr_base_and_unit_offset to do this comparison.  */
      && !(TREE_CODE (currval) == ADDR_EXPR
	   && TREE_CODE (to) == ADDR_EXPR
	   && (get_addr_base_and_unit_offset (TREE_OPERAND (currval, 0), &coff)
	       == get_addr_base_and_unit_offset (TREE_OPERAND (to, 0), &toff))
	   && coff == toff))
    {
      VN_INFO (from)->valnum = to;
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, " (changed)\n");
      return true;
    }
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n");
  return false;
}

/* Mark as processed all the definitions in the defining stmt of USE, or
   the USE itself.  */

static void
mark_use_processed (tree use)
{
  ssa_op_iter iter;
  def_operand_p defp;
  gimple stmt = SSA_NAME_DEF_STMT (use);

  if (SSA_NAME_IS_DEFAULT_DEF (use) || gimple_code (stmt) == GIMPLE_PHI)
    {
      VN_INFO (use)->use_processed = true;
      return;
    }

  FOR_EACH_SSA_DEF_OPERAND (defp, stmt, iter, SSA_OP_ALL_DEFS)
    {
      tree def = DEF_FROM_PTR (defp);

      VN_INFO (def)->use_processed = true;
    }
}

/* Set all definitions in STMT to value number to themselves.
   Return true if a value number changed. */

static bool
defs_to_varying (gimple stmt)
{
  bool changed = false;
  ssa_op_iter iter;
  def_operand_p defp;

  FOR_EACH_SSA_DEF_OPERAND (defp, stmt, iter, SSA_OP_ALL_DEFS)
    {
      tree def = DEF_FROM_PTR (defp);
      changed |= set_ssa_val_to (def, def);
    }
  return changed;
}

static bool expr_has_constants (tree expr);
static tree valueize_expr (tree expr);

/* Visit a copy between LHS and RHS, return true if the value number
   changed.  */

static bool
visit_copy (tree lhs, tree rhs)
{
  /* The copy may have a more interesting constant filled expression
     (we don't, since we know our RHS is just an SSA name).  */
  VN_INFO (lhs)->has_constants = VN_INFO (rhs)->has_constants;
  VN_INFO (lhs)->expr = VN_INFO (rhs)->expr;

  /* And finally valueize.  */
  rhs = SSA_VAL (rhs);

  return set_ssa_val_to (lhs, rhs);
}

/* Visit a nary operator RHS, value number it, and return true if the
   value number of LHS has changed as a result.  */

static bool
visit_nary_op (tree lhs, gimple stmt)
{
  bool changed = false;
  tree result = vn_nary_op_lookup_stmt (stmt, NULL);

  if (result)
    changed = set_ssa_val_to (lhs, result);
  else
    {
      changed = set_ssa_val_to (lhs, lhs);
      vn_nary_op_insert_stmt (stmt, lhs);
    }

  return changed;
}

/* Visit a call STMT storing into LHS.  Return true if the value number
   of the LHS has changed as a result.  */

static bool
visit_reference_op_call (tree lhs, gimple stmt)
{
  bool changed = false;
  struct vn_reference_s vr1;
  vn_reference_t vnresult = NULL;
  tree vuse = gimple_vuse (stmt);
  tree vdef = gimple_vdef (stmt);

  /* Non-ssa lhs is handled in copy_reference_ops_from_call.  */
  if (lhs && TREE_CODE (lhs) != SSA_NAME)
    lhs = NULL_TREE;

  vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1.operands = valueize_shared_reference_ops_from_call (stmt);
  vr1.type = gimple_expr_type (stmt);
  vr1.set = 0;
  vr1.hashcode = vn_reference_compute_hash (&vr1);
  vn_reference_lookup_1 (&vr1, &vnresult);

  if (vnresult)
    {
      if (vnresult->result_vdef)
	changed |= set_ssa_val_to (vdef, vnresult->result_vdef);

      if (!vnresult->result && lhs)
	vnresult->result = lhs;

      if (vnresult->result && lhs)
	{
	  changed |= set_ssa_val_to (lhs, vnresult->result);

	  if (VN_INFO (vnresult->result)->has_constants)
	    VN_INFO (lhs)->has_constants = true;
	}
    }
  else
    {
      vn_reference_s **slot;
      vn_reference_t vr2;
      if (vdef)
	changed |= set_ssa_val_to (vdef, vdef);
      if (lhs)
	changed |= set_ssa_val_to (lhs, lhs);
      vr2 = (vn_reference_t) pool_alloc (current_info->references_pool);
      vr2->vuse = vr1.vuse;
      vr2->operands = valueize_refs (create_reference_ops_from_call (stmt));
      vr2->type = vr1.type;
      vr2->set = vr1.set;
      vr2->hashcode = vr1.hashcode;
      vr2->result = lhs;
      vr2->result_vdef = vdef;
      slot = current_info->references.find_slot_with_hash (vr2, vr2->hashcode,
							   INSERT);
      if (*slot)
	free_reference (*slot);
      *slot = vr2;
    }

  return changed;
}

/* Visit a load from a reference operator RHS, part of STMT, value number it,
   and return true if the value number of the LHS has changed as a result.  */

static bool
visit_reference_op_load (tree lhs, tree op, gimple stmt)
{
  bool changed = false;
  tree last_vuse;
  tree result;

  last_vuse = gimple_vuse (stmt);
  last_vuse_ptr = &last_vuse;
  result = vn_reference_lookup (op, gimple_vuse (stmt),
				default_vn_walk_kind, NULL);
  last_vuse_ptr = NULL;

  /* If we have a VCE, try looking up its operand as it might be stored in
     a different type.  */
  if (!result && TREE_CODE (op) == VIEW_CONVERT_EXPR)
    result = vn_reference_lookup (TREE_OPERAND (op, 0), gimple_vuse (stmt),
    				  default_vn_walk_kind, NULL);

  /* We handle type-punning through unions by value-numbering based
     on offset and size of the access.  Be prepared to handle a
     type-mismatch here via creating a VIEW_CONVERT_EXPR.  */
  if (result
      && !useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (op)))
    {
      /* We will be setting the value number of lhs to the value number
	 of VIEW_CONVERT_EXPR <TREE_TYPE (result)> (result).
	 So first simplify and lookup this expression to see if it
	 is already available.  */
      tree val = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (op), result);
      if ((CONVERT_EXPR_P (val)
	   || TREE_CODE (val) == VIEW_CONVERT_EXPR)
	  && TREE_CODE (TREE_OPERAND (val, 0)) == SSA_NAME)
        {
	  tree tem = valueize_expr (vn_get_expr_for (TREE_OPERAND (val, 0)));
	  if ((CONVERT_EXPR_P (tem)
	       || TREE_CODE (tem) == VIEW_CONVERT_EXPR)
	      && (tem = fold_unary_ignore_overflow (TREE_CODE (val),
						    TREE_TYPE (val), tem)))
	    val = tem;
	}
      result = val;
      if (!is_gimple_min_invariant (val)
	  && TREE_CODE (val) != SSA_NAME)
	result = vn_nary_op_lookup (val, NULL);
      /* If the expression is not yet available, value-number lhs to
	 a new SSA_NAME we create.  */
      if (!result)
        {
	  result = make_temp_ssa_name (TREE_TYPE (lhs), gimple_build_nop (),
				       "vntemp");
	  /* Initialize value-number information properly.  */
	  VN_INFO_GET (result)->valnum = result;
	  VN_INFO (result)->value_id = get_next_value_id ();
	  VN_INFO (result)->expr = val;
	  VN_INFO (result)->has_constants = expr_has_constants (val);
	  VN_INFO (result)->needs_insertion = true;
	  /* As all "inserted" statements are singleton SCCs, insert
	     to the valid table.  This is strictly needed to
	     avoid re-generating new value SSA_NAMEs for the same
	     expression during SCC iteration over and over (the
	     optimistic table gets cleared after each iteration).
	     We do not need to insert into the optimistic table, as
	     lookups there will fall back to the valid table.  */
	  if (current_info == optimistic_info)
	    {
	      current_info = valid_info;
	      vn_nary_op_insert (val, result);
	      current_info = optimistic_info;
	    }
	  else
	    vn_nary_op_insert (val, result);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Inserting name ");
	      print_generic_expr (dump_file, result, 0);
	      fprintf (dump_file, " for expression ");
	      print_generic_expr (dump_file, val, 0);
	      fprintf (dump_file, "\n");
	    }
	}
    }

  if (result)
    {
      changed = set_ssa_val_to (lhs, result);
      if (TREE_CODE (result) == SSA_NAME
	  && VN_INFO (result)->has_constants)
	{
	  VN_INFO (lhs)->expr = VN_INFO (result)->expr;
	  VN_INFO (lhs)->has_constants = true;
	}
    }
  else
    {
      changed = set_ssa_val_to (lhs, lhs);
      vn_reference_insert (op, lhs, last_vuse, NULL_TREE);
    }

  return changed;
}


/* Visit a store to a reference operator LHS, part of STMT, value number it,
   and return true if the value number of the LHS has changed as a result.  */

static bool
visit_reference_op_store (tree lhs, tree op, gimple stmt)
{
  bool changed = false;
  vn_reference_t vnresult = NULL;
  tree result, assign;
  bool resultsame = false;
  tree vuse = gimple_vuse (stmt);
  tree vdef = gimple_vdef (stmt);

  /* First we want to lookup using the *vuses* from the store and see
     if there the last store to this location with the same address
     had the same value.

     The vuses represent the memory state before the store.  If the
     memory state, address, and value of the store is the same as the
     last store to this location, then this store will produce the
     same memory state as that store.

     In this case the vdef versions for this store are value numbered to those
     vuse versions, since they represent the same memory state after
     this store.

     Otherwise, the vdefs for the store are used when inserting into
     the table, since the store generates a new memory state.  */

  result = vn_reference_lookup (lhs, vuse, VN_NOWALK, NULL);

  if (result)
    {
      if (TREE_CODE (result) == SSA_NAME)
	result = SSA_VAL (result);
      if (TREE_CODE (op) == SSA_NAME)
	op = SSA_VAL (op);
      resultsame = expressions_equal_p (result, op);
    }

  if (!result || !resultsame)
    {
      assign = build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, op);
      vn_reference_lookup (assign, vuse, VN_NOWALK, &vnresult);
      if (vnresult)
	{
	  VN_INFO (vdef)->use_processed = true;
	  return set_ssa_val_to (vdef, vnresult->result_vdef);
	}
    }

  if (!result || !resultsame)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "No store match\n");
	  fprintf (dump_file, "Value numbering store ");
	  print_generic_expr (dump_file, lhs, 0);
	  fprintf (dump_file, " to ");
	  print_generic_expr (dump_file, op, 0);
	  fprintf (dump_file, "\n");
	}
      /* Have to set value numbers before insert, since insert is
	 going to valueize the references in-place.  */
      if (vdef)
	{
	  changed |= set_ssa_val_to (vdef, vdef);
	}

      /* Do not insert structure copies into the tables.  */
      if (is_gimple_min_invariant (op)
	  || is_gimple_reg (op))
        vn_reference_insert (lhs, op, vdef, NULL);

      assign = build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, op);
      vn_reference_insert (assign, lhs, vuse, vdef);
    }
  else
    {
      /* We had a match, so value number the vdef to have the value
	 number of the vuse it came from.  */

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Store matched earlier value,"
		 "value numbering store vdefs to matching vuses.\n");

      changed |= set_ssa_val_to (vdef, SSA_VAL (vuse));
    }

  return changed;
}

/* Visit and value number PHI, return true if the value number
   changed.  */

static bool
visit_phi (gimple phi)
{
  bool changed = false;
  tree result;
  tree sameval = VN_TOP;
  bool allsame = true;
  unsigned i;

  /* TODO: We could check for this in init_sccvn, and replace this
     with a gcc_assert.  */
  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
    return set_ssa_val_to (PHI_RESULT (phi), PHI_RESULT (phi));

  /* See if all non-TOP arguments have the same value.  TOP is
     equivalent to everything, so we can ignore it.  */
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
      tree def = PHI_ARG_DEF (phi, i);

      if (TREE_CODE (def) == SSA_NAME)
	def = SSA_VAL (def);
      if (def == VN_TOP)
	continue;
      if (sameval == VN_TOP)
	{
	  sameval = def;
	}
      else
	{
	  if (!expressions_equal_p (def, sameval))
	    {
	      allsame = false;
	      break;
	    }
	}
    }

  /* If all value numbered to the same value, the phi node has that
     value.  */
  if (allsame)
    {
      if (is_gimple_min_invariant (sameval))
	{
	  VN_INFO (PHI_RESULT (phi))->has_constants = true;
	  VN_INFO (PHI_RESULT (phi))->expr = sameval;
	}
      else
	{
	  VN_INFO (PHI_RESULT (phi))->has_constants = false;
	  VN_INFO (PHI_RESULT (phi))->expr = sameval;
	}

      if (TREE_CODE (sameval) == SSA_NAME)
	return visit_copy (PHI_RESULT (phi), sameval);

      return set_ssa_val_to (PHI_RESULT (phi), sameval);
    }

  /* Otherwise, see if it is equivalent to a phi node in this block.  */
  result = vn_phi_lookup (phi);
  if (result)
    {
      if (TREE_CODE (result) == SSA_NAME)
	changed = visit_copy (PHI_RESULT (phi), result);
      else
	changed = set_ssa_val_to (PHI_RESULT (phi), result);
    }
  else
    {
      vn_phi_insert (phi, PHI_RESULT (phi));
      VN_INFO (PHI_RESULT (phi))->has_constants = false;
      VN_INFO (PHI_RESULT (phi))->expr = PHI_RESULT (phi);
      changed = set_ssa_val_to (PHI_RESULT (phi), PHI_RESULT (phi));
    }

  return changed;
}

/* Return true if EXPR contains constants.  */

static bool
expr_has_constants (tree expr)
{
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
    {
    case tcc_unary:
      return is_gimple_min_invariant (TREE_OPERAND (expr, 0));

    case tcc_binary:
      return is_gimple_min_invariant (TREE_OPERAND (expr, 0))
	|| is_gimple_min_invariant (TREE_OPERAND (expr, 1));
      /* Constants inside reference ops are rarely interesting, but
	 it can take a lot of looking to find them.  */
    case tcc_reference:
    case tcc_declaration:
      return false;
    default:
      return is_gimple_min_invariant (expr);
    }
  return false;
}

/* Return true if STMT contains constants.  */

static bool
stmt_has_constants (gimple stmt)
{
  tree tem;

  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return false;

  switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
    {
    case GIMPLE_TERNARY_RHS:
      tem = gimple_assign_rhs3 (stmt);
      if (TREE_CODE (tem) == SSA_NAME)
	tem = SSA_VAL (tem);
      if (is_gimple_min_invariant (tem))
	return true;
      /* Fallthru.  */

    case GIMPLE_BINARY_RHS:
      tem = gimple_assign_rhs2 (stmt);
      if (TREE_CODE (tem) == SSA_NAME)
	tem = SSA_VAL (tem);
      if (is_gimple_min_invariant (tem))
	return true;
      /* Fallthru.  */

    case GIMPLE_SINGLE_RHS:
      /* Constants inside reference ops are rarely interesting, but
	 it can take a lot of looking to find them.  */
    case GIMPLE_UNARY_RHS:
      tem = gimple_assign_rhs1 (stmt);
      if (TREE_CODE (tem) == SSA_NAME)
	tem = SSA_VAL (tem);
      return is_gimple_min_invariant (tem);

    default:
      gcc_unreachable ();
    }
  return false;
}

/* Replace SSA_NAMES in expr with their value numbers, and return the
   result.
   This is performed in place. */

static tree
valueize_expr (tree expr)
{
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
    {
    case tcc_binary:
      TREE_OPERAND (expr, 1) = vn_valueize (TREE_OPERAND (expr, 1));
      /* Fallthru.  */
    case tcc_unary:
      TREE_OPERAND (expr, 0) = vn_valueize (TREE_OPERAND (expr, 0));
      break;
    default:;
    }
  return expr;
}

/* Simplify the binary expression RHS, and return the result if
   simplified. */

static tree
simplify_binary_expression (gimple stmt)
{
  tree result = NULL_TREE;
  tree op0 = gimple_assign_rhs1 (stmt);
  tree op1 = gimple_assign_rhs2 (stmt);
  enum tree_code code = gimple_assign_rhs_code (stmt);

  /* This will not catch every single case we could combine, but will
     catch those with constants.  The goal here is to simultaneously
     combine constants between expressions, but avoid infinite
     expansion of expressions during simplification.  */
  if (TREE_CODE (op0) == SSA_NAME)
    {
      if (VN_INFO (op0)->has_constants
	  || TREE_CODE_CLASS (code) == tcc_comparison
	  || code == COMPLEX_EXPR)
	op0 = valueize_expr (vn_get_expr_for (op0));
      else
	op0 = vn_valueize (op0);
    }

  if (TREE_CODE (op1) == SSA_NAME)
    {
      if (VN_INFO (op1)->has_constants
	  || code == COMPLEX_EXPR)
	op1 = valueize_expr (vn_get_expr_for (op1));
      else
	op1 = vn_valueize (op1);
    }

  /* Pointer plus constant can be represented as invariant address.
     Do so to allow further propatation, see also tree forwprop.  */
  if (code == POINTER_PLUS_EXPR
      && tree_fits_uhwi_p (op1)
      && TREE_CODE (op0) == ADDR_EXPR
      && is_gimple_min_invariant (op0))
    return build_invariant_address (TREE_TYPE (op0),
				    TREE_OPERAND (op0, 0),
				    tree_to_uhwi (op1));

  /* Avoid folding if nothing changed.  */
  if (op0 == gimple_assign_rhs1 (stmt)
      && op1 == gimple_assign_rhs2 (stmt))
    return NULL_TREE;

  fold_defer_overflow_warnings ();

  result = fold_binary (code, gimple_expr_type (stmt), op0, op1);
  if (result)
    STRIP_USELESS_TYPE_CONVERSION (result);

  fold_undefer_overflow_warnings (result && valid_gimple_rhs_p (result),
				  stmt, 0);

  /* Make sure result is not a complex expression consisting
     of operators of operators (IE (a + b) + (a + c))
     Otherwise, we will end up with unbounded expressions if
     fold does anything at all.  */
  if (result && valid_gimple_rhs_p (result))
    return result;

  return NULL_TREE;
}

/* Simplify the unary expression RHS, and return the result if
   simplified. */

static tree
simplify_unary_expression (gimple stmt)
{
  tree result = NULL_TREE;
  tree orig_op0, op0 = gimple_assign_rhs1 (stmt);
  enum tree_code code = gimple_assign_rhs_code (stmt);

  /* We handle some tcc_reference codes here that are all
     GIMPLE_ASSIGN_SINGLE codes.  */
  if (code == REALPART_EXPR
      || code == IMAGPART_EXPR
      || code == VIEW_CONVERT_EXPR
      || code == BIT_FIELD_REF)
    op0 = TREE_OPERAND (op0, 0);

  if (TREE_CODE (op0) != SSA_NAME)
    return NULL_TREE;

  orig_op0 = op0;
  if (VN_INFO (op0)->has_constants)
    op0 = valueize_expr (vn_get_expr_for (op0));
  else if (CONVERT_EXPR_CODE_P (code)
	   || code == REALPART_EXPR
	   || code == IMAGPART_EXPR
	   || code == VIEW_CONVERT_EXPR
	   || code == BIT_FIELD_REF)
    {
      /* We want to do tree-combining on conversion-like expressions.
         Make sure we feed only SSA_NAMEs or constants to fold though.  */
      tree tem = valueize_expr (vn_get_expr_for (op0));
      if (UNARY_CLASS_P (tem)
	  || BINARY_CLASS_P (tem)
	  || TREE_CODE (tem) == VIEW_CONVERT_EXPR
	  || TREE_CODE (tem) == SSA_NAME
	  || TREE_CODE (tem) == CONSTRUCTOR
	  || is_gimple_min_invariant (tem))
	op0 = tem;
    }

  /* Avoid folding if nothing changed, but remember the expression.  */
  if (op0 == orig_op0)
    return NULL_TREE;

  if (code == BIT_FIELD_REF)
    {
      tree rhs = gimple_assign_rhs1 (stmt);
      result = fold_ternary (BIT_FIELD_REF, TREE_TYPE (rhs),
			     op0, TREE_OPERAND (rhs, 1), TREE_OPERAND (rhs, 2));
    }
  else
    result = fold_unary_ignore_overflow (code, gimple_expr_type (stmt), op0);
  if (result)
    {
      STRIP_USELESS_TYPE_CONVERSION (result);
      if (valid_gimple_rhs_p (result))
        return result;
    }

  return NULL_TREE;
}

/* Try to simplify RHS using equivalences and constant folding.  */

static tree
try_to_simplify (gimple stmt)
{
  enum tree_code code = gimple_assign_rhs_code (stmt);
  tree tem;

  /* For stores we can end up simplifying a SSA_NAME rhs.  Just return
     in this case, there is no point in doing extra work.  */
  if (code == SSA_NAME)
    return NULL_TREE;

  /* First try constant folding based on our current lattice.  */
  tem = gimple_fold_stmt_to_constant_1 (stmt, vn_valueize);
  if (tem
      && (TREE_CODE (tem) == SSA_NAME
	  || is_gimple_min_invariant (tem)))
    return tem;

  /* If that didn't work try combining multiple statements.  */
  switch (TREE_CODE_CLASS (code))
    {
    case tcc_reference:
      /* Fallthrough for some unary codes that can operate on registers.  */
      if (!(code == REALPART_EXPR
	    || code == IMAGPART_EXPR
	    || code == VIEW_CONVERT_EXPR
	    || code == BIT_FIELD_REF))
	break;
      /* We could do a little more with unary ops, if they expand
	 into binary ops, but it's debatable whether it is worth it. */
    case tcc_unary:
      return simplify_unary_expression (stmt);

    case tcc_comparison:
    case tcc_binary:
      return simplify_binary_expression (stmt);

    default:
      break;
    }

  return NULL_TREE;
}

/* Visit and value number USE, return true if the value number
   changed. */

static bool
visit_use (tree use)
{
  bool changed = false;
  gimple stmt = SSA_NAME_DEF_STMT (use);

  mark_use_processed (use);

  gcc_assert (!SSA_NAME_IN_FREE_LIST (use));
  if (dump_file && (dump_flags & TDF_DETAILS)
      && !SSA_NAME_IS_DEFAULT_DEF (use))
    {
      fprintf (dump_file, "Value numbering ");
      print_generic_expr (dump_file, use, 0);
      fprintf (dump_file, " stmt = ");
      print_gimple_stmt (dump_file, stmt, 0, 0);
    }

  /* Handle uninitialized uses.  */
  if (SSA_NAME_IS_DEFAULT_DEF (use))
    changed = set_ssa_val_to (use, use);
  else
    {
      if (gimple_code (stmt) == GIMPLE_PHI)
	changed = visit_phi (stmt);
      else if (gimple_has_volatile_ops (stmt))
	changed = defs_to_varying (stmt);
      else if (is_gimple_assign (stmt))
	{
	  enum tree_code code = gimple_assign_rhs_code (stmt);
	  tree lhs = gimple_assign_lhs (stmt);
	  tree rhs1 = gimple_assign_rhs1 (stmt);
	  tree simplified;

	  /* Shortcut for copies. Simplifying copies is pointless,
	     since we copy the expression and value they represent.  */
	  if (code == SSA_NAME
	      && TREE_CODE (lhs) == SSA_NAME)
	    {
	      changed = visit_copy (lhs, rhs1);
	      goto done;
	    }
	  simplified = try_to_simplify (stmt);
	  if (simplified)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "RHS ");
		  print_gimple_expr (dump_file, stmt, 0, 0);
		  fprintf (dump_file, " simplified to ");
		  print_generic_expr (dump_file, simplified, 0);
		  if (TREE_CODE (lhs) == SSA_NAME)
		    fprintf (dump_file, " has constants %d\n",
			     expr_has_constants (simplified));
		  else
		    fprintf (dump_file, "\n");
		}
	    }
	  /* Setting value numbers to constants will occasionally
	     screw up phi congruence because constants are not
	     uniquely associated with a single ssa name that can be
	     looked up.  */
	  if (simplified
	      && is_gimple_min_invariant (simplified)
	      && TREE_CODE (lhs) == SSA_NAME)
	    {
	      VN_INFO (lhs)->expr = simplified;
	      VN_INFO (lhs)->has_constants = true;
	      changed = set_ssa_val_to (lhs, simplified);
	      goto done;
	    }
	  else if (simplified
		   && TREE_CODE (simplified) == SSA_NAME
		   && TREE_CODE (lhs) == SSA_NAME)
	    {
	      changed = visit_copy (lhs, simplified);
	      goto done;
	    }
	  else if (simplified)
	    {
	      if (TREE_CODE (lhs) == SSA_NAME)
		{
		  VN_INFO (lhs)->has_constants = expr_has_constants (simplified);
		  /* We have to unshare the expression or else
		     valuizing may change the IL stream.  */
		  VN_INFO (lhs)->expr = unshare_expr (simplified);
		}
	    }
	  else if (stmt_has_constants (stmt)
		   && TREE_CODE (lhs) == SSA_NAME)
	    VN_INFO (lhs)->has_constants = true;
	  else if (TREE_CODE (lhs) == SSA_NAME)
	    {
	      /* We reset expr and constantness here because we may
		 have been value numbering optimistically, and
		 iterating. They may become non-constant in this case,
		 even if they were optimistically constant. */

	      VN_INFO (lhs)->has_constants = false;
	      VN_INFO (lhs)->expr = NULL_TREE;
	    }

	  if ((TREE_CODE (lhs) == SSA_NAME
	       /* We can substitute SSA_NAMEs that are live over
		  abnormal edges with their constant value.  */
	       && !(gimple_assign_copy_p (stmt)
		    && is_gimple_min_invariant (rhs1))
	       && !(simplified
		    && is_gimple_min_invariant (simplified))
	       && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
	      /* Stores or copies from SSA_NAMEs that are live over
		 abnormal edges are a problem.  */
	      || (code == SSA_NAME
		  && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs1)))
	    changed = defs_to_varying (stmt);
	  else if (REFERENCE_CLASS_P (lhs)
		   || DECL_P (lhs))
	    changed = visit_reference_op_store (lhs, rhs1, stmt);
	  else if (TREE_CODE (lhs) == SSA_NAME)
	    {
	      if ((gimple_assign_copy_p (stmt)
		   && is_gimple_min_invariant (rhs1))
		  || (simplified
		      && is_gimple_min_invariant (simplified)))
		{
		  VN_INFO (lhs)->has_constants = true;
		  if (simplified)
		    changed = set_ssa_val_to (lhs, simplified);
		  else
		    changed = set_ssa_val_to (lhs, rhs1);
		}
	      else
		{
		  /* First try to lookup the simplified expression.  */
		  if (simplified)
		    {
		      enum gimple_rhs_class rhs_class;


		      rhs_class = get_gimple_rhs_class (TREE_CODE (simplified));
		      if ((rhs_class == GIMPLE_UNARY_RHS
			   || rhs_class == GIMPLE_BINARY_RHS
			   || rhs_class == GIMPLE_TERNARY_RHS)
			  && valid_gimple_rhs_p (simplified))
			{
			  tree result = vn_nary_op_lookup (simplified, NULL);
			  if (result)
			    {
			      changed = set_ssa_val_to (lhs, result);
			      goto done;
			    }
			}
		    }

		  /* Otherwise visit the original statement.  */
		  switch (vn_get_stmt_kind (stmt))
		    {
		    case VN_NARY:
		      changed = visit_nary_op (lhs, stmt);
		      break;
		    case VN_REFERENCE:
		      changed = visit_reference_op_load (lhs, rhs1, stmt);
		      break;
		    default:
		      changed = defs_to_varying (stmt);
		      break;
		    }
		}
	    }
	  else
	    changed = defs_to_varying (stmt);
	}
      else if (is_gimple_call (stmt))
	{
	  tree lhs = gimple_call_lhs (stmt);

	  /* ???  We could try to simplify calls.  */

	  if (lhs && TREE_CODE (lhs) == SSA_NAME)
	    {
	      if (stmt_has_constants (stmt))
		VN_INFO (lhs)->has_constants = true;
	      else
		{
		  /* We reset expr and constantness here because we may
		     have been value numbering optimistically, and
		     iterating.  They may become non-constant in this case,
		     even if they were optimistically constant.  */
		  VN_INFO (lhs)->has_constants = false;
		  VN_INFO (lhs)->expr = NULL_TREE;
		}

	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
		{
		  changed = defs_to_varying (stmt);
		  goto done;
		}
	    }

	  if (!gimple_call_internal_p (stmt)
	      && (/* Calls to the same function with the same vuse
		     and the same operands do not necessarily return the same
		     value, unless they're pure or const.  */
		  gimple_call_flags (stmt) & (ECF_PURE | ECF_CONST)
		  /* If calls have a vdef, subsequent calls won't have
		     the same incoming vuse.  So, if 2 calls with vdef have the
		     same vuse, we know they're not subsequent.
		     We can value number 2 calls to the same function with the
		     same vuse and the same operands which are not subsequent
		     the same, because there is no code in the program that can
		     compare the 2 values...  */
		  || (gimple_vdef (stmt)
		      /* ... unless the call returns a pointer which does
		         not alias with anything else.  In which case the
			 information that the values are distinct are encoded
			 in the IL.  */
		      && !(gimple_call_return_flags (stmt) & ERF_NOALIAS))))
	    changed = visit_reference_op_call (lhs, stmt);
	  else
	    changed = defs_to_varying (stmt);
	}
      else
	changed = defs_to_varying (stmt);
    }
 done:
  return changed;
}

/* Compare two operands by reverse postorder index */

static int
compare_ops (const void *pa, const void *pb)
{
  const tree opa = *((const tree *)pa);
  const tree opb = *((const tree *)pb);
  gimple opstmta = SSA_NAME_DEF_STMT (opa);
  gimple opstmtb = SSA_NAME_DEF_STMT (opb);
  basic_block bba;
  basic_block bbb;

  if (gimple_nop_p (opstmta) && gimple_nop_p (opstmtb))
    return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
  else if (gimple_nop_p (opstmta))
    return -1;
  else if (gimple_nop_p (opstmtb))
    return 1;

  bba = gimple_bb (opstmta);
  bbb = gimple_bb (opstmtb);

  if (!bba && !bbb)
    return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
  else if (!bba)
    return -1;
  else if (!bbb)
    return 1;

  if (bba == bbb)
    {
      if (gimple_code (opstmta) == GIMPLE_PHI
	  && gimple_code (opstmtb) == GIMPLE_PHI)
	return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
      else if (gimple_code (opstmta) == GIMPLE_PHI)
	return -1;
      else if (gimple_code (opstmtb) == GIMPLE_PHI)
	return 1;
      else if (gimple_uid (opstmta) != gimple_uid (opstmtb))
        return gimple_uid (opstmta) - gimple_uid (opstmtb);
      else
	return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
    }
  return rpo_numbers[bba->index] - rpo_numbers[bbb->index];
}

/* Sort an array containing members of a strongly connected component
   SCC so that the members are ordered by RPO number.
   This means that when the sort is complete, iterating through the
   array will give you the members in RPO order.  */

static void
sort_scc (vec<tree> scc)
{
  scc.qsort (compare_ops);
}

/* Insert the no longer used nary ONARY to the hash INFO.  */

static void
copy_nary (vn_nary_op_t onary, vn_tables_t info)
{
  size_t size = sizeof_vn_nary_op (onary->length);
  vn_nary_op_t nary = alloc_vn_nary_op_noinit (onary->length,
					       &info->nary_obstack);
  memcpy (nary, onary, size);
  vn_nary_op_insert_into (nary, info->nary, false);
}

/* Insert the no longer used phi OPHI to the hash INFO.  */

static void
copy_phi (vn_phi_t ophi, vn_tables_t info)
{
  vn_phi_t phi = (vn_phi_t) pool_alloc (info->phis_pool);
  vn_phi_s **slot;
  memcpy (phi, ophi, sizeof (*phi));
  ophi->phiargs.create (0);
  slot = info->phis.find_slot_with_hash (phi, phi->hashcode, INSERT);
  gcc_assert (!*slot);
  *slot = phi;
}

/* Insert the no longer used reference OREF to the hash INFO.  */

static void
copy_reference (vn_reference_t oref, vn_tables_t info)
{
  vn_reference_t ref;
  vn_reference_s **slot;
  ref = (vn_reference_t) pool_alloc (info->references_pool);
  memcpy (ref, oref, sizeof (*ref));
  oref->operands.create (0);
  slot = info->references.find_slot_with_hash (ref, ref->hashcode, INSERT);
  if (*slot)
    free_reference (*slot);
  *slot = ref;
}

/* Process a strongly connected component in the SSA graph.  */

static void
process_scc (vec<tree> scc)
{
  tree var;
  unsigned int i;
  unsigned int iterations = 0;
  bool changed = true;
  vn_nary_op_iterator_type hin;
  vn_phi_iterator_type hip;
  vn_reference_iterator_type hir;
  vn_nary_op_t nary;
  vn_phi_t phi;
  vn_reference_t ref;

  /* If the SCC has a single member, just visit it.  */
  if (scc.length () == 1)
    {
      tree use = scc[0];
      if (VN_INFO (use)->use_processed)
	return;
      /* We need to make sure it doesn't form a cycle itself, which can
	 happen for self-referential PHI nodes.  In that case we would
	 end up inserting an expression with VN_TOP operands into the
	 valid table which makes us derive bogus equivalences later.
	 The cheapest way to check this is to assume it for all PHI nodes.  */
      if (gimple_code (SSA_NAME_DEF_STMT (use)) == GIMPLE_PHI)
	/* Fallthru to iteration.  */ ;
      else
	{
	  visit_use (use);
	  return;
	}
    }

  /* Iterate over the SCC with the optimistic table until it stops
     changing.  */
  current_info = optimistic_info;
  while (changed)
    {
      changed = false;
      iterations++;
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Starting iteration %d\n", iterations);
      /* As we are value-numbering optimistically we have to
	 clear the expression tables and the simplified expressions
	 in each iteration until we converge.  */
      optimistic_info->nary.empty ();
      optimistic_info->phis.empty ();
      optimistic_info->references.empty ();
      obstack_free (&optimistic_info->nary_obstack, NULL);
      gcc_obstack_init (&optimistic_info->nary_obstack);
      empty_alloc_pool (optimistic_info->phis_pool);
      empty_alloc_pool (optimistic_info->references_pool);
      FOR_EACH_VEC_ELT (scc, i, var)
	VN_INFO (var)->expr = NULL_TREE;
      FOR_EACH_VEC_ELT (scc, i, var)
	changed |= visit_use (var);
    }

  statistics_histogram_event (cfun, "SCC iterations", iterations);

  /* Finally, copy the contents of the no longer used optimistic
     table to the valid table.  */
  FOR_EACH_HASH_TABLE_ELEMENT (optimistic_info->nary, nary, vn_nary_op_t, hin)
    copy_nary (nary, valid_info);
  FOR_EACH_HASH_TABLE_ELEMENT (optimistic_info->phis, phi, vn_phi_t, hip)
    copy_phi (phi, valid_info);
  FOR_EACH_HASH_TABLE_ELEMENT (optimistic_info->references,
			       ref, vn_reference_t, hir)
    copy_reference (ref, valid_info);

  current_info = valid_info;
}


/* Pop the components of the found SCC for NAME off the SCC stack
   and process them.  Returns true if all went well, false if
   we run into resource limits.  */

static bool
extract_and_process_scc_for_name (tree name)
{
  auto_vec<tree> scc;
  tree x;

  /* Found an SCC, pop the components off the SCC stack and
     process them.  */
  do
    {
      x = sccstack.pop ();

      VN_INFO (x)->on_sccstack = false;
      scc.safe_push (x);
    } while (x != name);

  /* Bail out of SCCVN in case a SCC turns out to be incredibly large.  */
  if (scc.length ()
      > (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE))
    {
      if (dump_file)
	fprintf (dump_file, "WARNING: Giving up with SCCVN due to "
		 "SCC size %u exceeding %u\n", scc.length (),
		 (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE));

      return false;
    }

  if (scc.length () > 1)
    sort_scc (scc);

  if (dump_file && (dump_flags & TDF_DETAILS))
    print_scc (dump_file, scc);

  process_scc (scc);

  return true;
}

/* Depth first search on NAME to discover and process SCC's in the SSA
   graph.
   Execution of this algorithm relies on the fact that the SCC's are
   popped off the stack in topological order.
   Returns true if successful, false if we stopped processing SCC's due
   to resource constraints.  */

static bool
DFS (tree name)
{
  vec<ssa_op_iter> itervec = vNULL;
  vec<tree> namevec = vNULL;
  use_operand_p usep = NULL;
  gimple defstmt;
  tree use;
  ssa_op_iter iter;

start_over:
  /* SCC info */
  VN_INFO (name)->dfsnum = next_dfs_num++;
  VN_INFO (name)->visited = true;
  VN_INFO (name)->low = VN_INFO (name)->dfsnum;

  sccstack.safe_push (name);
  VN_INFO (name)->on_sccstack = true;
  defstmt = SSA_NAME_DEF_STMT (name);

  /* Recursively DFS on our operands, looking for SCC's.  */
  if (!gimple_nop_p (defstmt))
    {
      /* Push a new iterator.  */
      if (gimple_code (defstmt) == GIMPLE_PHI)
	usep = op_iter_init_phiuse (&iter, defstmt, SSA_OP_ALL_USES);
      else
	usep = op_iter_init_use (&iter, defstmt, SSA_OP_ALL_USES);
    }
  else
    clear_and_done_ssa_iter (&iter);

  while (1)
    {
      /* If we are done processing uses of a name, go up the stack
	 of iterators and process SCCs as we found them.  */
      if (op_iter_done (&iter))
	{
	  /* See if we found an SCC.  */
	  if (VN_INFO (name)->low == VN_INFO (name)->dfsnum)
	    if (!extract_and_process_scc_for_name (name))
	      {
		namevec.release ();
		itervec.release ();
		return false;
	      }

	  /* Check if we are done.  */
	  if (namevec.is_empty ())
	    {
	      namevec.release ();
	      itervec.release ();
	      return true;
	    }

	  /* Restore the last use walker and continue walking there.  */
	  use = name;
	  name = namevec.pop ();
	  memcpy (&iter, &itervec.last (),
		  sizeof (ssa_op_iter));
	  itervec.pop ();
	  goto continue_walking;
	}

      use = USE_FROM_PTR (usep);

      /* Since we handle phi nodes, we will sometimes get
	 invariants in the use expression.  */
      if (TREE_CODE (use) == SSA_NAME)
	{
	  if (! (VN_INFO (use)->visited))
	    {
	      /* Recurse by pushing the current use walking state on
		 the stack and starting over.  */
	      itervec.safe_push (iter);
	      namevec.safe_push (name);
	      name = use;
	      goto start_over;

continue_walking:
	      VN_INFO (name)->low = MIN (VN_INFO (name)->low,
					 VN_INFO (use)->low);
	    }
	  if (VN_INFO (use)->dfsnum < VN_INFO (name)->dfsnum
	      && VN_INFO (use)->on_sccstack)
	    {
	      VN_INFO (name)->low = MIN (VN_INFO (use)->dfsnum,
					 VN_INFO (name)->low);
	    }
	}

      usep = op_iter_next_use (&iter);
    }
}

/* Allocate a value number table.  */

static void
allocate_vn_table (vn_tables_t table)
{
  table->phis.create (23);
  table->nary.create (23);
  table->references.create (23);

  gcc_obstack_init (&table->nary_obstack);
  table->phis_pool = create_alloc_pool ("VN phis",
					sizeof (struct vn_phi_s),
					30);
  table->references_pool = create_alloc_pool ("VN references",
					      sizeof (struct vn_reference_s),
					      30);
}

/* Free a value number table.  */

static void
free_vn_table (vn_tables_t table)
{
  table->phis.dispose ();
  table->nary.dispose ();
  table->references.dispose ();
  obstack_free (&table->nary_obstack, NULL);
  free_alloc_pool (table->phis_pool);
  free_alloc_pool (table->references_pool);
}

static void
init_scc_vn (void)
{
  size_t i;
  int j;
  int *rpo_numbers_temp;

  calculate_dominance_info (CDI_DOMINATORS);
  sccstack.create (0);
  constant_to_value_id.create (23);

  constant_value_ids = BITMAP_ALLOC (NULL);

  next_dfs_num = 1;
  next_value_id = 1;

  vn_ssa_aux_table.create (num_ssa_names + 1);
  /* VEC_alloc doesn't actually grow it to the right size, it just
     preallocates the space to do so.  */
  vn_ssa_aux_table.safe_grow_cleared (num_ssa_names + 1);
  gcc_obstack_init (&vn_ssa_aux_obstack);

  shared_lookup_phiargs.create (0);
  shared_lookup_references.create (0);
  rpo_numbers = XNEWVEC (int, last_basic_block);
  rpo_numbers_temp =
    XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
  pre_and_rev_post_order_compute (NULL, rpo_numbers_temp, false);

  /* RPO numbers is an array of rpo ordering, rpo[i] = bb means that
     the i'th block in RPO order is bb.  We want to map bb's to RPO
     numbers, so we need to rearrange this array.  */
  for (j = 0; j < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; j++)
    rpo_numbers[rpo_numbers_temp[j]] = j;

  XDELETE (rpo_numbers_temp);

  VN_TOP = create_tmp_var_raw (void_type_node, "vn_top");

  /* Create the VN_INFO structures, and initialize value numbers to
     TOP.  */
  for (i = 0; i < num_ssa_names; i++)
    {
      tree name = ssa_name (i);
      if (name)
	{
	  VN_INFO_GET (name)->valnum = VN_TOP;
	  VN_INFO (name)->expr = NULL_TREE;
	  VN_INFO (name)->value_id = 0;
	}
    }

  renumber_gimple_stmt_uids ();

  /* Create the valid and optimistic value numbering tables.  */
  valid_info = XCNEW (struct vn_tables_s);
  allocate_vn_table (valid_info);
  optimistic_info = XCNEW (struct vn_tables_s);
  allocate_vn_table (optimistic_info);
}

void
free_scc_vn (void)
{
  size_t i;

  constant_to_value_id.dispose ();
  BITMAP_FREE (constant_value_ids);
  shared_lookup_phiargs.release ();
  shared_lookup_references.release ();
  XDELETEVEC (rpo_numbers);

  for (i = 0; i < num_ssa_names; i++)
    {
      tree name = ssa_name (i);
      if (name
	  && VN_INFO (name)->needs_insertion)
	release_ssa_name (name);
    }
  obstack_free (&vn_ssa_aux_obstack, NULL);
  vn_ssa_aux_table.release ();

  sccstack.release ();
  free_vn_table (valid_info);
  XDELETE (valid_info);
  free_vn_table (optimistic_info);
  XDELETE (optimistic_info);
}

/* Set *ID according to RESULT.  */

static void
set_value_id_for_result (tree result, unsigned int *id)
{
  if (result && TREE_CODE (result) == SSA_NAME)
    *id = VN_INFO (result)->value_id;
  else if (result && is_gimple_min_invariant (result))
    *id = get_or_alloc_constant_value_id (result);
  else
    *id = get_next_value_id ();
}

/* Set the value ids in the valid hash tables.  */

static void
set_hashtable_value_ids (void)
{
  vn_nary_op_iterator_type hin;
  vn_phi_iterator_type hip;
  vn_reference_iterator_type hir;
  vn_nary_op_t vno;
  vn_reference_t vr;
  vn_phi_t vp;

  /* Now set the value ids of the things we had put in the hash
     table.  */

  FOR_EACH_HASH_TABLE_ELEMENT (valid_info->nary, vno, vn_nary_op_t, hin)
    set_value_id_for_result (vno->result, &vno->value_id);

  FOR_EACH_HASH_TABLE_ELEMENT (valid_info->phis, vp, vn_phi_t, hip)
    set_value_id_for_result (vp->result, &vp->value_id);

  FOR_EACH_HASH_TABLE_ELEMENT (valid_info->references, vr, vn_reference_t, hir)
    set_value_id_for_result (vr->result, &vr->value_id);
}

/* Do SCCVN.  Returns true if it finished, false if we bailed out
   due to resource constraints.  DEFAULT_VN_WALK_KIND_ specifies
   how we use the alias oracle walking during the VN process.  */

bool
run_scc_vn (vn_lookup_kind default_vn_walk_kind_)
{
  size_t i;
  tree param;

  default_vn_walk_kind = default_vn_walk_kind_;

  init_scc_vn ();
  current_info = valid_info;

  for (param = DECL_ARGUMENTS (current_function_decl);
       param;
       param = DECL_CHAIN (param))
    {
      tree def = ssa_default_def (cfun, param);
      if (def)
	VN_INFO (def)->valnum = def;
    }

  for (i = 1; i < num_ssa_names; ++i)
    {
      tree name = ssa_name (i);
      if (name
	  && VN_INFO (name)->visited == false
	  && !has_zero_uses (name))
	if (!DFS (name))
	  {
	    free_scc_vn ();
	    return false;
	  }
    }

  /* Initialize the value ids.  */

  for (i = 1; i < num_ssa_names; ++i)
    {
      tree name = ssa_name (i);
      vn_ssa_aux_t info;
      if (!name)
	continue;
      info = VN_INFO (name);
      if (info->valnum == name
	  || info->valnum == VN_TOP)
	info->value_id = get_next_value_id ();
      else if (is_gimple_min_invariant (info->valnum))
	info->value_id = get_or_alloc_constant_value_id (info->valnum);
    }

  /* Propagate.  */
  for (i = 1; i < num_ssa_names; ++i)
    {
      tree name = ssa_name (i);
      vn_ssa_aux_t info;
      if (!name)
	continue;
      info = VN_INFO (name);
      if (TREE_CODE (info->valnum) == SSA_NAME
	  && info->valnum != name
	  && info->value_id != VN_INFO (info->valnum)->value_id)
	info->value_id = VN_INFO (info->valnum)->value_id;
    }

  set_hashtable_value_ids ();

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Value numbers:\n");
      for (i = 0; i < num_ssa_names; i++)
	{
	  tree name = ssa_name (i);
	  if (name
	      && VN_INFO (name)->visited
	      && SSA_VAL (name) != name)
	    {
	      print_generic_expr (dump_file, name, 0);
	      fprintf (dump_file, " = ");
	      print_generic_expr (dump_file, SSA_VAL (name), 0);
	      fprintf (dump_file, "\n");
	    }
	}
    }

  return true;
}

/* Return the maximum value id we have ever seen.  */

unsigned int
get_max_value_id (void)
{
  return next_value_id;
}

/* Return the next unique value id.  */

unsigned int
get_next_value_id (void)
{
  return next_value_id++;
}


/* Compare two expressions E1 and E2 and return true if they are equal.  */

bool
expressions_equal_p (tree e1, tree e2)
{
  /* The obvious case.  */
  if (e1 == e2)
    return true;

  /* If only one of them is null, they cannot be equal.  */
  if (!e1 || !e2)
    return false;

  /* Now perform the actual comparison.  */
  if (TREE_CODE (e1) == TREE_CODE (e2)
      && operand_equal_p (e1, e2, OEP_PURE_SAME))
    return true;

  return false;
}


/* Return true if the nary operation NARY may trap.  This is a copy
   of stmt_could_throw_1_p adjusted to the SCCVN IL.  */

bool
vn_nary_may_trap (vn_nary_op_t nary)
{
  tree type;
  tree rhs2 = NULL_TREE;
  bool honor_nans = false;
  bool honor_snans = false;
  bool fp_operation = false;
  bool honor_trapv = false;
  bool handled, ret;
  unsigned i;

  if (TREE_CODE_CLASS (nary->opcode) == tcc_comparison
      || TREE_CODE_CLASS (nary->opcode) == tcc_unary
      || TREE_CODE_CLASS (nary->opcode) == tcc_binary)
    {
      type = nary->type;
      fp_operation = FLOAT_TYPE_P (type);
      if (fp_operation)
	{
	  honor_nans = flag_trapping_math && !flag_finite_math_only;
	  honor_snans = flag_signaling_nans != 0;
	}
      else if (INTEGRAL_TYPE_P (type)
	       && TYPE_OVERFLOW_TRAPS (type))
	honor_trapv = true;
    }
  if (nary->length >= 2)
    rhs2 = nary->op[1];
  ret = operation_could_trap_helper_p (nary->opcode, fp_operation,
				       honor_trapv,
				       honor_nans, honor_snans, rhs2,
				       &handled);
  if (handled
      && ret)
    return true;

  for (i = 0; i < nary->length; ++i)
    if (tree_could_trap_p (nary->op[i]))
      return true;

  return false;
}