1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
|
/* Reassociation for trees.
Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by Daniel Berlin <dan@dberlin.org>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "gimple.h"
#include "tree-dump.h"
#include "timevar.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "alloc-pool.h"
#include "vec.h"
#include "langhooks.h"
#include "pointer-set.h"
#include "cfgloop.h"
#include "flags.h"
/* This is a simple global reassociation pass. It is, in part, based
on the LLVM pass of the same name (They do some things more/less
than we do, in different orders, etc).
It consists of five steps:
1. Breaking up subtract operations into addition + negate, where
it would promote the reassociation of adds.
2. Left linearization of the expression trees, so that (A+B)+(C+D)
becomes (((A+B)+C)+D), which is easier for us to rewrite later.
During linearization, we place the operands of the binary
expressions into a vector of operand_entry_t
3. Optimization of the operand lists, eliminating things like a +
-a, a & a, etc.
4. Rewrite the expression trees we linearized and optimized so
they are in proper rank order.
5. Repropagate negates, as nothing else will clean it up ATM.
A bit of theory on #4, since nobody seems to write anything down
about why it makes sense to do it the way they do it:
We could do this much nicer theoretically, but don't (for reasons
explained after how to do it theoretically nice :P).
In order to promote the most redundancy elimination, you want
binary expressions whose operands are the same rank (or
preferably, the same value) exposed to the redundancy eliminator,
for possible elimination.
So the way to do this if we really cared, is to build the new op
tree from the leaves to the roots, merging as you go, and putting the
new op on the end of the worklist, until you are left with one
thing on the worklist.
IE if you have to rewrite the following set of operands (listed with
rank in parentheses), with opcode PLUS_EXPR:
a (1), b (1), c (1), d (2), e (2)
We start with our merge worklist empty, and the ops list with all of
those on it.
You want to first merge all leaves of the same rank, as much as
possible.
So first build a binary op of
mergetmp = a + b, and put "mergetmp" on the merge worklist.
Because there is no three operand form of PLUS_EXPR, c is not going to
be exposed to redundancy elimination as a rank 1 operand.
So you might as well throw it on the merge worklist (you could also
consider it to now be a rank two operand, and merge it with d and e,
but in this case, you then have evicted e from a binary op. So at
least in this situation, you can't win.)
Then build a binary op of d + e
mergetmp2 = d + e
and put mergetmp2 on the merge worklist.
so merge worklist = {mergetmp, c, mergetmp2}
Continue building binary ops of these operations until you have only
one operation left on the worklist.
So we have
build binary op
mergetmp3 = mergetmp + c
worklist = {mergetmp2, mergetmp3}
mergetmp4 = mergetmp2 + mergetmp3
worklist = {mergetmp4}
because we have one operation left, we can now just set the original
statement equal to the result of that operation.
This will at least expose a + b and d + e to redundancy elimination
as binary operations.
For extra points, you can reuse the old statements to build the
mergetmps, since you shouldn't run out.
So why don't we do this?
Because it's expensive, and rarely will help. Most trees we are
reassociating have 3 or less ops. If they have 2 ops, they already
will be written into a nice single binary op. If you have 3 ops, a
single simple check suffices to tell you whether the first two are of the
same rank. If so, you know to order it
mergetmp = op1 + op2
newstmt = mergetmp + op3
instead of
mergetmp = op2 + op3
newstmt = mergetmp + op1
If all three are of the same rank, you can't expose them all in a
single binary operator anyway, so the above is *still* the best you
can do.
Thus, this is what we do. When we have three ops left, we check to see
what order to put them in, and call it a day. As a nod to vector sum
reduction, we check if any of the ops are really a phi node that is a
destructive update for the associating op, and keep the destructive
update together for vector sum reduction recognition. */
/* Statistics */
static struct
{
int linearized;
int constants_eliminated;
int ops_eliminated;
int rewritten;
} reassociate_stats;
/* Operator, rank pair. */
typedef struct operand_entry
{
unsigned int rank;
tree op;
} *operand_entry_t;
static alloc_pool operand_entry_pool;
/* Starting rank number for a given basic block, so that we can rank
operations using unmovable instructions in that BB based on the bb
depth. */
static long *bb_rank;
/* Operand->rank hashtable. */
static struct pointer_map_t *operand_rank;
/* Look up the operand rank structure for expression E. */
static inline long
find_operand_rank (tree e)
{
void **slot = pointer_map_contains (operand_rank, e);
return slot ? (long) *slot : -1;
}
/* Insert {E,RANK} into the operand rank hashtable. */
static inline void
insert_operand_rank (tree e, long rank)
{
void **slot;
gcc_assert (rank > 0);
slot = pointer_map_insert (operand_rank, e);
gcc_assert (!*slot);
*slot = (void *) rank;
}
/* Given an expression E, return the rank of the expression. */
static long
get_rank (tree e)
{
/* Constants have rank 0. */
if (is_gimple_min_invariant (e))
return 0;
/* SSA_NAME's have the rank of the expression they are the result
of.
For globals and uninitialized values, the rank is 0.
For function arguments, use the pre-setup rank.
For PHI nodes, stores, asm statements, etc, we use the rank of
the BB.
For simple operations, the rank is the maximum rank of any of
its operands, or the bb_rank, whichever is less.
I make no claims that this is optimal, however, it gives good
results. */
if (TREE_CODE (e) == SSA_NAME)
{
gimple stmt;
long rank, maxrank;
int i, n;
if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL
&& SSA_NAME_IS_DEFAULT_DEF (e))
return find_operand_rank (e);
stmt = SSA_NAME_DEF_STMT (e);
if (gimple_bb (stmt) == NULL)
return 0;
if (!is_gimple_assign (stmt)
|| gimple_vdef (stmt))
return bb_rank[gimple_bb (stmt)->index];
/* If we already have a rank for this expression, use that. */
rank = find_operand_rank (e);
if (rank != -1)
return rank;
/* Otherwise, find the maximum rank for the operands, or the bb
rank, whichever is less. */
rank = 0;
maxrank = bb_rank[gimple_bb(stmt)->index];
if (gimple_assign_single_p (stmt))
{
tree rhs = gimple_assign_rhs1 (stmt);
n = TREE_OPERAND_LENGTH (rhs);
if (n == 0)
rank = MAX (rank, get_rank (rhs));
else
{
for (i = 0;
i < n && TREE_OPERAND (rhs, i) && rank != maxrank; i++)
rank = MAX(rank, get_rank (TREE_OPERAND (rhs, i)));
}
}
else
{
n = gimple_num_ops (stmt);
for (i = 1; i < n && rank != maxrank; i++)
{
gcc_assert (gimple_op (stmt, i));
rank = MAX(rank, get_rank (gimple_op (stmt, i)));
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Rank for ");
print_generic_expr (dump_file, e, 0);
fprintf (dump_file, " is %ld\n", (rank + 1));
}
/* Note the rank in the hashtable so we don't recompute it. */
insert_operand_rank (e, (rank + 1));
return (rank + 1);
}
/* Globals, etc, are rank 0 */
return 0;
}
DEF_VEC_P(operand_entry_t);
DEF_VEC_ALLOC_P(operand_entry_t, heap);
/* We want integer ones to end up last no matter what, since they are
the ones we can do the most with. */
#define INTEGER_CONST_TYPE 1 << 3
#define FLOAT_CONST_TYPE 1 << 2
#define OTHER_CONST_TYPE 1 << 1
/* Classify an invariant tree into integer, float, or other, so that
we can sort them to be near other constants of the same type. */
static inline int
constant_type (tree t)
{
if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
return INTEGER_CONST_TYPE;
else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
return FLOAT_CONST_TYPE;
else
return OTHER_CONST_TYPE;
}
/* qsort comparison function to sort operand entries PA and PB by rank
so that the sorted array is ordered by rank in decreasing order. */
static int
sort_by_operand_rank (const void *pa, const void *pb)
{
const operand_entry_t oea = *(const operand_entry_t *)pa;
const operand_entry_t oeb = *(const operand_entry_t *)pb;
/* It's nicer for optimize_expression if constants that are likely
to fold when added/multiplied//whatever are put next to each
other. Since all constants have rank 0, order them by type. */
if (oeb->rank == 0 && oea->rank == 0)
return constant_type (oeb->op) - constant_type (oea->op);
/* Lastly, make sure the versions that are the same go next to each
other. We use SSA_NAME_VERSION because it's stable. */
if ((oeb->rank - oea->rank == 0)
&& TREE_CODE (oea->op) == SSA_NAME
&& TREE_CODE (oeb->op) == SSA_NAME)
return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
return oeb->rank - oea->rank;
}
/* Add an operand entry to *OPS for the tree operand OP. */
static void
add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op)
{
operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
oe->op = op;
oe->rank = get_rank (op);
VEC_safe_push (operand_entry_t, heap, *ops, oe);
}
/* Return true if STMT is reassociable operation containing a binary
operation with tree code CODE, and is inside LOOP. */
static bool
is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
{
basic_block bb = gimple_bb (stmt);
if (gimple_bb (stmt) == NULL)
return false;
if (!flow_bb_inside_loop_p (loop, bb))
return false;
if (is_gimple_assign (stmt)
&& gimple_assign_rhs_code (stmt) == code
&& has_single_use (gimple_assign_lhs (stmt)))
return true;
return false;
}
/* Given NAME, if NAME is defined by a unary operation OPCODE, return the
operand of the negate operation. Otherwise, return NULL. */
static tree
get_unary_op (tree name, enum tree_code opcode)
{
gimple stmt = SSA_NAME_DEF_STMT (name);
if (!is_gimple_assign (stmt))
return NULL_TREE;
if (gimple_assign_rhs_code (stmt) == opcode)
return gimple_assign_rhs1 (stmt);
return NULL_TREE;
}
/* If CURR and LAST are a pair of ops that OPCODE allows us to
eliminate through equivalences, do so, remove them from OPS, and
return true. Otherwise, return false. */
static bool
eliminate_duplicate_pair (enum tree_code opcode,
VEC (operand_entry_t, heap) **ops,
bool *all_done,
unsigned int i,
operand_entry_t curr,
operand_entry_t last)
{
/* If we have two of the same op, and the opcode is & |, min, or max,
we can eliminate one of them.
If we have two of the same op, and the opcode is ^, we can
eliminate both of them. */
if (last && last->op == curr->op)
{
switch (opcode)
{
case MAX_EXPR:
case MIN_EXPR:
case BIT_IOR_EXPR:
case BIT_AND_EXPR:
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Equivalence: ");
print_generic_expr (dump_file, curr->op, 0);
fprintf (dump_file, " [&|minmax] ");
print_generic_expr (dump_file, last->op, 0);
fprintf (dump_file, " -> ");
print_generic_stmt (dump_file, last->op, 0);
}
VEC_ordered_remove (operand_entry_t, *ops, i);
reassociate_stats.ops_eliminated ++;
return true;
case BIT_XOR_EXPR:
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Equivalence: ");
print_generic_expr (dump_file, curr->op, 0);
fprintf (dump_file, " ^ ");
print_generic_expr (dump_file, last->op, 0);
fprintf (dump_file, " -> nothing\n");
}
reassociate_stats.ops_eliminated += 2;
if (VEC_length (operand_entry_t, *ops) == 2)
{
VEC_free (operand_entry_t, heap, *ops);
*ops = NULL;
add_to_ops_vec (ops, fold_convert (TREE_TYPE (last->op),
integer_zero_node));
*all_done = true;
}
else
{
VEC_ordered_remove (operand_entry_t, *ops, i-1);
VEC_ordered_remove (operand_entry_t, *ops, i-1);
}
return true;
default:
break;
}
}
return false;
}
/* If OPCODE is PLUS_EXPR, CURR->OP is really a negate expression,
look in OPS for a corresponding positive operation to cancel it
out. If we find one, remove the other from OPS, replace
OPS[CURRINDEX] with 0, and return true. Otherwise, return
false. */
static bool
eliminate_plus_minus_pair (enum tree_code opcode,
VEC (operand_entry_t, heap) **ops,
unsigned int currindex,
operand_entry_t curr)
{
tree negateop;
unsigned int i;
operand_entry_t oe;
if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
return false;
negateop = get_unary_op (curr->op, NEGATE_EXPR);
if (negateop == NULL_TREE)
return false;
/* Any non-negated version will have a rank that is one less than
the current rank. So once we hit those ranks, if we don't find
one, we can stop. */
for (i = currindex + 1;
VEC_iterate (operand_entry_t, *ops, i, oe)
&& oe->rank >= curr->rank - 1 ;
i++)
{
if (oe->op == negateop)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Equivalence: ");
print_generic_expr (dump_file, negateop, 0);
fprintf (dump_file, " + -");
print_generic_expr (dump_file, oe->op, 0);
fprintf (dump_file, " -> 0\n");
}
VEC_ordered_remove (operand_entry_t, *ops, i);
add_to_ops_vec (ops, fold_convert(TREE_TYPE (oe->op),
integer_zero_node));
VEC_ordered_remove (operand_entry_t, *ops, currindex);
reassociate_stats.ops_eliminated ++;
return true;
}
}
return false;
}
/* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
bitwise not expression, look in OPS for a corresponding operand to
cancel it out. If we find one, remove the other from OPS, replace
OPS[CURRINDEX] with 0, and return true. Otherwise, return
false. */
static bool
eliminate_not_pairs (enum tree_code opcode,
VEC (operand_entry_t, heap) **ops,
unsigned int currindex,
operand_entry_t curr)
{
tree notop;
unsigned int i;
operand_entry_t oe;
if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
|| TREE_CODE (curr->op) != SSA_NAME)
return false;
notop = get_unary_op (curr->op, BIT_NOT_EXPR);
if (notop == NULL_TREE)
return false;
/* Any non-not version will have a rank that is one less than
the current rank. So once we hit those ranks, if we don't find
one, we can stop. */
for (i = currindex + 1;
VEC_iterate (operand_entry_t, *ops, i, oe)
&& oe->rank >= curr->rank - 1;
i++)
{
if (oe->op == notop)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Equivalence: ");
print_generic_expr (dump_file, notop, 0);
if (opcode == BIT_AND_EXPR)
fprintf (dump_file, " & ~");
else if (opcode == BIT_IOR_EXPR)
fprintf (dump_file, " | ~");
print_generic_expr (dump_file, oe->op, 0);
if (opcode == BIT_AND_EXPR)
fprintf (dump_file, " -> 0\n");
else if (opcode == BIT_IOR_EXPR)
fprintf (dump_file, " -> -1\n");
}
if (opcode == BIT_AND_EXPR)
oe->op = fold_convert (TREE_TYPE (oe->op), integer_zero_node);
else if (opcode == BIT_IOR_EXPR)
oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
TYPE_PRECISION (TREE_TYPE (oe->op)));
reassociate_stats.ops_eliminated
+= VEC_length (operand_entry_t, *ops) - 1;
VEC_free (operand_entry_t, heap, *ops);
*ops = NULL;
VEC_safe_push (operand_entry_t, heap, *ops, oe);
return true;
}
}
return false;
}
/* Use constant value that may be present in OPS to try to eliminate
operands. Note that this function is only really used when we've
eliminated ops for other reasons, or merged constants. Across
single statements, fold already does all of this, plus more. There
is little point in duplicating logic, so I've only included the
identities that I could ever construct testcases to trigger. */
static void
eliminate_using_constants (enum tree_code opcode,
VEC(operand_entry_t, heap) **ops)
{
operand_entry_t oelast = VEC_last (operand_entry_t, *ops);
tree type = TREE_TYPE (oelast->op);
if (oelast->rank == 0
&& (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
{
switch (opcode)
{
case BIT_AND_EXPR:
if (integer_zerop (oelast->op))
{
if (VEC_length (operand_entry_t, *ops) != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found & 0, removing all other ops\n");
reassociate_stats.ops_eliminated
+= VEC_length (operand_entry_t, *ops) - 1;
VEC_free (operand_entry_t, heap, *ops);
*ops = NULL;
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
return;
}
}
else if (integer_all_onesp (oelast->op))
{
if (VEC_length (operand_entry_t, *ops) != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found & -1, removing\n");
VEC_pop (operand_entry_t, *ops);
reassociate_stats.ops_eliminated++;
}
}
break;
case BIT_IOR_EXPR:
if (integer_all_onesp (oelast->op))
{
if (VEC_length (operand_entry_t, *ops) != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found | -1, removing all other ops\n");
reassociate_stats.ops_eliminated
+= VEC_length (operand_entry_t, *ops) - 1;
VEC_free (operand_entry_t, heap, *ops);
*ops = NULL;
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
return;
}
}
else if (integer_zerop (oelast->op))
{
if (VEC_length (operand_entry_t, *ops) != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found | 0, removing\n");
VEC_pop (operand_entry_t, *ops);
reassociate_stats.ops_eliminated++;
}
}
break;
case MULT_EXPR:
if (integer_zerop (oelast->op)
|| (FLOAT_TYPE_P (type)
&& !HONOR_NANS (TYPE_MODE (type))
&& !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
&& real_zerop (oelast->op)))
{
if (VEC_length (operand_entry_t, *ops) != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found * 0, removing all other ops\n");
reassociate_stats.ops_eliminated
+= VEC_length (operand_entry_t, *ops) - 1;
VEC_free (operand_entry_t, heap, *ops);
*ops = NULL;
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
return;
}
}
else if (integer_onep (oelast->op)
|| (FLOAT_TYPE_P (type)
&& !HONOR_SNANS (TYPE_MODE (type))
&& real_onep (oelast->op)))
{
if (VEC_length (operand_entry_t, *ops) != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found * 1, removing\n");
VEC_pop (operand_entry_t, *ops);
reassociate_stats.ops_eliminated++;
return;
}
}
break;
case BIT_XOR_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
if (integer_zerop (oelast->op)
|| (FLOAT_TYPE_P (type)
&& (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
&& fold_real_zero_addition_p (type, oelast->op,
opcode == MINUS_EXPR)))
{
if (VEC_length (operand_entry_t, *ops) != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found [|^+] 0, removing\n");
VEC_pop (operand_entry_t, *ops);
reassociate_stats.ops_eliminated++;
return;
}
}
break;
default:
break;
}
}
}
static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple,
bool, bool);
/* Structure for tracking and counting operands. */
typedef struct oecount_s {
int cnt;
enum tree_code oecode;
tree op;
} oecount;
DEF_VEC_O(oecount);
DEF_VEC_ALLOC_O(oecount,heap);
/* The heap for the oecount hashtable and the sorted list of operands. */
static VEC (oecount, heap) *cvec;
/* Hash function for oecount. */
static hashval_t
oecount_hash (const void *p)
{
const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42);
return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
}
/* Comparison function for oecount. */
static int
oecount_eq (const void *p1, const void *p2)
{
const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42);
const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42);
return (c1->oecode == c2->oecode
&& c1->op == c2->op);
}
/* Comparison function for qsort sorting oecount elements by count. */
static int
oecount_cmp (const void *p1, const void *p2)
{
const oecount *c1 = (const oecount *)p1;
const oecount *c2 = (const oecount *)p2;
return c1->cnt - c2->cnt;
}
/* Walks the linear chain with result *DEF searching for an operation
with operand OP and code OPCODE removing that from the chain. *DEF
is updated if there is only one operand but no operation left. */
static void
zero_one_operation (tree *def, enum tree_code opcode, tree op)
{
gimple stmt = SSA_NAME_DEF_STMT (*def);
do
{
tree name = gimple_assign_rhs1 (stmt);
/* If this is the operation we look for and one of the operands
is ours simply propagate the other operand into the stmts
single use. */
if (gimple_assign_rhs_code (stmt) == opcode
&& (name == op
|| gimple_assign_rhs2 (stmt) == op))
{
gimple use_stmt;
use_operand_p use;
gimple_stmt_iterator gsi;
if (name == op)
name = gimple_assign_rhs2 (stmt);
gcc_assert (has_single_use (gimple_assign_lhs (stmt)));
single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt);
if (gimple_assign_lhs (stmt) == *def)
*def = name;
SET_USE (use, name);
if (TREE_CODE (name) != SSA_NAME)
update_stmt (use_stmt);
gsi = gsi_for_stmt (stmt);
gsi_remove (&gsi, true);
release_defs (stmt);
return;
}
/* Continue walking the chain. */
gcc_assert (name != op
&& TREE_CODE (name) == SSA_NAME);
stmt = SSA_NAME_DEF_STMT (name);
}
while (1);
}
/* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
the result. Places the statement after the definition of either
OP1 or OP2. Returns the new statement. */
static gimple
build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode)
{
gimple op1def = NULL, op2def = NULL;
gimple_stmt_iterator gsi;
tree op;
gimple sum;
/* Create the addition statement. */
sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2);
op = make_ssa_name (tmpvar, sum);
gimple_assign_set_lhs (sum, op);
/* Find an insertion place and insert. */
if (TREE_CODE (op1) == SSA_NAME)
op1def = SSA_NAME_DEF_STMT (op1);
if (TREE_CODE (op2) == SSA_NAME)
op2def = SSA_NAME_DEF_STMT (op2);
if ((!op1def || gimple_nop_p (op1def))
&& (!op2def || gimple_nop_p (op2def)))
{
gsi = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR));
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
}
else if ((!op1def || gimple_nop_p (op1def))
|| (op2def && !gimple_nop_p (op2def)
&& stmt_dominates_stmt_p (op1def, op2def)))
{
if (gimple_code (op2def) == GIMPLE_PHI)
{
gsi = gsi_start_bb (gimple_bb (op2def));
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
}
else
{
if (!stmt_ends_bb_p (op2def))
{
gsi = gsi_for_stmt (op2def);
gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
}
else
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
if (e->flags & EDGE_FALLTHRU)
gsi_insert_on_edge_immediate (e, sum);
}
}
}
else
{
if (gimple_code (op1def) == GIMPLE_PHI)
{
gsi = gsi_start_bb (gimple_bb (op1def));
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
}
else
{
if (!stmt_ends_bb_p (op1def))
{
gsi = gsi_for_stmt (op1def);
gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
}
else
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
if (e->flags & EDGE_FALLTHRU)
gsi_insert_on_edge_immediate (e, sum);
}
}
}
update_stmt (sum);
return sum;
}
/* Perform un-distribution of divisions and multiplications.
A * X + B * X is transformed into (A + B) * X and A / X + B / X
to (A + B) / X for real X.
The algorithm is organized as follows.
- First we walk the addition chain *OPS looking for summands that
are defined by a multiplication or a real division. This results
in the candidates bitmap with relevant indices into *OPS.
- Second we build the chains of multiplications or divisions for
these candidates, counting the number of occurences of (operand, code)
pairs in all of the candidates chains.
- Third we sort the (operand, code) pairs by number of occurence and
process them starting with the pair with the most uses.
* For each such pair we walk the candidates again to build a
second candidate bitmap noting all multiplication/division chains
that have at least one occurence of (operand, code).
* We build an alternate addition chain only covering these
candidates with one (operand, code) operation removed from their
multiplication/division chain.
* The first candidate gets replaced by the alternate addition chain
multiplied/divided by the operand.
* All candidate chains get disabled for further processing and
processing of (operand, code) pairs continues.
The alternate addition chains built are re-processed by the main
reassociation algorithm which allows optimizing a * x * y + b * y * x
to (a + b ) * x * y in one invocation of the reassociation pass. */
static bool
undistribute_ops_list (enum tree_code opcode,
VEC (operand_entry_t, heap) **ops, struct loop *loop)
{
unsigned int length = VEC_length (operand_entry_t, *ops);
operand_entry_t oe1;
unsigned i, j;
sbitmap candidates, candidates2;
unsigned nr_candidates, nr_candidates2;
sbitmap_iterator sbi0;
VEC (operand_entry_t, heap) **subops;
htab_t ctable;
bool changed = false;
if (length <= 1
|| opcode != PLUS_EXPR)
return false;
/* Build a list of candidates to process. */
candidates = sbitmap_alloc (length);
sbitmap_zero (candidates);
nr_candidates = 0;
for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe1); ++i)
{
enum tree_code dcode;
gimple oe1def;
if (TREE_CODE (oe1->op) != SSA_NAME)
continue;
oe1def = SSA_NAME_DEF_STMT (oe1->op);
if (!is_gimple_assign (oe1def))
continue;
dcode = gimple_assign_rhs_code (oe1def);
if ((dcode != MULT_EXPR
&& dcode != RDIV_EXPR)
|| !is_reassociable_op (oe1def, dcode, loop))
continue;
SET_BIT (candidates, i);
nr_candidates++;
}
if (nr_candidates < 2)
{
sbitmap_free (candidates);
return false;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "searching for un-distribute opportunities ");
print_generic_expr (dump_file,
VEC_index (operand_entry_t, *ops,
sbitmap_first_set_bit (candidates))->op, 0);
fprintf (dump_file, " %d\n", nr_candidates);
}
/* Build linearized sub-operand lists and the counting table. */
cvec = NULL;
ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
subops = XCNEWVEC (VEC (operand_entry_t, heap) *,
VEC_length (operand_entry_t, *ops));
EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
{
gimple oedef;
enum tree_code oecode;
unsigned j;
oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op);
oecode = gimple_assign_rhs_code (oedef);
linearize_expr_tree (&subops[i], oedef,
associative_tree_code (oecode), false);
for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
{
oecount c;
void **slot;
size_t idx;
c.oecode = oecode;
c.cnt = 1;
c.op = oe1->op;
VEC_safe_push (oecount, heap, cvec, &c);
idx = VEC_length (oecount, cvec) + 41;
slot = htab_find_slot (ctable, (void *)idx, INSERT);
if (!*slot)
{
*slot = (void *)idx;
}
else
{
VEC_pop (oecount, cvec);
VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++;
}
}
}
htab_delete (ctable);
/* Sort the counting table. */
qsort (VEC_address (oecount, cvec), VEC_length (oecount, cvec),
sizeof (oecount), oecount_cmp);
if (dump_file && (dump_flags & TDF_DETAILS))
{
oecount *c;
fprintf (dump_file, "Candidates:\n");
for (j = 0; VEC_iterate (oecount, cvec, j, c); ++j)
{
fprintf (dump_file, " %u %s: ", c->cnt,
c->oecode == MULT_EXPR
? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
print_generic_expr (dump_file, c->op, 0);
fprintf (dump_file, "\n");
}
}
/* Process the (operand, code) pairs in order of most occurence. */
candidates2 = sbitmap_alloc (length);
while (!VEC_empty (oecount, cvec))
{
oecount *c = VEC_last (oecount, cvec);
if (c->cnt < 2)
break;
/* Now collect the operands in the outer chain that contain
the common operand in their inner chain. */
sbitmap_zero (candidates2);
nr_candidates2 = 0;
EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
{
gimple oedef;
enum tree_code oecode;
unsigned j;
tree op = VEC_index (operand_entry_t, *ops, i)->op;
/* If we undistributed in this chain already this may be
a constant. */
if (TREE_CODE (op) != SSA_NAME)
continue;
oedef = SSA_NAME_DEF_STMT (op);
oecode = gimple_assign_rhs_code (oedef);
if (oecode != c->oecode)
continue;
for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
{
if (oe1->op == c->op)
{
SET_BIT (candidates2, i);
++nr_candidates2;
break;
}
}
}
if (nr_candidates2 >= 2)
{
operand_entry_t oe1, oe2;
tree tmpvar;
gimple prod;
int first = sbitmap_first_set_bit (candidates2);
/* Build the new addition chain. */
oe1 = VEC_index (operand_entry_t, *ops, first);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Building (");
print_generic_expr (dump_file, oe1->op, 0);
}
tmpvar = create_tmp_var (TREE_TYPE (oe1->op), NULL);
add_referenced_var (tmpvar);
zero_one_operation (&oe1->op, c->oecode, c->op);
EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0)
{
gimple sum;
oe2 = VEC_index (operand_entry_t, *ops, i);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " + ");
print_generic_expr (dump_file, oe2->op, 0);
}
zero_one_operation (&oe2->op, c->oecode, c->op);
sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode);
oe2->op = fold_convert (TREE_TYPE (oe2->op), integer_zero_node);
oe2->rank = 0;
oe1->op = gimple_get_lhs (sum);
}
/* Apply the multiplication/division. */
prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
print_generic_expr (dump_file, c->op, 0);
fprintf (dump_file, "\n");
}
/* Record it in the addition chain and disable further
undistribution with this op. */
oe1->op = gimple_assign_lhs (prod);
oe1->rank = get_rank (oe1->op);
VEC_free (operand_entry_t, heap, subops[first]);
changed = true;
}
VEC_pop (oecount, cvec);
}
for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i)
VEC_free (operand_entry_t, heap, subops[i]);
free (subops);
VEC_free (oecount, heap, cvec);
sbitmap_free (candidates);
sbitmap_free (candidates2);
return changed;
}
/* Perform various identities and other optimizations on the list of
operand entries, stored in OPS. The tree code for the binary
operation between all the operands is OPCODE. */
static void
optimize_ops_list (enum tree_code opcode,
VEC (operand_entry_t, heap) **ops)
{
unsigned int length = VEC_length (operand_entry_t, *ops);
unsigned int i;
operand_entry_t oe;
operand_entry_t oelast = NULL;
bool iterate = false;
if (length == 1)
return;
oelast = VEC_last (operand_entry_t, *ops);
/* If the last two are constants, pop the constants off, merge them
and try the next two. */
if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
{
operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2);
if (oelm1->rank == 0
&& is_gimple_min_invariant (oelm1->op)
&& useless_type_conversion_p (TREE_TYPE (oelm1->op),
TREE_TYPE (oelast->op)))
{
tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
oelm1->op, oelast->op);
if (folded && is_gimple_min_invariant (folded))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Merging constants\n");
VEC_pop (operand_entry_t, *ops);
VEC_pop (operand_entry_t, *ops);
add_to_ops_vec (ops, folded);
reassociate_stats.constants_eliminated++;
optimize_ops_list (opcode, ops);
return;
}
}
}
eliminate_using_constants (opcode, ops);
oelast = NULL;
for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);)
{
bool done = false;
if (eliminate_not_pairs (opcode, ops, i, oe))
return;
if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
|| (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)))
{
if (done)
return;
iterate = true;
oelast = NULL;
continue;
}
oelast = oe;
i++;
}
length = VEC_length (operand_entry_t, *ops);
oelast = VEC_last (operand_entry_t, *ops);
if (iterate)
optimize_ops_list (opcode, ops);
}
/* Return true if OPERAND is defined by a PHI node which uses the LHS
of STMT in it's operands. This is also known as a "destructive
update" operation. */
static bool
is_phi_for_stmt (gimple stmt, tree operand)
{
gimple def_stmt;
tree lhs;
use_operand_p arg_p;
ssa_op_iter i;
if (TREE_CODE (operand) != SSA_NAME)
return false;
lhs = gimple_assign_lhs (stmt);
def_stmt = SSA_NAME_DEF_STMT (operand);
if (gimple_code (def_stmt) != GIMPLE_PHI)
return false;
FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
if (lhs == USE_FROM_PTR (arg_p))
return true;
return false;
}
/* Remove def stmt of VAR if VAR has zero uses and recurse
on rhs1 operand if so. */
static void
remove_visited_stmt_chain (tree var)
{
gimple stmt;
gimple_stmt_iterator gsi;
while (1)
{
if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
return;
stmt = SSA_NAME_DEF_STMT (var);
if (!is_gimple_assign (stmt)
|| !gimple_visited_p (stmt))
return;
var = gimple_assign_rhs1 (stmt);
gsi = gsi_for_stmt (stmt);
gsi_remove (&gsi, true);
release_defs (stmt);
}
}
/* Recursively rewrite our linearized statements so that the operators
match those in OPS[OPINDEX], putting the computation in rank
order. */
static void
rewrite_expr_tree (gimple stmt, unsigned int opindex,
VEC(operand_entry_t, heap) * ops, bool moved)
{
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs2 = gimple_assign_rhs2 (stmt);
operand_entry_t oe;
/* If we have three operands left, then we want to make sure the one
that gets the double binary op are the ones with the same rank.
The alternative we try is to see if this is a destructive
update style statement, which is like:
b = phi (a, ...)
a = c + b;
In that case, we want to use the destructive update form to
expose the possible vectorizer sum reduction opportunity.
In that case, the third operand will be the phi node.
We could, of course, try to be better as noted above, and do a
lot of work to try to find these opportunities in >3 operand
cases, but it is unlikely to be worth it. */
if (opindex + 3 == VEC_length (operand_entry_t, ops))
{
operand_entry_t oe1, oe2, oe3;
oe1 = VEC_index (operand_entry_t, ops, opindex);
oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
oe3 = VEC_index (operand_entry_t, ops, opindex + 2);
if ((oe1->rank == oe2->rank
&& oe2->rank != oe3->rank)
|| (is_phi_for_stmt (stmt, oe3->op)
&& !is_phi_for_stmt (stmt, oe1->op)
&& !is_phi_for_stmt (stmt, oe2->op)))
{
struct operand_entry temp = *oe3;
oe3->op = oe1->op;
oe3->rank = oe1->rank;
oe1->op = temp.op;
oe1->rank= temp.rank;
}
else if ((oe1->rank == oe3->rank
&& oe2->rank != oe3->rank)
|| (is_phi_for_stmt (stmt, oe2->op)
&& !is_phi_for_stmt (stmt, oe1->op)
&& !is_phi_for_stmt (stmt, oe3->op)))
{
struct operand_entry temp = *oe2;
oe2->op = oe1->op;
oe2->rank = oe1->rank;
oe1->op = temp.op;
oe1->rank= temp.rank;
}
}
/* The final recursion case for this function is that you have
exactly two operations left.
If we had one exactly one op in the entire list to start with, we
would have never called this function, and the tail recursion
rewrites them one at a time. */
if (opindex + 2 == VEC_length (operand_entry_t, ops))
{
operand_entry_t oe1, oe2;
oe1 = VEC_index (operand_entry_t, ops, opindex);
oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
if (rhs1 != oe1->op || rhs2 != oe2->op)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Transforming ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
gimple_assign_set_rhs1 (stmt, oe1->op);
gimple_assign_set_rhs2 (stmt, oe2->op);
update_stmt (stmt);
if (rhs1 != oe1->op && rhs1 != oe2->op)
remove_visited_stmt_chain (rhs1);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " into ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
}
return;
}
/* If we hit here, we should have 3 or more ops left. */
gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops));
/* Rewrite the next operator. */
oe = VEC_index (operand_entry_t, ops, opindex);
if (oe->op != rhs2)
{
if (!moved)
{
gimple_stmt_iterator gsinow, gsirhs1;
gimple stmt1 = stmt, stmt2;
unsigned int count;
gsinow = gsi_for_stmt (stmt);
count = VEC_length (operand_entry_t, ops) - opindex - 2;
while (count-- != 0)
{
stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
gsirhs1 = gsi_for_stmt (stmt2);
gsi_move_before (&gsirhs1, &gsinow);
gsi_prev (&gsinow);
stmt1 = stmt2;
}
moved = true;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Transforming ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
gimple_assign_set_rhs2 (stmt, oe->op);
update_stmt (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " into ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
}
/* Recurse on the LHS of the binary operator, which is guaranteed to
be the non-leaf side. */
rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
}
/* Transform STMT, which is really (A +B) + (C + D) into the left
linear form, ((A+B)+C)+D.
Recurse on D if necessary. */
static void
linearize_expr (gimple stmt)
{
gimple_stmt_iterator gsinow, gsirhs;
gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
enum tree_code rhscode = gimple_assign_rhs_code (stmt);
gimple newbinrhs = NULL;
struct loop *loop = loop_containing_stmt (stmt);
gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
&& is_reassociable_op (binrhs, rhscode, loop));
gsinow = gsi_for_stmt (stmt);
gsirhs = gsi_for_stmt (binrhs);
gsi_move_before (&gsirhs, &gsinow);
gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs));
gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Linearized: ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
reassociate_stats.linearized++;
update_stmt (binrhs);
update_stmt (binlhs);
update_stmt (stmt);
gimple_set_visited (stmt, true);
gimple_set_visited (binlhs, true);
gimple_set_visited (binrhs, true);
/* Tail recurse on the new rhs if it still needs reassociation. */
if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
/* ??? This should probably be linearize_expr (newbinrhs) but I don't
want to change the algorithm while converting to tuples. */
linearize_expr (stmt);
}
/* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
it. Otherwise, return NULL. */
static gimple
get_single_immediate_use (tree lhs)
{
use_operand_p immuse;
gimple immusestmt;
if (TREE_CODE (lhs) == SSA_NAME
&& single_imm_use (lhs, &immuse, &immusestmt)
&& is_gimple_assign (immusestmt))
return immusestmt;
return NULL;
}
static VEC(tree, heap) *broken_up_subtracts;
/* Recursively negate the value of TONEGATE, and return the SSA_NAME
representing the negated value. Insertions of any necessary
instructions go before GSI.
This function is recursive in that, if you hand it "a_5" as the
value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
static tree
negate_value (tree tonegate, gimple_stmt_iterator *gsi)
{
gimple negatedefstmt= NULL;
tree resultofnegate;
/* If we are trying to negate a name, defined by an add, negate the
add operands instead. */
if (TREE_CODE (tonegate) == SSA_NAME)
negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
if (TREE_CODE (tonegate) == SSA_NAME
&& is_gimple_assign (negatedefstmt)
&& TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
&& has_single_use (gimple_assign_lhs (negatedefstmt))
&& gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
{
gimple_stmt_iterator gsi;
tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
gsi = gsi_for_stmt (negatedefstmt);
rhs1 = negate_value (rhs1, &gsi);
gimple_assign_set_rhs1 (negatedefstmt, rhs1);
gsi = gsi_for_stmt (negatedefstmt);
rhs2 = negate_value (rhs2, &gsi);
gimple_assign_set_rhs2 (negatedefstmt, rhs2);
update_stmt (negatedefstmt);
return gimple_assign_lhs (negatedefstmt);
}
tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
NULL_TREE, true, GSI_SAME_STMT);
VEC_safe_push (tree, heap, broken_up_subtracts, resultofnegate);
return resultofnegate;
}
/* Return true if we should break up the subtract in STMT into an add
with negate. This is true when we the subtract operands are really
adds, or the subtract itself is used in an add expression. In
either case, breaking up the subtract into an add with negate
exposes the adds to reassociation. */
static bool
should_break_up_subtract (gimple stmt)
{
tree lhs = gimple_assign_lhs (stmt);
tree binlhs = gimple_assign_rhs1 (stmt);
tree binrhs = gimple_assign_rhs2 (stmt);
gimple immusestmt;
struct loop *loop = loop_containing_stmt (stmt);
if (TREE_CODE (binlhs) == SSA_NAME
&& is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
return true;
if (TREE_CODE (binrhs) == SSA_NAME
&& is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
return true;
if (TREE_CODE (lhs) == SSA_NAME
&& (immusestmt = get_single_immediate_use (lhs))
&& is_gimple_assign (immusestmt)
&& (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
|| gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
return true;
return false;
}
/* Transform STMT from A - B into A + -B. */
static void
break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
{
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs2 = gimple_assign_rhs2 (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Breaking up subtract ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
rhs2 = negate_value (rhs2, gsip);
gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
update_stmt (stmt);
}
/* Recursively linearize a binary expression that is the RHS of STMT.
Place the operands of the expression tree in the vector named OPS. */
static void
linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt,
bool is_associative, bool set_visited)
{
tree binlhs = gimple_assign_rhs1 (stmt);
tree binrhs = gimple_assign_rhs2 (stmt);
gimple binlhsdef, binrhsdef;
bool binlhsisreassoc = false;
bool binrhsisreassoc = false;
enum tree_code rhscode = gimple_assign_rhs_code (stmt);
struct loop *loop = loop_containing_stmt (stmt);
if (set_visited)
gimple_set_visited (stmt, true);
if (TREE_CODE (binlhs) == SSA_NAME)
{
binlhsdef = SSA_NAME_DEF_STMT (binlhs);
binlhsisreassoc = is_reassociable_op (binlhsdef, rhscode, loop);
}
if (TREE_CODE (binrhs) == SSA_NAME)
{
binrhsdef = SSA_NAME_DEF_STMT (binrhs);
binrhsisreassoc = is_reassociable_op (binrhsdef, rhscode, loop);
}
/* If the LHS is not reassociable, but the RHS is, we need to swap
them. If neither is reassociable, there is nothing we can do, so
just put them in the ops vector. If the LHS is reassociable,
linearize it. If both are reassociable, then linearize the RHS
and the LHS. */
if (!binlhsisreassoc)
{
tree temp;
/* If this is not a associative operation like division, give up. */
if (!is_associative)
{
add_to_ops_vec (ops, binrhs);
return;
}
if (!binrhsisreassoc)
{
add_to_ops_vec (ops, binrhs);
add_to_ops_vec (ops, binlhs);
return;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "swapping operands of ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
swap_tree_operands (stmt,
gimple_assign_rhs1_ptr (stmt),
gimple_assign_rhs2_ptr (stmt));
update_stmt (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " is now ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
/* We want to make it so the lhs is always the reassociative op,
so swap. */
temp = binlhs;
binlhs = binrhs;
binrhs = temp;
}
else if (binrhsisreassoc)
{
linearize_expr (stmt);
binlhs = gimple_assign_rhs1 (stmt);
binrhs = gimple_assign_rhs2 (stmt);
}
gcc_assert (TREE_CODE (binrhs) != SSA_NAME
|| !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
rhscode, loop));
linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
is_associative, set_visited);
add_to_ops_vec (ops, binrhs);
}
/* Repropagate the negates back into subtracts, since no other pass
currently does it. */
static void
repropagate_negates (void)
{
unsigned int i = 0;
tree negate;
for (i = 0; VEC_iterate (tree, broken_up_subtracts, i, negate); i++)
{
gimple user = get_single_immediate_use (negate);
/* The negate operand can be either operand of a PLUS_EXPR
(it can be the LHS if the RHS is a constant for example).
Force the negate operand to the RHS of the PLUS_EXPR, then
transform the PLUS_EXPR into a MINUS_EXPR. */
if (user
&& is_gimple_assign (user)
&& gimple_assign_rhs_code (user) == PLUS_EXPR)
{
/* If the negated operand appears on the LHS of the
PLUS_EXPR, exchange the operands of the PLUS_EXPR
to force the negated operand to the RHS of the PLUS_EXPR. */
if (gimple_assign_rhs1 (user) == negate)
{
swap_tree_operands (user,
gimple_assign_rhs1_ptr (user),
gimple_assign_rhs2_ptr (user));
}
/* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
if (gimple_assign_rhs2 (user) == negate)
{
tree rhs1 = gimple_assign_rhs1 (user);
tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
gimple_stmt_iterator gsi = gsi_for_stmt (user);
gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
update_stmt (user);
}
}
}
}
/* Break up subtract operations in block BB.
We do this top down because we don't know whether the subtract is
part of a possible chain of reassociation except at the top.
IE given
d = f + g
c = a + e
b = c - d
q = b - r
k = t - q
we want to break up k = t - q, but we won't until we've transformed q
= b - r, which won't be broken up until we transform b = c - d.
En passant, clear the GIMPLE visited flag on every statement. */
static void
break_up_subtract_bb (basic_block bb)
{
gimple_stmt_iterator gsi;
basic_block son;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
gimple_set_visited (stmt, false);
/* Look for simple gimple subtract operations. */
if (is_gimple_assign (stmt)
&& gimple_assign_rhs_code (stmt) == MINUS_EXPR)
{
tree lhs = gimple_assign_lhs (stmt);
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs2 = gimple_assign_rhs2 (stmt);
/* If associative-math we can do reassociation for
non-integral types. Or, we can do reassociation for
non-saturating fixed-point types. */
if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
&& (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
|| !flag_associative_math)
&& (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
|| !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
|| !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
continue;
/* Check for a subtract used only in an addition. If this
is the case, transform it into add of a negate for better
reassociation. IE transform C = A-B into C = A + -B if C
is only used in an addition. */
if (should_break_up_subtract (stmt))
break_up_subtract (stmt, &gsi);
}
}
for (son = first_dom_son (CDI_DOMINATORS, bb);
son;
son = next_dom_son (CDI_DOMINATORS, son))
break_up_subtract_bb (son);
}
/* Reassociate expressions in basic block BB and its post-dominator as
children. */
static void
reassociate_bb (basic_block bb)
{
gimple_stmt_iterator gsi;
basic_block son;
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (is_gimple_assign (stmt))
{
tree lhs, rhs1, rhs2;
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
/* If this is not a gimple binary expression, there is
nothing for us to do with it. */
if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
continue;
/* If this was part of an already processed statement,
we don't need to touch it again. */
if (gimple_visited_p (stmt))
{
/* This statement might have become dead because of previous
reassociations. */
if (has_zero_uses (gimple_get_lhs (stmt)))
{
gsi_remove (&gsi, true);
release_defs (stmt);
/* We might end up removing the last stmt above which
places the iterator to the end of the sequence.
Reset it to the last stmt in this case which might
be the end of the sequence as well if we removed
the last statement of the sequence. In which case
we need to bail out. */
if (gsi_end_p (gsi))
{
gsi = gsi_last_bb (bb);
if (gsi_end_p (gsi))
break;
}
}
continue;
}
lhs = gimple_assign_lhs (stmt);
rhs1 = gimple_assign_rhs1 (stmt);
rhs2 = gimple_assign_rhs2 (stmt);
/* If associative-math we can do reassociation for
non-integral types. Or, we can do reassociation for
non-saturating fixed-point types. */
if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
&& (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
|| !flag_associative_math)
&& (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
|| !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
|| !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
continue;
if (associative_tree_code (rhs_code))
{
VEC(operand_entry_t, heap) *ops = NULL;
/* There may be no immediate uses left by the time we
get here because we may have eliminated them all. */
if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
continue;
gimple_set_visited (stmt, true);
linearize_expr_tree (&ops, stmt, true, true);
qsort (VEC_address (operand_entry_t, ops),
VEC_length (operand_entry_t, ops),
sizeof (operand_entry_t),
sort_by_operand_rank);
optimize_ops_list (rhs_code, &ops);
if (undistribute_ops_list (rhs_code, &ops,
loop_containing_stmt (stmt)))
{
qsort (VEC_address (operand_entry_t, ops),
VEC_length (operand_entry_t, ops),
sizeof (operand_entry_t),
sort_by_operand_rank);
optimize_ops_list (rhs_code, &ops);
}
if (VEC_length (operand_entry_t, ops) == 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Transforming ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
rhs1 = gimple_assign_rhs1 (stmt);
gimple_assign_set_rhs_from_tree (&gsi,
VEC_last (operand_entry_t,
ops)->op);
update_stmt (stmt);
remove_visited_stmt_chain (rhs1);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " into ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
}
else
rewrite_expr_tree (stmt, 0, ops, false);
VEC_free (operand_entry_t, heap, ops);
}
}
}
for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
son;
son = next_dom_son (CDI_POST_DOMINATORS, son))
reassociate_bb (son);
}
void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops);
void debug_ops_vector (VEC (operand_entry_t, heap) *ops);
/* Dump the operand entry vector OPS to FILE. */
void
dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
{
operand_entry_t oe;
unsigned int i;
for (i = 0; VEC_iterate (operand_entry_t, ops, i, oe); i++)
{
fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
print_generic_expr (file, oe->op, 0);
}
}
/* Dump the operand entry vector OPS to STDERR. */
void
debug_ops_vector (VEC (operand_entry_t, heap) *ops)
{
dump_ops_vector (stderr, ops);
}
static void
do_reassoc (void)
{
break_up_subtract_bb (ENTRY_BLOCK_PTR);
reassociate_bb (EXIT_BLOCK_PTR);
}
/* Initialize the reassociation pass. */
static void
init_reassoc (void)
{
int i;
long rank = 2;
tree param;
int *bbs = XNEWVEC (int, last_basic_block + 1);
/* Find the loops, so that we can prevent moving calculations in
them. */
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
memset (&reassociate_stats, 0, sizeof (reassociate_stats));
operand_entry_pool = create_alloc_pool ("operand entry pool",
sizeof (struct operand_entry), 30);
/* Reverse RPO (Reverse Post Order) will give us something where
deeper loops come later. */
pre_and_rev_post_order_compute (NULL, bbs, false);
bb_rank = XCNEWVEC (long, last_basic_block + 1);
operand_rank = pointer_map_create ();
/* Give each argument a distinct rank. */
for (param = DECL_ARGUMENTS (current_function_decl);
param;
param = TREE_CHAIN (param))
{
if (gimple_default_def (cfun, param) != NULL)
{
tree def = gimple_default_def (cfun, param);
insert_operand_rank (def, ++rank);
}
}
/* Give the chain decl a distinct rank. */
if (cfun->static_chain_decl != NULL)
{
tree def = gimple_default_def (cfun, cfun->static_chain_decl);
if (def != NULL)
insert_operand_rank (def, ++rank);
}
/* Set up rank for each BB */
for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
bb_rank[bbs[i]] = ++rank << 16;
free (bbs);
calculate_dominance_info (CDI_POST_DOMINATORS);
broken_up_subtracts = NULL;
}
/* Cleanup after the reassociation pass, and print stats if
requested. */
static void
fini_reassoc (void)
{
statistics_counter_event (cfun, "Linearized",
reassociate_stats.linearized);
statistics_counter_event (cfun, "Constants eliminated",
reassociate_stats.constants_eliminated);
statistics_counter_event (cfun, "Ops eliminated",
reassociate_stats.ops_eliminated);
statistics_counter_event (cfun, "Statements rewritten",
reassociate_stats.rewritten);
pointer_map_destroy (operand_rank);
free_alloc_pool (operand_entry_pool);
free (bb_rank);
VEC_free (tree, heap, broken_up_subtracts);
free_dominance_info (CDI_POST_DOMINATORS);
loop_optimizer_finalize ();
}
/* Gate and execute functions for Reassociation. */
static unsigned int
execute_reassoc (void)
{
init_reassoc ();
do_reassoc ();
repropagate_negates ();
fini_reassoc ();
return 0;
}
static bool
gate_tree_ssa_reassoc (void)
{
return flag_tree_reassoc != 0;
}
struct gimple_opt_pass pass_reassoc =
{
{
GIMPLE_PASS,
"reassoc", /* name */
gate_tree_ssa_reassoc, /* gate */
execute_reassoc, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_REASSOC, /* tv_id */
PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
}
};
|