1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
|
/* Reassociation for trees.
Copyright (C) 2005-2014 Free Software Foundation, Inc.
Contributed by Daniel Berlin <dan@dberlin.org>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "hash-table.h"
#include "tm.h"
#include "rtl.h"
#include "tm_p.h"
#include "tree.h"
#include "stor-layout.h"
#include "basic-block.h"
#include "gimple-pretty-print.h"
#include "tree-inline.h"
#include "pointer-set.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-expr.h"
#include "is-a.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-ssa.h"
#include "tree-cfg.h"
#include "tree-phinodes.h"
#include "ssa-iterators.h"
#include "stringpool.h"
#include "tree-ssanames.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "expr.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "alloc-pool.h"
#include "langhooks.h"
#include "cfgloop.h"
#include "flags.h"
#include "target.h"
#include "params.h"
#include "diagnostic-core.h"
#include "builtins.h"
/* This is a simple global reassociation pass. It is, in part, based
on the LLVM pass of the same name (They do some things more/less
than we do, in different orders, etc).
It consists of five steps:
1. Breaking up subtract operations into addition + negate, where
it would promote the reassociation of adds.
2. Left linearization of the expression trees, so that (A+B)+(C+D)
becomes (((A+B)+C)+D), which is easier for us to rewrite later.
During linearization, we place the operands of the binary
expressions into a vector of operand_entry_t
3. Optimization of the operand lists, eliminating things like a +
-a, a & a, etc.
3a. Combine repeated factors with the same occurrence counts
into a __builtin_powi call that will later be optimized into
an optimal number of multiplies.
4. Rewrite the expression trees we linearized and optimized so
they are in proper rank order.
5. Repropagate negates, as nothing else will clean it up ATM.
A bit of theory on #4, since nobody seems to write anything down
about why it makes sense to do it the way they do it:
We could do this much nicer theoretically, but don't (for reasons
explained after how to do it theoretically nice :P).
In order to promote the most redundancy elimination, you want
binary expressions whose operands are the same rank (or
preferably, the same value) exposed to the redundancy eliminator,
for possible elimination.
So the way to do this if we really cared, is to build the new op
tree from the leaves to the roots, merging as you go, and putting the
new op on the end of the worklist, until you are left with one
thing on the worklist.
IE if you have to rewrite the following set of operands (listed with
rank in parentheses), with opcode PLUS_EXPR:
a (1), b (1), c (1), d (2), e (2)
We start with our merge worklist empty, and the ops list with all of
those on it.
You want to first merge all leaves of the same rank, as much as
possible.
So first build a binary op of
mergetmp = a + b, and put "mergetmp" on the merge worklist.
Because there is no three operand form of PLUS_EXPR, c is not going to
be exposed to redundancy elimination as a rank 1 operand.
So you might as well throw it on the merge worklist (you could also
consider it to now be a rank two operand, and merge it with d and e,
but in this case, you then have evicted e from a binary op. So at
least in this situation, you can't win.)
Then build a binary op of d + e
mergetmp2 = d + e
and put mergetmp2 on the merge worklist.
so merge worklist = {mergetmp, c, mergetmp2}
Continue building binary ops of these operations until you have only
one operation left on the worklist.
So we have
build binary op
mergetmp3 = mergetmp + c
worklist = {mergetmp2, mergetmp3}
mergetmp4 = mergetmp2 + mergetmp3
worklist = {mergetmp4}
because we have one operation left, we can now just set the original
statement equal to the result of that operation.
This will at least expose a + b and d + e to redundancy elimination
as binary operations.
For extra points, you can reuse the old statements to build the
mergetmps, since you shouldn't run out.
So why don't we do this?
Because it's expensive, and rarely will help. Most trees we are
reassociating have 3 or less ops. If they have 2 ops, they already
will be written into a nice single binary op. If you have 3 ops, a
single simple check suffices to tell you whether the first two are of the
same rank. If so, you know to order it
mergetmp = op1 + op2
newstmt = mergetmp + op3
instead of
mergetmp = op2 + op3
newstmt = mergetmp + op1
If all three are of the same rank, you can't expose them all in a
single binary operator anyway, so the above is *still* the best you
can do.
Thus, this is what we do. When we have three ops left, we check to see
what order to put them in, and call it a day. As a nod to vector sum
reduction, we check if any of the ops are really a phi node that is a
destructive update for the associating op, and keep the destructive
update together for vector sum reduction recognition. */
/* Statistics */
static struct
{
int linearized;
int constants_eliminated;
int ops_eliminated;
int rewritten;
int pows_encountered;
int pows_created;
} reassociate_stats;
/* Operator, rank pair. */
typedef struct operand_entry
{
unsigned int rank;
int id;
tree op;
unsigned int count;
} *operand_entry_t;
static alloc_pool operand_entry_pool;
/* This is used to assign a unique ID to each struct operand_entry
so that qsort results are identical on different hosts. */
static int next_operand_entry_id;
/* Starting rank number for a given basic block, so that we can rank
operations using unmovable instructions in that BB based on the bb
depth. */
static long *bb_rank;
/* Operand->rank hashtable. */
static struct pointer_map_t *operand_rank;
/* Forward decls. */
static long get_rank (tree);
static bool reassoc_stmt_dominates_stmt_p (gimple, gimple);
/* Wrapper around gsi_remove, which adjusts gimple_uid of debug stmts
possibly added by gsi_remove. */
bool
reassoc_remove_stmt (gimple_stmt_iterator *gsi)
{
gimple stmt = gsi_stmt (*gsi);
if (!MAY_HAVE_DEBUG_STMTS || gimple_code (stmt) == GIMPLE_PHI)
return gsi_remove (gsi, true);
gimple_stmt_iterator prev = *gsi;
gsi_prev (&prev);
unsigned uid = gimple_uid (stmt);
basic_block bb = gimple_bb (stmt);
bool ret = gsi_remove (gsi, true);
if (!gsi_end_p (prev))
gsi_next (&prev);
else
prev = gsi_start_bb (bb);
gimple end_stmt = gsi_stmt (*gsi);
while ((stmt = gsi_stmt (prev)) != end_stmt)
{
gcc_assert (stmt && is_gimple_debug (stmt) && gimple_uid (stmt) == 0);
gimple_set_uid (stmt, uid);
gsi_next (&prev);
}
return ret;
}
/* Bias amount for loop-carried phis. We want this to be larger than
the depth of any reassociation tree we can see, but not larger than
the rank difference between two blocks. */
#define PHI_LOOP_BIAS (1 << 15)
/* Rank assigned to a phi statement. If STMT is a loop-carried phi of
an innermost loop, and the phi has only a single use which is inside
the loop, then the rank is the block rank of the loop latch plus an
extra bias for the loop-carried dependence. This causes expressions
calculated into an accumulator variable to be independent for each
iteration of the loop. If STMT is some other phi, the rank is the
block rank of its containing block. */
static long
phi_rank (gimple stmt)
{
basic_block bb = gimple_bb (stmt);
struct loop *father = bb->loop_father;
tree res;
unsigned i;
use_operand_p use;
gimple use_stmt;
/* We only care about real loops (those with a latch). */
if (!father->latch)
return bb_rank[bb->index];
/* Interesting phis must be in headers of innermost loops. */
if (bb != father->header
|| father->inner)
return bb_rank[bb->index];
/* Ignore virtual SSA_NAMEs. */
res = gimple_phi_result (stmt);
if (virtual_operand_p (res))
return bb_rank[bb->index];
/* The phi definition must have a single use, and that use must be
within the loop. Otherwise this isn't an accumulator pattern. */
if (!single_imm_use (res, &use, &use_stmt)
|| gimple_bb (use_stmt)->loop_father != father)
return bb_rank[bb->index];
/* Look for phi arguments from within the loop. If found, bias this phi. */
for (i = 0; i < gimple_phi_num_args (stmt); i++)
{
tree arg = gimple_phi_arg_def (stmt, i);
if (TREE_CODE (arg) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (arg))
{
gimple def_stmt = SSA_NAME_DEF_STMT (arg);
if (gimple_bb (def_stmt)->loop_father == father)
return bb_rank[father->latch->index] + PHI_LOOP_BIAS;
}
}
/* Must be an uninteresting phi. */
return bb_rank[bb->index];
}
/* If EXP is an SSA_NAME defined by a PHI statement that represents a
loop-carried dependence of an innermost loop, return TRUE; else
return FALSE. */
static bool
loop_carried_phi (tree exp)
{
gimple phi_stmt;
long block_rank;
if (TREE_CODE (exp) != SSA_NAME
|| SSA_NAME_IS_DEFAULT_DEF (exp))
return false;
phi_stmt = SSA_NAME_DEF_STMT (exp);
if (gimple_code (SSA_NAME_DEF_STMT (exp)) != GIMPLE_PHI)
return false;
/* Non-loop-carried phis have block rank. Loop-carried phis have
an additional bias added in. If this phi doesn't have block rank,
it's biased and should not be propagated. */
block_rank = bb_rank[gimple_bb (phi_stmt)->index];
if (phi_rank (phi_stmt) != block_rank)
return true;
return false;
}
/* Return the maximum of RANK and the rank that should be propagated
from expression OP. For most operands, this is just the rank of OP.
For loop-carried phis, the value is zero to avoid undoing the bias
in favor of the phi. */
static long
propagate_rank (long rank, tree op)
{
long op_rank;
if (loop_carried_phi (op))
return rank;
op_rank = get_rank (op);
return MAX (rank, op_rank);
}
/* Look up the operand rank structure for expression E. */
static inline long
find_operand_rank (tree e)
{
void **slot = pointer_map_contains (operand_rank, e);
return slot ? (long) (intptr_t) *slot : -1;
}
/* Insert {E,RANK} into the operand rank hashtable. */
static inline void
insert_operand_rank (tree e, long rank)
{
void **slot;
gcc_assert (rank > 0);
slot = pointer_map_insert (operand_rank, e);
gcc_assert (!*slot);
*slot = (void *) (intptr_t) rank;
}
/* Given an expression E, return the rank of the expression. */
static long
get_rank (tree e)
{
/* Constants have rank 0. */
if (is_gimple_min_invariant (e))
return 0;
/* SSA_NAME's have the rank of the expression they are the result
of.
For globals and uninitialized values, the rank is 0.
For function arguments, use the pre-setup rank.
For PHI nodes, stores, asm statements, etc, we use the rank of
the BB.
For simple operations, the rank is the maximum rank of any of
its operands, or the bb_rank, whichever is less.
I make no claims that this is optimal, however, it gives good
results. */
/* We make an exception to the normal ranking system to break
dependences of accumulator variables in loops. Suppose we
have a simple one-block loop containing:
x_1 = phi(x_0, x_2)
b = a + x_1
c = b + d
x_2 = c + e
As shown, each iteration of the calculation into x is fully
dependent upon the iteration before it. We would prefer to
see this in the form:
x_1 = phi(x_0, x_2)
b = a + d
c = b + e
x_2 = c + x_1
If the loop is unrolled, the calculations of b and c from
different iterations can be interleaved.
To obtain this result during reassociation, we bias the rank
of the phi definition x_1 upward, when it is recognized as an
accumulator pattern. The artificial rank causes it to be
added last, providing the desired independence. */
if (TREE_CODE (e) == SSA_NAME)
{
gimple stmt;
long rank;
int i, n;
tree op;
if (SSA_NAME_IS_DEFAULT_DEF (e))
return find_operand_rank (e);
stmt = SSA_NAME_DEF_STMT (e);
if (gimple_code (stmt) == GIMPLE_PHI)
return phi_rank (stmt);
if (!is_gimple_assign (stmt)
|| gimple_vdef (stmt))
return bb_rank[gimple_bb (stmt)->index];
/* If we already have a rank for this expression, use that. */
rank = find_operand_rank (e);
if (rank != -1)
return rank;
/* Otherwise, find the maximum rank for the operands. As an
exception, remove the bias from loop-carried phis when propagating
the rank so that dependent operations are not also biased. */
rank = 0;
if (gimple_assign_single_p (stmt))
{
tree rhs = gimple_assign_rhs1 (stmt);
n = TREE_OPERAND_LENGTH (rhs);
if (n == 0)
rank = propagate_rank (rank, rhs);
else
{
for (i = 0; i < n; i++)
{
op = TREE_OPERAND (rhs, i);
if (op != NULL_TREE)
rank = propagate_rank (rank, op);
}
}
}
else
{
n = gimple_num_ops (stmt);
for (i = 1; i < n; i++)
{
op = gimple_op (stmt, i);
gcc_assert (op);
rank = propagate_rank (rank, op);
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Rank for ");
print_generic_expr (dump_file, e, 0);
fprintf (dump_file, " is %ld\n", (rank + 1));
}
/* Note the rank in the hashtable so we don't recompute it. */
insert_operand_rank (e, (rank + 1));
return (rank + 1);
}
/* Globals, etc, are rank 0 */
return 0;
}
/* We want integer ones to end up last no matter what, since they are
the ones we can do the most with. */
#define INTEGER_CONST_TYPE 1 << 3
#define FLOAT_CONST_TYPE 1 << 2
#define OTHER_CONST_TYPE 1 << 1
/* Classify an invariant tree into integer, float, or other, so that
we can sort them to be near other constants of the same type. */
static inline int
constant_type (tree t)
{
if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
return INTEGER_CONST_TYPE;
else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
return FLOAT_CONST_TYPE;
else
return OTHER_CONST_TYPE;
}
/* qsort comparison function to sort operand entries PA and PB by rank
so that the sorted array is ordered by rank in decreasing order. */
static int
sort_by_operand_rank (const void *pa, const void *pb)
{
const operand_entry_t oea = *(const operand_entry_t *)pa;
const operand_entry_t oeb = *(const operand_entry_t *)pb;
/* It's nicer for optimize_expression if constants that are likely
to fold when added/multiplied//whatever are put next to each
other. Since all constants have rank 0, order them by type. */
if (oeb->rank == 0 && oea->rank == 0)
{
if (constant_type (oeb->op) != constant_type (oea->op))
return constant_type (oeb->op) - constant_type (oea->op);
else
/* To make sorting result stable, we use unique IDs to determine
order. */
return oeb->id - oea->id;
}
/* Lastly, make sure the versions that are the same go next to each
other. */
if ((oeb->rank - oea->rank == 0)
&& TREE_CODE (oea->op) == SSA_NAME
&& TREE_CODE (oeb->op) == SSA_NAME)
{
/* As SSA_NAME_VERSION is assigned pretty randomly, because we reuse
versions of removed SSA_NAMEs, so if possible, prefer to sort
based on basic block and gimple_uid of the SSA_NAME_DEF_STMT.
See PR60418. */
if (!SSA_NAME_IS_DEFAULT_DEF (oea->op)
&& !SSA_NAME_IS_DEFAULT_DEF (oeb->op)
&& SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
{
gimple stmta = SSA_NAME_DEF_STMT (oea->op);
gimple stmtb = SSA_NAME_DEF_STMT (oeb->op);
basic_block bba = gimple_bb (stmta);
basic_block bbb = gimple_bb (stmtb);
if (bbb != bba)
{
if (bb_rank[bbb->index] != bb_rank[bba->index])
return bb_rank[bbb->index] - bb_rank[bba->index];
}
else
{
bool da = reassoc_stmt_dominates_stmt_p (stmta, stmtb);
bool db = reassoc_stmt_dominates_stmt_p (stmtb, stmta);
if (da != db)
return da ? 1 : -1;
}
}
if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
else
return oeb->id - oea->id;
}
if (oeb->rank != oea->rank)
return oeb->rank - oea->rank;
else
return oeb->id - oea->id;
}
/* Add an operand entry to *OPS for the tree operand OP. */
static void
add_to_ops_vec (vec<operand_entry_t> *ops, tree op)
{
operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
oe->op = op;
oe->rank = get_rank (op);
oe->id = next_operand_entry_id++;
oe->count = 1;
ops->safe_push (oe);
}
/* Add an operand entry to *OPS for the tree operand OP with repeat
count REPEAT. */
static void
add_repeat_to_ops_vec (vec<operand_entry_t> *ops, tree op,
HOST_WIDE_INT repeat)
{
operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
oe->op = op;
oe->rank = get_rank (op);
oe->id = next_operand_entry_id++;
oe->count = repeat;
ops->safe_push (oe);
reassociate_stats.pows_encountered++;
}
/* Return true if STMT is reassociable operation containing a binary
operation with tree code CODE, and is inside LOOP. */
static bool
is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
{
basic_block bb = gimple_bb (stmt);
if (gimple_bb (stmt) == NULL)
return false;
if (!flow_bb_inside_loop_p (loop, bb))
return false;
if (is_gimple_assign (stmt)
&& gimple_assign_rhs_code (stmt) == code
&& has_single_use (gimple_assign_lhs (stmt)))
return true;
return false;
}
/* Given NAME, if NAME is defined by a unary operation OPCODE, return the
operand of the negate operation. Otherwise, return NULL. */
static tree
get_unary_op (tree name, enum tree_code opcode)
{
gimple stmt = SSA_NAME_DEF_STMT (name);
if (!is_gimple_assign (stmt))
return NULL_TREE;
if (gimple_assign_rhs_code (stmt) == opcode)
return gimple_assign_rhs1 (stmt);
return NULL_TREE;
}
/* If CURR and LAST are a pair of ops that OPCODE allows us to
eliminate through equivalences, do so, remove them from OPS, and
return true. Otherwise, return false. */
static bool
eliminate_duplicate_pair (enum tree_code opcode,
vec<operand_entry_t> *ops,
bool *all_done,
unsigned int i,
operand_entry_t curr,
operand_entry_t last)
{
/* If we have two of the same op, and the opcode is & |, min, or max,
we can eliminate one of them.
If we have two of the same op, and the opcode is ^, we can
eliminate both of them. */
if (last && last->op == curr->op)
{
switch (opcode)
{
case MAX_EXPR:
case MIN_EXPR:
case BIT_IOR_EXPR:
case BIT_AND_EXPR:
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Equivalence: ");
print_generic_expr (dump_file, curr->op, 0);
fprintf (dump_file, " [&|minmax] ");
print_generic_expr (dump_file, last->op, 0);
fprintf (dump_file, " -> ");
print_generic_stmt (dump_file, last->op, 0);
}
ops->ordered_remove (i);
reassociate_stats.ops_eliminated ++;
return true;
case BIT_XOR_EXPR:
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Equivalence: ");
print_generic_expr (dump_file, curr->op, 0);
fprintf (dump_file, " ^ ");
print_generic_expr (dump_file, last->op, 0);
fprintf (dump_file, " -> nothing\n");
}
reassociate_stats.ops_eliminated += 2;
if (ops->length () == 2)
{
ops->create (0);
add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op)));
*all_done = true;
}
else
{
ops->ordered_remove (i-1);
ops->ordered_remove (i-1);
}
return true;
default:
break;
}
}
return false;
}
static vec<tree> plus_negates;
/* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
expression, look in OPS for a corresponding positive operation to cancel
it out. If we find one, remove the other from OPS, replace
OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
return false. */
static bool
eliminate_plus_minus_pair (enum tree_code opcode,
vec<operand_entry_t> *ops,
unsigned int currindex,
operand_entry_t curr)
{
tree negateop;
tree notop;
unsigned int i;
operand_entry_t oe;
if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
return false;
negateop = get_unary_op (curr->op, NEGATE_EXPR);
notop = get_unary_op (curr->op, BIT_NOT_EXPR);
if (negateop == NULL_TREE && notop == NULL_TREE)
return false;
/* Any non-negated version will have a rank that is one less than
the current rank. So once we hit those ranks, if we don't find
one, we can stop. */
for (i = currindex + 1;
ops->iterate (i, &oe)
&& oe->rank >= curr->rank - 1 ;
i++)
{
if (oe->op == negateop)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Equivalence: ");
print_generic_expr (dump_file, negateop, 0);
fprintf (dump_file, " + -");
print_generic_expr (dump_file, oe->op, 0);
fprintf (dump_file, " -> 0\n");
}
ops->ordered_remove (i);
add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op)));
ops->ordered_remove (currindex);
reassociate_stats.ops_eliminated ++;
return true;
}
else if (oe->op == notop)
{
tree op_type = TREE_TYPE (oe->op);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Equivalence: ");
print_generic_expr (dump_file, notop, 0);
fprintf (dump_file, " + ~");
print_generic_expr (dump_file, oe->op, 0);
fprintf (dump_file, " -> -1\n");
}
ops->ordered_remove (i);
add_to_ops_vec (ops, build_int_cst_type (op_type, -1));
ops->ordered_remove (currindex);
reassociate_stats.ops_eliminated ++;
return true;
}
}
/* CURR->OP is a negate expr in a plus expr: save it for later
inspection in repropagate_negates(). */
if (negateop != NULL_TREE)
plus_negates.safe_push (curr->op);
return false;
}
/* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
bitwise not expression, look in OPS for a corresponding operand to
cancel it out. If we find one, remove the other from OPS, replace
OPS[CURRINDEX] with 0, and return true. Otherwise, return
false. */
static bool
eliminate_not_pairs (enum tree_code opcode,
vec<operand_entry_t> *ops,
unsigned int currindex,
operand_entry_t curr)
{
tree notop;
unsigned int i;
operand_entry_t oe;
if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
|| TREE_CODE (curr->op) != SSA_NAME)
return false;
notop = get_unary_op (curr->op, BIT_NOT_EXPR);
if (notop == NULL_TREE)
return false;
/* Any non-not version will have a rank that is one less than
the current rank. So once we hit those ranks, if we don't find
one, we can stop. */
for (i = currindex + 1;
ops->iterate (i, &oe)
&& oe->rank >= curr->rank - 1;
i++)
{
if (oe->op == notop)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Equivalence: ");
print_generic_expr (dump_file, notop, 0);
if (opcode == BIT_AND_EXPR)
fprintf (dump_file, " & ~");
else if (opcode == BIT_IOR_EXPR)
fprintf (dump_file, " | ~");
print_generic_expr (dump_file, oe->op, 0);
if (opcode == BIT_AND_EXPR)
fprintf (dump_file, " -> 0\n");
else if (opcode == BIT_IOR_EXPR)
fprintf (dump_file, " -> -1\n");
}
if (opcode == BIT_AND_EXPR)
oe->op = build_zero_cst (TREE_TYPE (oe->op));
else if (opcode == BIT_IOR_EXPR)
oe->op = build_all_ones_cst (TREE_TYPE (oe->op));
reassociate_stats.ops_eliminated += ops->length () - 1;
ops->truncate (0);
ops->quick_push (oe);
return true;
}
}
return false;
}
/* Use constant value that may be present in OPS to try to eliminate
operands. Note that this function is only really used when we've
eliminated ops for other reasons, or merged constants. Across
single statements, fold already does all of this, plus more. There
is little point in duplicating logic, so I've only included the
identities that I could ever construct testcases to trigger. */
static void
eliminate_using_constants (enum tree_code opcode,
vec<operand_entry_t> *ops)
{
operand_entry_t oelast = ops->last ();
tree type = TREE_TYPE (oelast->op);
if (oelast->rank == 0
&& (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
{
switch (opcode)
{
case BIT_AND_EXPR:
if (integer_zerop (oelast->op))
{
if (ops->length () != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found & 0, removing all other ops\n");
reassociate_stats.ops_eliminated += ops->length () - 1;
ops->truncate (0);
ops->quick_push (oelast);
return;
}
}
else if (integer_all_onesp (oelast->op))
{
if (ops->length () != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found & -1, removing\n");
ops->pop ();
reassociate_stats.ops_eliminated++;
}
}
break;
case BIT_IOR_EXPR:
if (integer_all_onesp (oelast->op))
{
if (ops->length () != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found | -1, removing all other ops\n");
reassociate_stats.ops_eliminated += ops->length () - 1;
ops->truncate (0);
ops->quick_push (oelast);
return;
}
}
else if (integer_zerop (oelast->op))
{
if (ops->length () != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found | 0, removing\n");
ops->pop ();
reassociate_stats.ops_eliminated++;
}
}
break;
case MULT_EXPR:
if (integer_zerop (oelast->op)
|| (FLOAT_TYPE_P (type)
&& !HONOR_NANS (TYPE_MODE (type))
&& !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
&& real_zerop (oelast->op)))
{
if (ops->length () != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found * 0, removing all other ops\n");
reassociate_stats.ops_eliminated += ops->length () - 1;
ops->truncate (1);
ops->quick_push (oelast);
return;
}
}
else if (integer_onep (oelast->op)
|| (FLOAT_TYPE_P (type)
&& !HONOR_SNANS (TYPE_MODE (type))
&& real_onep (oelast->op)))
{
if (ops->length () != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found * 1, removing\n");
ops->pop ();
reassociate_stats.ops_eliminated++;
return;
}
}
break;
case BIT_XOR_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
if (integer_zerop (oelast->op)
|| (FLOAT_TYPE_P (type)
&& (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
&& fold_real_zero_addition_p (type, oelast->op,
opcode == MINUS_EXPR)))
{
if (ops->length () != 1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Found [|^+] 0, removing\n");
ops->pop ();
reassociate_stats.ops_eliminated++;
return;
}
}
break;
default:
break;
}
}
}
static void linearize_expr_tree (vec<operand_entry_t> *, gimple,
bool, bool);
/* Structure for tracking and counting operands. */
typedef struct oecount_s {
int cnt;
int id;
enum tree_code oecode;
tree op;
} oecount;
/* The heap for the oecount hashtable and the sorted list of operands. */
static vec<oecount> cvec;
/* Oecount hashtable helpers. */
struct oecount_hasher
{
typedef int value_type;
typedef int compare_type;
typedef int store_values_directly;
static inline hashval_t hash (const value_type &);
static inline bool equal (const value_type &, const compare_type &);
static bool is_deleted (int &v) { return v == 1; }
static void mark_deleted (int &e) { e = 1; }
static bool is_empty (int &v) { return v == 0; }
static void mark_empty (int &e) { e = 0; }
static void remove (int &) {}
};
/* Hash function for oecount. */
inline hashval_t
oecount_hasher::hash (const value_type &p)
{
const oecount *c = &cvec[p - 42];
return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
}
/* Comparison function for oecount. */
inline bool
oecount_hasher::equal (const value_type &p1, const compare_type &p2)
{
const oecount *c1 = &cvec[p1 - 42];
const oecount *c2 = &cvec[p2 - 42];
return (c1->oecode == c2->oecode
&& c1->op == c2->op);
}
/* Comparison function for qsort sorting oecount elements by count. */
static int
oecount_cmp (const void *p1, const void *p2)
{
const oecount *c1 = (const oecount *)p1;
const oecount *c2 = (const oecount *)p2;
if (c1->cnt != c2->cnt)
return c1->cnt - c2->cnt;
else
/* If counts are identical, use unique IDs to stabilize qsort. */
return c1->id - c2->id;
}
/* Return TRUE iff STMT represents a builtin call that raises OP
to some exponent. */
static bool
stmt_is_power_of_op (gimple stmt, tree op)
{
tree fndecl;
if (!is_gimple_call (stmt))
return false;
fndecl = gimple_call_fndecl (stmt);
if (!fndecl
|| DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
return false;
switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
{
CASE_FLT_FN (BUILT_IN_POW):
CASE_FLT_FN (BUILT_IN_POWI):
return (operand_equal_p (gimple_call_arg (stmt, 0), op, 0));
default:
return false;
}
}
/* Given STMT which is a __builtin_pow* call, decrement its exponent
in place and return the result. Assumes that stmt_is_power_of_op
was previously called for STMT and returned TRUE. */
static HOST_WIDE_INT
decrement_power (gimple stmt)
{
REAL_VALUE_TYPE c, cint;
HOST_WIDE_INT power;
tree arg1;
switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
{
CASE_FLT_FN (BUILT_IN_POW):
arg1 = gimple_call_arg (stmt, 1);
c = TREE_REAL_CST (arg1);
power = real_to_integer (&c) - 1;
real_from_integer (&cint, VOIDmode, power, SIGNED);
gimple_call_set_arg (stmt, 1, build_real (TREE_TYPE (arg1), cint));
return power;
CASE_FLT_FN (BUILT_IN_POWI):
arg1 = gimple_call_arg (stmt, 1);
power = TREE_INT_CST_LOW (arg1) - 1;
gimple_call_set_arg (stmt, 1, build_int_cst (TREE_TYPE (arg1), power));
return power;
default:
gcc_unreachable ();
}
}
/* Find the single immediate use of STMT's LHS, and replace it
with OP. Remove STMT. If STMT's LHS is the same as *DEF,
replace *DEF with OP as well. */
static void
propagate_op_to_single_use (tree op, gimple stmt, tree *def)
{
tree lhs;
gimple use_stmt;
use_operand_p use;
gimple_stmt_iterator gsi;
if (is_gimple_call (stmt))
lhs = gimple_call_lhs (stmt);
else
lhs = gimple_assign_lhs (stmt);
gcc_assert (has_single_use (lhs));
single_imm_use (lhs, &use, &use_stmt);
if (lhs == *def)
*def = op;
SET_USE (use, op);
if (TREE_CODE (op) != SSA_NAME)
update_stmt (use_stmt);
gsi = gsi_for_stmt (stmt);
unlink_stmt_vdef (stmt);
reassoc_remove_stmt (&gsi);
release_defs (stmt);
}
/* Walks the linear chain with result *DEF searching for an operation
with operand OP and code OPCODE removing that from the chain. *DEF
is updated if there is only one operand but no operation left. */
static void
zero_one_operation (tree *def, enum tree_code opcode, tree op)
{
gimple stmt = SSA_NAME_DEF_STMT (*def);
do
{
tree name;
if (opcode == MULT_EXPR
&& stmt_is_power_of_op (stmt, op))
{
if (decrement_power (stmt) == 1)
propagate_op_to_single_use (op, stmt, def);
return;
}
name = gimple_assign_rhs1 (stmt);
/* If this is the operation we look for and one of the operands
is ours simply propagate the other operand into the stmts
single use. */
if (gimple_assign_rhs_code (stmt) == opcode
&& (name == op
|| gimple_assign_rhs2 (stmt) == op))
{
if (name == op)
name = gimple_assign_rhs2 (stmt);
propagate_op_to_single_use (name, stmt, def);
return;
}
/* We might have a multiply of two __builtin_pow* calls, and
the operand might be hiding in the rightmost one. */
if (opcode == MULT_EXPR
&& gimple_assign_rhs_code (stmt) == opcode
&& TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
&& has_single_use (gimple_assign_rhs2 (stmt)))
{
gimple stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
if (stmt_is_power_of_op (stmt2, op))
{
if (decrement_power (stmt2) == 1)
propagate_op_to_single_use (op, stmt2, def);
return;
}
}
/* Continue walking the chain. */
gcc_assert (name != op
&& TREE_CODE (name) == SSA_NAME);
stmt = SSA_NAME_DEF_STMT (name);
}
while (1);
}
/* Returns true if statement S1 dominates statement S2. Like
stmt_dominates_stmt_p, but uses stmt UIDs to optimize. */
static bool
reassoc_stmt_dominates_stmt_p (gimple s1, gimple s2)
{
basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
/* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
SSA_NAME. Assume it lives at the beginning of function and
thus dominates everything. */
if (!bb1 || s1 == s2)
return true;
/* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
if (!bb2)
return false;
if (bb1 == bb2)
{
/* PHIs in the same basic block are assumed to be
executed all in parallel, if only one stmt is a PHI,
it dominates the other stmt in the same basic block. */
if (gimple_code (s1) == GIMPLE_PHI)
return true;
if (gimple_code (s2) == GIMPLE_PHI)
return false;
gcc_assert (gimple_uid (s1) && gimple_uid (s2));
if (gimple_uid (s1) < gimple_uid (s2))
return true;
if (gimple_uid (s1) > gimple_uid (s2))
return false;
gimple_stmt_iterator gsi = gsi_for_stmt (s1);
unsigned int uid = gimple_uid (s1);
for (gsi_next (&gsi); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple s = gsi_stmt (gsi);
if (gimple_uid (s) != uid)
break;
if (s == s2)
return true;
}
return false;
}
return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
}
/* Insert STMT after INSERT_POINT. */
static void
insert_stmt_after (gimple stmt, gimple insert_point)
{
gimple_stmt_iterator gsi;
basic_block bb;
if (gimple_code (insert_point) == GIMPLE_PHI)
bb = gimple_bb (insert_point);
else if (!stmt_ends_bb_p (insert_point))
{
gsi = gsi_for_stmt (insert_point);
gimple_set_uid (stmt, gimple_uid (insert_point));
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
return;
}
else
/* We assume INSERT_POINT is a SSA_NAME_DEF_STMT of some SSA_NAME,
thus if it must end a basic block, it should be a call that can
throw, or some assignment that can throw. If it throws, the LHS
of it will not be initialized though, so only valid places using
the SSA_NAME should be dominated by the fallthru edge. */
bb = find_fallthru_edge (gimple_bb (insert_point)->succs)->dest;
gsi = gsi_after_labels (bb);
if (gsi_end_p (gsi))
{
gimple_stmt_iterator gsi2 = gsi_last_bb (bb);
gimple_set_uid (stmt,
gsi_end_p (gsi2) ? 1 : gimple_uid (gsi_stmt (gsi2)));
}
else
gimple_set_uid (stmt, gimple_uid (gsi_stmt (gsi)));
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
}
/* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
the result. Places the statement after the definition of either
OP1 or OP2. Returns the new statement. */
static gimple
build_and_add_sum (tree type, tree op1, tree op2, enum tree_code opcode)
{
gimple op1def = NULL, op2def = NULL;
gimple_stmt_iterator gsi;
tree op;
gimple sum;
/* Create the addition statement. */
op = make_ssa_name (type, NULL);
sum = gimple_build_assign_with_ops (opcode, op, op1, op2);
/* Find an insertion place and insert. */
if (TREE_CODE (op1) == SSA_NAME)
op1def = SSA_NAME_DEF_STMT (op1);
if (TREE_CODE (op2) == SSA_NAME)
op2def = SSA_NAME_DEF_STMT (op2);
if ((!op1def || gimple_nop_p (op1def))
&& (!op2def || gimple_nop_p (op2def)))
{
gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
if (gsi_end_p (gsi))
{
gimple_stmt_iterator gsi2
= gsi_last_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
gimple_set_uid (sum,
gsi_end_p (gsi2) ? 1 : gimple_uid (gsi_stmt (gsi2)));
}
else
gimple_set_uid (sum, gimple_uid (gsi_stmt (gsi)));
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
}
else
{
gimple insert_point;
if ((!op1def || gimple_nop_p (op1def))
|| (op2def && !gimple_nop_p (op2def)
&& reassoc_stmt_dominates_stmt_p (op1def, op2def)))
insert_point = op2def;
else
insert_point = op1def;
insert_stmt_after (sum, insert_point);
}
update_stmt (sum);
return sum;
}
/* Perform un-distribution of divisions and multiplications.
A * X + B * X is transformed into (A + B) * X and A / X + B / X
to (A + B) / X for real X.
The algorithm is organized as follows.
- First we walk the addition chain *OPS looking for summands that
are defined by a multiplication or a real division. This results
in the candidates bitmap with relevant indices into *OPS.
- Second we build the chains of multiplications or divisions for
these candidates, counting the number of occurrences of (operand, code)
pairs in all of the candidates chains.
- Third we sort the (operand, code) pairs by number of occurrence and
process them starting with the pair with the most uses.
* For each such pair we walk the candidates again to build a
second candidate bitmap noting all multiplication/division chains
that have at least one occurrence of (operand, code).
* We build an alternate addition chain only covering these
candidates with one (operand, code) operation removed from their
multiplication/division chain.
* The first candidate gets replaced by the alternate addition chain
multiplied/divided by the operand.
* All candidate chains get disabled for further processing and
processing of (operand, code) pairs continues.
The alternate addition chains built are re-processed by the main
reassociation algorithm which allows optimizing a * x * y + b * y * x
to (a + b ) * x * y in one invocation of the reassociation pass. */
static bool
undistribute_ops_list (enum tree_code opcode,
vec<operand_entry_t> *ops, struct loop *loop)
{
unsigned int length = ops->length ();
operand_entry_t oe1;
unsigned i, j;
sbitmap candidates, candidates2;
unsigned nr_candidates, nr_candidates2;
sbitmap_iterator sbi0;
vec<operand_entry_t> *subops;
bool changed = false;
int next_oecount_id = 0;
if (length <= 1
|| opcode != PLUS_EXPR)
return false;
/* Build a list of candidates to process. */
candidates = sbitmap_alloc (length);
bitmap_clear (candidates);
nr_candidates = 0;
FOR_EACH_VEC_ELT (*ops, i, oe1)
{
enum tree_code dcode;
gimple oe1def;
if (TREE_CODE (oe1->op) != SSA_NAME)
continue;
oe1def = SSA_NAME_DEF_STMT (oe1->op);
if (!is_gimple_assign (oe1def))
continue;
dcode = gimple_assign_rhs_code (oe1def);
if ((dcode != MULT_EXPR
&& dcode != RDIV_EXPR)
|| !is_reassociable_op (oe1def, dcode, loop))
continue;
bitmap_set_bit (candidates, i);
nr_candidates++;
}
if (nr_candidates < 2)
{
sbitmap_free (candidates);
return false;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "searching for un-distribute opportunities ");
print_generic_expr (dump_file,
(*ops)[bitmap_first_set_bit (candidates)]->op, 0);
fprintf (dump_file, " %d\n", nr_candidates);
}
/* Build linearized sub-operand lists and the counting table. */
cvec.create (0);
hash_table<oecount_hasher> ctable (15);
/* ??? Macro arguments cannot have multi-argument template types in
them. This typedef is needed to workaround that limitation. */
typedef vec<operand_entry_t> vec_operand_entry_t_heap;
subops = XCNEWVEC (vec_operand_entry_t_heap, ops->length ());
EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
{
gimple oedef;
enum tree_code oecode;
unsigned j;
oedef = SSA_NAME_DEF_STMT ((*ops)[i]->op);
oecode = gimple_assign_rhs_code (oedef);
linearize_expr_tree (&subops[i], oedef,
associative_tree_code (oecode), false);
FOR_EACH_VEC_ELT (subops[i], j, oe1)
{
oecount c;
int *slot;
int idx;
c.oecode = oecode;
c.cnt = 1;
c.id = next_oecount_id++;
c.op = oe1->op;
cvec.safe_push (c);
idx = cvec.length () + 41;
slot = ctable.find_slot (idx, INSERT);
if (!*slot)
{
*slot = idx;
}
else
{
cvec.pop ();
cvec[*slot - 42].cnt++;
}
}
}
/* Sort the counting table. */
cvec.qsort (oecount_cmp);
if (dump_file && (dump_flags & TDF_DETAILS))
{
oecount *c;
fprintf (dump_file, "Candidates:\n");
FOR_EACH_VEC_ELT (cvec, j, c)
{
fprintf (dump_file, " %u %s: ", c->cnt,
c->oecode == MULT_EXPR
? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
print_generic_expr (dump_file, c->op, 0);
fprintf (dump_file, "\n");
}
}
/* Process the (operand, code) pairs in order of most occurrence. */
candidates2 = sbitmap_alloc (length);
while (!cvec.is_empty ())
{
oecount *c = &cvec.last ();
if (c->cnt < 2)
break;
/* Now collect the operands in the outer chain that contain
the common operand in their inner chain. */
bitmap_clear (candidates2);
nr_candidates2 = 0;
EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
{
gimple oedef;
enum tree_code oecode;
unsigned j;
tree op = (*ops)[i]->op;
/* If we undistributed in this chain already this may be
a constant. */
if (TREE_CODE (op) != SSA_NAME)
continue;
oedef = SSA_NAME_DEF_STMT (op);
oecode = gimple_assign_rhs_code (oedef);
if (oecode != c->oecode)
continue;
FOR_EACH_VEC_ELT (subops[i], j, oe1)
{
if (oe1->op == c->op)
{
bitmap_set_bit (candidates2, i);
++nr_candidates2;
break;
}
}
}
if (nr_candidates2 >= 2)
{
operand_entry_t oe1, oe2;
gimple prod;
int first = bitmap_first_set_bit (candidates2);
/* Build the new addition chain. */
oe1 = (*ops)[first];
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Building (");
print_generic_expr (dump_file, oe1->op, 0);
}
zero_one_operation (&oe1->op, c->oecode, c->op);
EXECUTE_IF_SET_IN_BITMAP (candidates2, first+1, i, sbi0)
{
gimple sum;
oe2 = (*ops)[i];
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " + ");
print_generic_expr (dump_file, oe2->op, 0);
}
zero_one_operation (&oe2->op, c->oecode, c->op);
sum = build_and_add_sum (TREE_TYPE (oe1->op),
oe1->op, oe2->op, opcode);
oe2->op = build_zero_cst (TREE_TYPE (oe2->op));
oe2->rank = 0;
oe1->op = gimple_get_lhs (sum);
}
/* Apply the multiplication/division. */
prod = build_and_add_sum (TREE_TYPE (oe1->op),
oe1->op, c->op, c->oecode);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
print_generic_expr (dump_file, c->op, 0);
fprintf (dump_file, "\n");
}
/* Record it in the addition chain and disable further
undistribution with this op. */
oe1->op = gimple_assign_lhs (prod);
oe1->rank = get_rank (oe1->op);
subops[first].release ();
changed = true;
}
cvec.pop ();
}
for (i = 0; i < ops->length (); ++i)
subops[i].release ();
free (subops);
cvec.release ();
sbitmap_free (candidates);
sbitmap_free (candidates2);
return changed;
}
/* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
expression, examine the other OPS to see if any of them are comparisons
of the same values, which we may be able to combine or eliminate.
For example, we can rewrite (a < b) | (a == b) as (a <= b). */
static bool
eliminate_redundant_comparison (enum tree_code opcode,
vec<operand_entry_t> *ops,
unsigned int currindex,
operand_entry_t curr)
{
tree op1, op2;
enum tree_code lcode, rcode;
gimple def1, def2;
int i;
operand_entry_t oe;
if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
return false;
/* Check that CURR is a comparison. */
if (TREE_CODE (curr->op) != SSA_NAME)
return false;
def1 = SSA_NAME_DEF_STMT (curr->op);
if (!is_gimple_assign (def1))
return false;
lcode = gimple_assign_rhs_code (def1);
if (TREE_CODE_CLASS (lcode) != tcc_comparison)
return false;
op1 = gimple_assign_rhs1 (def1);
op2 = gimple_assign_rhs2 (def1);
/* Now look for a similar comparison in the remaining OPS. */
for (i = currindex + 1; ops->iterate (i, &oe); i++)
{
tree t;
if (TREE_CODE (oe->op) != SSA_NAME)
continue;
def2 = SSA_NAME_DEF_STMT (oe->op);
if (!is_gimple_assign (def2))
continue;
rcode = gimple_assign_rhs_code (def2);
if (TREE_CODE_CLASS (rcode) != tcc_comparison)
continue;
/* If we got here, we have a match. See if we can combine the
two comparisons. */
if (opcode == BIT_IOR_EXPR)
t = maybe_fold_or_comparisons (lcode, op1, op2,
rcode, gimple_assign_rhs1 (def2),
gimple_assign_rhs2 (def2));
else
t = maybe_fold_and_comparisons (lcode, op1, op2,
rcode, gimple_assign_rhs1 (def2),
gimple_assign_rhs2 (def2));
if (!t)
continue;
/* maybe_fold_and_comparisons and maybe_fold_or_comparisons
always give us a boolean_type_node value back. If the original
BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
we need to convert. */
if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
t = fold_convert (TREE_TYPE (curr->op), t);
if (TREE_CODE (t) != INTEGER_CST
&& !operand_equal_p (t, curr->op, 0))
{
enum tree_code subcode;
tree newop1, newop2;
if (!COMPARISON_CLASS_P (t))
continue;
extract_ops_from_tree (t, &subcode, &newop1, &newop2);
STRIP_USELESS_TYPE_CONVERSION (newop1);
STRIP_USELESS_TYPE_CONVERSION (newop2);
if (!is_gimple_val (newop1) || !is_gimple_val (newop2))
continue;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Equivalence: ");
print_generic_expr (dump_file, curr->op, 0);
fprintf (dump_file, " %s ", op_symbol_code (opcode));
print_generic_expr (dump_file, oe->op, 0);
fprintf (dump_file, " -> ");
print_generic_expr (dump_file, t, 0);
fprintf (dump_file, "\n");
}
/* Now we can delete oe, as it has been subsumed by the new combined
expression t. */
ops->ordered_remove (i);
reassociate_stats.ops_eliminated ++;
/* If t is the same as curr->op, we're done. Otherwise we must
replace curr->op with t. Special case is if we got a constant
back, in which case we add it to the end instead of in place of
the current entry. */
if (TREE_CODE (t) == INTEGER_CST)
{
ops->ordered_remove (currindex);
add_to_ops_vec (ops, t);
}
else if (!operand_equal_p (t, curr->op, 0))
{
gimple sum;
enum tree_code subcode;
tree newop1;
tree newop2;
gcc_assert (COMPARISON_CLASS_P (t));
extract_ops_from_tree (t, &subcode, &newop1, &newop2);
STRIP_USELESS_TYPE_CONVERSION (newop1);
STRIP_USELESS_TYPE_CONVERSION (newop2);
gcc_checking_assert (is_gimple_val (newop1)
&& is_gimple_val (newop2));
sum = build_and_add_sum (TREE_TYPE (t), newop1, newop2, subcode);
curr->op = gimple_get_lhs (sum);
}
return true;
}
return false;
}
/* Perform various identities and other optimizations on the list of
operand entries, stored in OPS. The tree code for the binary
operation between all the operands is OPCODE. */
static void
optimize_ops_list (enum tree_code opcode,
vec<operand_entry_t> *ops)
{
unsigned int length = ops->length ();
unsigned int i;
operand_entry_t oe;
operand_entry_t oelast = NULL;
bool iterate = false;
if (length == 1)
return;
oelast = ops->last ();
/* If the last two are constants, pop the constants off, merge them
and try the next two. */
if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
{
operand_entry_t oelm1 = (*ops)[length - 2];
if (oelm1->rank == 0
&& is_gimple_min_invariant (oelm1->op)
&& useless_type_conversion_p (TREE_TYPE (oelm1->op),
TREE_TYPE (oelast->op)))
{
tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
oelm1->op, oelast->op);
if (folded && is_gimple_min_invariant (folded))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Merging constants\n");
ops->pop ();
ops->pop ();
add_to_ops_vec (ops, folded);
reassociate_stats.constants_eliminated++;
optimize_ops_list (opcode, ops);
return;
}
}
}
eliminate_using_constants (opcode, ops);
oelast = NULL;
for (i = 0; ops->iterate (i, &oe);)
{
bool done = false;
if (eliminate_not_pairs (opcode, ops, i, oe))
return;
if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
|| (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
|| (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
{
if (done)
return;
iterate = true;
oelast = NULL;
continue;
}
oelast = oe;
i++;
}
length = ops->length ();
oelast = ops->last ();
if (iterate)
optimize_ops_list (opcode, ops);
}
/* The following functions are subroutines to optimize_range_tests and allow
it to try to change a logical combination of comparisons into a range
test.
For example, both
X == 2 || X == 5 || X == 3 || X == 4
and
X >= 2 && X <= 5
are converted to
(unsigned) (X - 2) <= 3
For more information see comments above fold_test_range in fold-const.c,
this implementation is for GIMPLE. */
struct range_entry
{
tree exp;
tree low;
tree high;
bool in_p;
bool strict_overflow_p;
unsigned int idx, next;
};
/* This is similar to make_range in fold-const.c, but on top of
GIMPLE instead of trees. If EXP is non-NULL, it should be
an SSA_NAME and STMT argument is ignored, otherwise STMT
argument should be a GIMPLE_COND. */
static void
init_range_entry (struct range_entry *r, tree exp, gimple stmt)
{
int in_p;
tree low, high;
bool is_bool, strict_overflow_p;
r->exp = NULL_TREE;
r->in_p = false;
r->strict_overflow_p = false;
r->low = NULL_TREE;
r->high = NULL_TREE;
if (exp != NULL_TREE
&& (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp))))
return;
/* Start with simply saying "EXP != 0" and then look at the code of EXP
and see if we can refine the range. Some of the cases below may not
happen, but it doesn't seem worth worrying about this. We "continue"
the outer loop when we've changed something; otherwise we "break"
the switch, which will "break" the while. */
low = exp ? build_int_cst (TREE_TYPE (exp), 0) : boolean_false_node;
high = low;
in_p = 0;
strict_overflow_p = false;
is_bool = false;
if (exp == NULL_TREE)
is_bool = true;
else if (TYPE_PRECISION (TREE_TYPE (exp)) == 1)
{
if (TYPE_UNSIGNED (TREE_TYPE (exp)))
is_bool = true;
else
return;
}
else if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
is_bool = true;
while (1)
{
enum tree_code code;
tree arg0, arg1, exp_type;
tree nexp;
location_t loc;
if (exp != NULL_TREE)
{
if (TREE_CODE (exp) != SSA_NAME
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp))
break;
stmt = SSA_NAME_DEF_STMT (exp);
if (!is_gimple_assign (stmt))
break;
code = gimple_assign_rhs_code (stmt);
arg0 = gimple_assign_rhs1 (stmt);
arg1 = gimple_assign_rhs2 (stmt);
exp_type = TREE_TYPE (exp);
}
else
{
code = gimple_cond_code (stmt);
arg0 = gimple_cond_lhs (stmt);
arg1 = gimple_cond_rhs (stmt);
exp_type = boolean_type_node;
}
if (TREE_CODE (arg0) != SSA_NAME)
break;
loc = gimple_location (stmt);
switch (code)
{
case BIT_NOT_EXPR:
if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE
/* Ensure the range is either +[-,0], +[0,0],
-[-,0], -[0,0] or +[1,-], +[1,1], -[1,-] or
-[1,1]. If it is e.g. +[-,-] or -[-,-]
or similar expression of unconditional true or
false, it should not be negated. */
&& ((high && integer_zerop (high))
|| (low && integer_onep (low))))
{
in_p = !in_p;
exp = arg0;
continue;
}
break;
case SSA_NAME:
exp = arg0;
continue;
CASE_CONVERT:
if (is_bool)
goto do_default;
if (TYPE_PRECISION (TREE_TYPE (arg0)) == 1)
{
if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
is_bool = true;
else
return;
}
else if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE)
is_bool = true;
goto do_default;
case EQ_EXPR:
case NE_EXPR:
case LT_EXPR:
case LE_EXPR:
case GE_EXPR:
case GT_EXPR:
is_bool = true;
/* FALLTHRU */
default:
if (!is_bool)
return;
do_default:
nexp = make_range_step (loc, code, arg0, arg1, exp_type,
&low, &high, &in_p,
&strict_overflow_p);
if (nexp != NULL_TREE)
{
exp = nexp;
gcc_assert (TREE_CODE (exp) == SSA_NAME);
continue;
}
break;
}
break;
}
if (is_bool)
{
r->exp = exp;
r->in_p = in_p;
r->low = low;
r->high = high;
r->strict_overflow_p = strict_overflow_p;
}
}
/* Comparison function for qsort. Sort entries
without SSA_NAME exp first, then with SSA_NAMEs sorted
by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
by increasing ->low and if ->low is the same, by increasing
->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE
maximum. */
static int
range_entry_cmp (const void *a, const void *b)
{
const struct range_entry *p = (const struct range_entry *) a;
const struct range_entry *q = (const struct range_entry *) b;
if (p->exp != NULL_TREE && TREE_CODE (p->exp) == SSA_NAME)
{
if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
{
/* Group range_entries for the same SSA_NAME together. */
if (SSA_NAME_VERSION (p->exp) < SSA_NAME_VERSION (q->exp))
return -1;
else if (SSA_NAME_VERSION (p->exp) > SSA_NAME_VERSION (q->exp))
return 1;
/* If ->low is different, NULL low goes first, then by
ascending low. */
if (p->low != NULL_TREE)
{
if (q->low != NULL_TREE)
{
tree tem = fold_binary (LT_EXPR, boolean_type_node,
p->low, q->low);
if (tem && integer_onep (tem))
return -1;
tem = fold_binary (GT_EXPR, boolean_type_node,
p->low, q->low);
if (tem && integer_onep (tem))
return 1;
}
else
return 1;
}
else if (q->low != NULL_TREE)
return -1;
/* If ->high is different, NULL high goes last, before that by
ascending high. */
if (p->high != NULL_TREE)
{
if (q->high != NULL_TREE)
{
tree tem = fold_binary (LT_EXPR, boolean_type_node,
p->high, q->high);
if (tem && integer_onep (tem))
return -1;
tem = fold_binary (GT_EXPR, boolean_type_node,
p->high, q->high);
if (tem && integer_onep (tem))
return 1;
}
else
return -1;
}
else if (p->high != NULL_TREE)
return 1;
/* If both ranges are the same, sort below by ascending idx. */
}
else
return 1;
}
else if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
return -1;
if (p->idx < q->idx)
return -1;
else
{
gcc_checking_assert (p->idx > q->idx);
return 1;
}
}
/* Helper routine of optimize_range_test.
[EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
OPCODE and OPS are arguments of optimize_range_tests. Return
true if the range merge has been successful.
If OPCODE is ERROR_MARK, this is called from within
maybe_optimize_range_tests and is performing inter-bb range optimization.
In that case, whether an op is BIT_AND_EXPR or BIT_IOR_EXPR is found in
oe->rank. */
static bool
update_range_test (struct range_entry *range, struct range_entry *otherrange,
unsigned int count, enum tree_code opcode,
vec<operand_entry_t> *ops, tree exp, bool in_p,
tree low, tree high, bool strict_overflow_p)
{
operand_entry_t oe = (*ops)[range->idx];
tree op = oe->op;
gimple stmt = op ? SSA_NAME_DEF_STMT (op) :
last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id));
location_t loc = gimple_location (stmt);
tree optype = op ? TREE_TYPE (op) : boolean_type_node;
tree tem = build_range_check (loc, optype, exp, in_p, low, high);
enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
gimple_stmt_iterator gsi;
if (tem == NULL_TREE)
return false;
if (strict_overflow_p && issue_strict_overflow_warning (wc))
warning_at (loc, OPT_Wstrict_overflow,
"assuming signed overflow does not occur "
"when simplifying range test");
if (dump_file && (dump_flags & TDF_DETAILS))
{
struct range_entry *r;
fprintf (dump_file, "Optimizing range tests ");
print_generic_expr (dump_file, range->exp, 0);
fprintf (dump_file, " %c[", range->in_p ? '+' : '-');
print_generic_expr (dump_file, range->low, 0);
fprintf (dump_file, ", ");
print_generic_expr (dump_file, range->high, 0);
fprintf (dump_file, "]");
for (r = otherrange; r < otherrange + count; r++)
{
fprintf (dump_file, " and %c[", r->in_p ? '+' : '-');
print_generic_expr (dump_file, r->low, 0);
fprintf (dump_file, ", ");
print_generic_expr (dump_file, r->high, 0);
fprintf (dump_file, "]");
}
fprintf (dump_file, "\n into ");
print_generic_expr (dump_file, tem, 0);
fprintf (dump_file, "\n");
}
if (opcode == BIT_IOR_EXPR
|| (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
tem = invert_truthvalue_loc (loc, tem);
tem = fold_convert_loc (loc, optype, tem);
gsi = gsi_for_stmt (stmt);
/* In rare cases range->exp can be equal to lhs of stmt.
In that case we have to insert after the stmt rather then before
it. */
if (op == range->exp)
tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, false,
GSI_CONTINUE_LINKING);
else
{
tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
GSI_SAME_STMT);
gsi_prev (&gsi);
}
for (; !gsi_end_p (gsi); gsi_prev (&gsi))
if (gimple_uid (gsi_stmt (gsi)))
break;
else
gimple_set_uid (gsi_stmt (gsi), gimple_uid (stmt));
oe->op = tem;
range->exp = exp;
range->low = low;
range->high = high;
range->in_p = in_p;
range->strict_overflow_p = false;
for (range = otherrange; range < otherrange + count; range++)
{
oe = (*ops)[range->idx];
/* Now change all the other range test immediate uses, so that
those tests will be optimized away. */
if (opcode == ERROR_MARK)
{
if (oe->op)
oe->op = build_int_cst (TREE_TYPE (oe->op),
oe->rank == BIT_IOR_EXPR ? 0 : 1);
else
oe->op = (oe->rank == BIT_IOR_EXPR
? boolean_false_node : boolean_true_node);
}
else
oe->op = error_mark_node;
range->exp = NULL_TREE;
}
return true;
}
/* Optimize X == CST1 || X == CST2
if popcount (CST1 ^ CST2) == 1 into
(X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
Similarly for ranges. E.g.
X != 2 && X != 3 && X != 10 && X != 11
will be transformed by the previous optimization into
!((X - 2U) <= 1U || (X - 10U) <= 1U)
and this loop can transform that into
!(((X & ~8) - 2U) <= 1U). */
static bool
optimize_range_tests_xor (enum tree_code opcode, tree type,
tree lowi, tree lowj, tree highi, tree highj,
vec<operand_entry_t> *ops,
struct range_entry *rangei,
struct range_entry *rangej)
{
tree lowxor, highxor, tem, exp;
/* Check highi ^ lowi == highj ^ lowj and
popcount (highi ^ lowi) == 1. */
lowxor = fold_binary (BIT_XOR_EXPR, type, lowi, lowj);
if (lowxor == NULL_TREE || TREE_CODE (lowxor) != INTEGER_CST)
return false;
if (tree_log2 (lowxor) < 0)
return false;
highxor = fold_binary (BIT_XOR_EXPR, type, highi, highj);
if (!tree_int_cst_equal (lowxor, highxor))
return false;
tem = fold_build1 (BIT_NOT_EXPR, type, lowxor);
exp = fold_build2 (BIT_AND_EXPR, type, rangei->exp, tem);
lowj = fold_build2 (BIT_AND_EXPR, type, lowi, tem);
highj = fold_build2 (BIT_AND_EXPR, type, highi, tem);
if (update_range_test (rangei, rangej, 1, opcode, ops, exp,
rangei->in_p, lowj, highj,
rangei->strict_overflow_p
|| rangej->strict_overflow_p))
return true;
return false;
}
/* Optimize X == CST1 || X == CST2
if popcount (CST2 - CST1) == 1 into
((X - CST1) & ~(CST2 - CST1)) == 0.
Similarly for ranges. E.g.
X == 43 || X == 76 || X == 44 || X == 78 || X == 77 || X == 46
|| X == 75 || X == 45
will be transformed by the previous optimization into
(X - 43U) <= 3U || (X - 75U) <= 3U
and this loop can transform that into
((X - 43U) & ~(75U - 43U)) <= 3U. */
static bool
optimize_range_tests_diff (enum tree_code opcode, tree type,
tree lowi, tree lowj, tree highi, tree highj,
vec<operand_entry_t> *ops,
struct range_entry *rangei,
struct range_entry *rangej)
{
tree tem1, tem2, mask;
/* Check highi - lowi == highj - lowj. */
tem1 = fold_binary (MINUS_EXPR, type, highi, lowi);
if (tem1 == NULL_TREE || TREE_CODE (tem1) != INTEGER_CST)
return false;
tem2 = fold_binary (MINUS_EXPR, type, highj, lowj);
if (!tree_int_cst_equal (tem1, tem2))
return false;
/* Check popcount (lowj - lowi) == 1. */
tem1 = fold_binary (MINUS_EXPR, type, lowj, lowi);
if (tem1 == NULL_TREE || TREE_CODE (tem1) != INTEGER_CST)
return false;
if (tree_log2 (tem1) < 0)
return false;
mask = fold_build1 (BIT_NOT_EXPR, type, tem1);
tem1 = fold_binary (MINUS_EXPR, type, rangei->exp, lowi);
tem1 = fold_build2 (BIT_AND_EXPR, type, tem1, mask);
lowj = build_int_cst (type, 0);
if (update_range_test (rangei, rangej, 1, opcode, ops, tem1,
rangei->in_p, lowj, tem2,
rangei->strict_overflow_p
|| rangej->strict_overflow_p))
return true;
return false;
}
/* It does some common checks for function optimize_range_tests_xor and
optimize_range_tests_diff.
If OPTIMIZE_XOR is TRUE, it calls optimize_range_tests_xor.
Else it calls optimize_range_tests_diff. */
static bool
optimize_range_tests_1 (enum tree_code opcode, int first, int length,
bool optimize_xor, vec<operand_entry_t> *ops,
struct range_entry *ranges)
{
int i, j;
bool any_changes = false;
for (i = first; i < length; i++)
{
tree lowi, highi, lowj, highj, type, tem;
if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
continue;
type = TREE_TYPE (ranges[i].exp);
if (!INTEGRAL_TYPE_P (type))
continue;
lowi = ranges[i].low;
if (lowi == NULL_TREE)
lowi = TYPE_MIN_VALUE (type);
highi = ranges[i].high;
if (highi == NULL_TREE)
continue;
for (j = i + 1; j < length && j < i + 64; j++)
{
bool changes;
if (ranges[i].exp != ranges[j].exp || ranges[j].in_p)
continue;
lowj = ranges[j].low;
if (lowj == NULL_TREE)
continue;
highj = ranges[j].high;
if (highj == NULL_TREE)
highj = TYPE_MAX_VALUE (type);
/* Check lowj > highi. */
tem = fold_binary (GT_EXPR, boolean_type_node,
lowj, highi);
if (tem == NULL_TREE || !integer_onep (tem))
continue;
if (optimize_xor)
changes = optimize_range_tests_xor (opcode, type, lowi, lowj,
highi, highj, ops,
ranges + i, ranges + j);
else
changes = optimize_range_tests_diff (opcode, type, lowi, lowj,
highi, highj, ops,
ranges + i, ranges + j);
if (changes)
{
any_changes = true;
break;
}
}
}
return any_changes;
}
/* Optimize range tests, similarly how fold_range_test optimizes
it on trees. The tree code for the binary
operation between all the operands is OPCODE.
If OPCODE is ERROR_MARK, optimize_range_tests is called from within
maybe_optimize_range_tests for inter-bb range optimization.
In that case if oe->op is NULL, oe->id is bb->index whose
GIMPLE_COND is && or ||ed into the test, and oe->rank says
the actual opcode. */
static bool
optimize_range_tests (enum tree_code opcode,
vec<operand_entry_t> *ops)
{
unsigned int length = ops->length (), i, j, first;
operand_entry_t oe;
struct range_entry *ranges;
bool any_changes = false;
if (length == 1)
return false;
ranges = XNEWVEC (struct range_entry, length);
for (i = 0; i < length; i++)
{
oe = (*ops)[i];
ranges[i].idx = i;
init_range_entry (ranges + i, oe->op,
oe->op ? NULL :
last_stmt (BASIC_BLOCK_FOR_FN (cfun, oe->id)));
/* For | invert it now, we will invert it again before emitting
the optimized expression. */
if (opcode == BIT_IOR_EXPR
|| (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
ranges[i].in_p = !ranges[i].in_p;
}
qsort (ranges, length, sizeof (*ranges), range_entry_cmp);
for (i = 0; i < length; i++)
if (ranges[i].exp != NULL_TREE && TREE_CODE (ranges[i].exp) == SSA_NAME)
break;
/* Try to merge ranges. */
for (first = i; i < length; i++)
{
tree low = ranges[i].low;
tree high = ranges[i].high;
int in_p = ranges[i].in_p;
bool strict_overflow_p = ranges[i].strict_overflow_p;
int update_fail_count = 0;
for (j = i + 1; j < length; j++)
{
if (ranges[i].exp != ranges[j].exp)
break;
if (!merge_ranges (&in_p, &low, &high, in_p, low, high,
ranges[j].in_p, ranges[j].low, ranges[j].high))
break;
strict_overflow_p |= ranges[j].strict_overflow_p;
}
if (j == i + 1)
continue;
if (update_range_test (ranges + i, ranges + i + 1, j - i - 1, opcode,
ops, ranges[i].exp, in_p, low, high,
strict_overflow_p))
{
i = j - 1;
any_changes = true;
}
/* Avoid quadratic complexity if all merge_ranges calls would succeed,
while update_range_test would fail. */
else if (update_fail_count == 64)
i = j - 1;
else
++update_fail_count;
}
any_changes |= optimize_range_tests_1 (opcode, first, length, true,
ops, ranges);
if (BRANCH_COST (optimize_function_for_speed_p (cfun), false) >= 2)
any_changes |= optimize_range_tests_1 (opcode, first, length, false,
ops, ranges);
if (any_changes && opcode != ERROR_MARK)
{
j = 0;
FOR_EACH_VEC_ELT (*ops, i, oe)
{
if (oe->op == error_mark_node)
continue;
else if (i != j)
(*ops)[j] = oe;
j++;
}
ops->truncate (j);
}
XDELETEVEC (ranges);
return any_changes;
}
/* Return true if STMT is a cast like:
<bb N>:
...
_123 = (int) _234;
<bb M>:
# _345 = PHI <_123(N), 1(...), 1(...)>
where _234 has bool type, _123 has single use and
bb N has a single successor M. This is commonly used in
the last block of a range test. */
static bool
final_range_test_p (gimple stmt)
{
basic_block bb, rhs_bb;
edge e;
tree lhs, rhs;
use_operand_p use_p;
gimple use_stmt;
if (!gimple_assign_cast_p (stmt))
return false;
bb = gimple_bb (stmt);
if (!single_succ_p (bb))
return false;
e = single_succ_edge (bb);
if (e->flags & EDGE_COMPLEX)
return false;
lhs = gimple_assign_lhs (stmt);
rhs = gimple_assign_rhs1 (stmt);
if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| TREE_CODE (rhs) != SSA_NAME
|| TREE_CODE (TREE_TYPE (rhs)) != BOOLEAN_TYPE)
return false;
/* Test whether lhs is consumed only by a PHI in the only successor bb. */
if (!single_imm_use (lhs, &use_p, &use_stmt))
return false;
if (gimple_code (use_stmt) != GIMPLE_PHI
|| gimple_bb (use_stmt) != e->dest)
return false;
/* And that the rhs is defined in the same loop. */
rhs_bb = gimple_bb (SSA_NAME_DEF_STMT (rhs));
if (rhs_bb == NULL
|| !flow_bb_inside_loop_p (loop_containing_stmt (stmt), rhs_bb))
return false;
return true;
}
/* Return true if BB is suitable basic block for inter-bb range test
optimization. If BACKWARD is true, BB should be the only predecessor
of TEST_BB, and *OTHER_BB is either NULL and filled by the routine,
or compared with to find a common basic block to which all conditions
branch to if true resp. false. If BACKWARD is false, TEST_BB should
be the only predecessor of BB. */
static bool
suitable_cond_bb (basic_block bb, basic_block test_bb, basic_block *other_bb,
bool backward)
{
edge_iterator ei, ei2;
edge e, e2;
gimple stmt;
gimple_stmt_iterator gsi;
bool other_edge_seen = false;
bool is_cond;
if (test_bb == bb)
return false;
/* Check last stmt first. */
stmt = last_stmt (bb);
if (stmt == NULL
|| (gimple_code (stmt) != GIMPLE_COND
&& (backward || !final_range_test_p (stmt)))
|| gimple_visited_p (stmt)
|| stmt_could_throw_p (stmt)
|| *other_bb == bb)
return false;
is_cond = gimple_code (stmt) == GIMPLE_COND;
if (is_cond)
{
/* If last stmt is GIMPLE_COND, verify that one of the succ edges
goes to the next bb (if BACKWARD, it is TEST_BB), and the other
to *OTHER_BB (if not set yet, try to find it out). */
if (EDGE_COUNT (bb->succs) != 2)
return false;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
return false;
if (e->dest == test_bb)
{
if (backward)
continue;
else
return false;
}
if (e->dest == bb)
return false;
if (*other_bb == NULL)
{
FOR_EACH_EDGE (e2, ei2, test_bb->succs)
if (!(e2->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
return false;
else if (e->dest == e2->dest)
*other_bb = e->dest;
if (*other_bb == NULL)
return false;
}
if (e->dest == *other_bb)
other_edge_seen = true;
else if (backward)
return false;
}
if (*other_bb == NULL || !other_edge_seen)
return false;
}
else if (single_succ (bb) != *other_bb)
return false;
/* Now check all PHIs of *OTHER_BB. */
e = find_edge (bb, *other_bb);
e2 = find_edge (test_bb, *other_bb);
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
/* If both BB and TEST_BB end with GIMPLE_COND, all PHI arguments
corresponding to BB and TEST_BB predecessor must be the same. */
if (!operand_equal_p (gimple_phi_arg_def (phi, e->dest_idx),
gimple_phi_arg_def (phi, e2->dest_idx), 0))
{
/* Otherwise, if one of the blocks doesn't end with GIMPLE_COND,
one of the PHIs should have the lhs of the last stmt in
that block as PHI arg and that PHI should have 0 or 1
corresponding to it in all other range test basic blocks
considered. */
if (!is_cond)
{
if (gimple_phi_arg_def (phi, e->dest_idx)
== gimple_assign_lhs (stmt)
&& (integer_zerop (gimple_phi_arg_def (phi, e2->dest_idx))
|| integer_onep (gimple_phi_arg_def (phi,
e2->dest_idx))))
continue;
}
else
{
gimple test_last = last_stmt (test_bb);
if (gimple_code (test_last) != GIMPLE_COND
&& gimple_phi_arg_def (phi, e2->dest_idx)
== gimple_assign_lhs (test_last)
&& (integer_zerop (gimple_phi_arg_def (phi, e->dest_idx))
|| integer_onep (gimple_phi_arg_def (phi, e->dest_idx))))
continue;
}
return false;
}
}
return true;
}
/* Return true if BB doesn't have side-effects that would disallow
range test optimization, all SSA_NAMEs set in the bb are consumed
in the bb and there are no PHIs. */
static bool
no_side_effect_bb (basic_block bb)
{
gimple_stmt_iterator gsi;
gimple last;
if (!gimple_seq_empty_p (phi_nodes (bb)))
return false;
last = last_stmt (bb);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
tree lhs;
imm_use_iterator imm_iter;
use_operand_p use_p;
if (is_gimple_debug (stmt))
continue;
if (gimple_has_side_effects (stmt))
return false;
if (stmt == last)
return true;
if (!is_gimple_assign (stmt))
return false;
lhs = gimple_assign_lhs (stmt);
if (TREE_CODE (lhs) != SSA_NAME)
return false;
if (gimple_assign_rhs_could_trap_p (stmt))
return false;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
gimple use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (gimple_bb (use_stmt) != bb)
return false;
}
}
return false;
}
/* If VAR is set by CODE (BIT_{AND,IOR}_EXPR) which is reassociable,
return true and fill in *OPS recursively. */
static bool
get_ops (tree var, enum tree_code code, vec<operand_entry_t> *ops,
struct loop *loop)
{
gimple stmt = SSA_NAME_DEF_STMT (var);
tree rhs[2];
int i;
if (!is_reassociable_op (stmt, code, loop))
return false;
rhs[0] = gimple_assign_rhs1 (stmt);
rhs[1] = gimple_assign_rhs2 (stmt);
gimple_set_visited (stmt, true);
for (i = 0; i < 2; i++)
if (TREE_CODE (rhs[i]) == SSA_NAME
&& !get_ops (rhs[i], code, ops, loop)
&& has_single_use (rhs[i]))
{
operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
oe->op = rhs[i];
oe->rank = code;
oe->id = 0;
oe->count = 1;
ops->safe_push (oe);
}
return true;
}
/* Find the ops that were added by get_ops starting from VAR, see if
they were changed during update_range_test and if yes, create new
stmts. */
static tree
update_ops (tree var, enum tree_code code, vec<operand_entry_t> ops,
unsigned int *pidx, struct loop *loop)
{
gimple stmt = SSA_NAME_DEF_STMT (var);
tree rhs[4];
int i;
if (!is_reassociable_op (stmt, code, loop))
return NULL;
rhs[0] = gimple_assign_rhs1 (stmt);
rhs[1] = gimple_assign_rhs2 (stmt);
rhs[2] = rhs[0];
rhs[3] = rhs[1];
for (i = 0; i < 2; i++)
if (TREE_CODE (rhs[i]) == SSA_NAME)
{
rhs[2 + i] = update_ops (rhs[i], code, ops, pidx, loop);
if (rhs[2 + i] == NULL_TREE)
{
if (has_single_use (rhs[i]))
rhs[2 + i] = ops[(*pidx)++]->op;
else
rhs[2 + i] = rhs[i];
}
}
if ((rhs[2] != rhs[0] || rhs[3] != rhs[1])
&& (rhs[2] != rhs[1] || rhs[3] != rhs[0]))
{
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
var = make_ssa_name (TREE_TYPE (var), NULL);
gimple g = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt),
var, rhs[2], rhs[3]);
gimple_set_uid (g, gimple_uid (stmt));
gimple_set_visited (g, true);
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
}
return var;
}
/* Structure to track the initial value passed to get_ops and
the range in the ops vector for each basic block. */
struct inter_bb_range_test_entry
{
tree op;
unsigned int first_idx, last_idx;
};
/* Inter-bb range test optimization. */
static void
maybe_optimize_range_tests (gimple stmt)
{
basic_block first_bb = gimple_bb (stmt);
basic_block last_bb = first_bb;
basic_block other_bb = NULL;
basic_block bb;
edge_iterator ei;
edge e;
auto_vec<operand_entry_t> ops;
auto_vec<inter_bb_range_test_entry> bbinfo;
bool any_changes = false;
/* Consider only basic blocks that end with GIMPLE_COND or
a cast statement satisfying final_range_test_p. All
but the last bb in the first_bb .. last_bb range
should end with GIMPLE_COND. */
if (gimple_code (stmt) == GIMPLE_COND)
{
if (EDGE_COUNT (first_bb->succs) != 2)
return;
}
else if (final_range_test_p (stmt))
other_bb = single_succ (first_bb);
else
return;
if (stmt_could_throw_p (stmt))
return;
/* As relative ordering of post-dominator sons isn't fixed,
maybe_optimize_range_tests can be called first on any
bb in the range we want to optimize. So, start searching
backwards, if first_bb can be set to a predecessor. */
while (single_pred_p (first_bb))
{
basic_block pred_bb = single_pred (first_bb);
if (!suitable_cond_bb (pred_bb, first_bb, &other_bb, true))
break;
if (!no_side_effect_bb (first_bb))
break;
first_bb = pred_bb;
}
/* If first_bb is last_bb, other_bb hasn't been computed yet.
Before starting forward search in last_bb successors, find
out the other_bb. */
if (first_bb == last_bb)
{
other_bb = NULL;
/* As non-GIMPLE_COND last stmt always terminates the range,
if forward search didn't discover anything, just give up. */
if (gimple_code (stmt) != GIMPLE_COND)
return;
/* Look at both successors. Either it ends with a GIMPLE_COND
and satisfies suitable_cond_bb, or ends with a cast and
other_bb is that cast's successor. */
FOR_EACH_EDGE (e, ei, first_bb->succs)
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
|| e->dest == first_bb)
return;
else if (single_pred_p (e->dest))
{
stmt = last_stmt (e->dest);
if (stmt
&& gimple_code (stmt) == GIMPLE_COND
&& EDGE_COUNT (e->dest->succs) == 2)
{
if (suitable_cond_bb (first_bb, e->dest, &other_bb, true))
break;
else
other_bb = NULL;
}
else if (stmt
&& final_range_test_p (stmt)
&& find_edge (first_bb, single_succ (e->dest)))
{
other_bb = single_succ (e->dest);
if (other_bb == first_bb)
other_bb = NULL;
}
}
if (other_bb == NULL)
return;
}
/* Now do the forward search, moving last_bb to successor bbs
that aren't other_bb. */
while (EDGE_COUNT (last_bb->succs) == 2)
{
FOR_EACH_EDGE (e, ei, last_bb->succs)
if (e->dest != other_bb)
break;
if (e == NULL)
break;
if (!single_pred_p (e->dest))
break;
if (!suitable_cond_bb (e->dest, last_bb, &other_bb, false))
break;
if (!no_side_effect_bb (e->dest))
break;
last_bb = e->dest;
}
if (first_bb == last_bb)
return;
/* Here basic blocks first_bb through last_bb's predecessor
end with GIMPLE_COND, all of them have one of the edges to
other_bb and another to another block in the range,
all blocks except first_bb don't have side-effects and
last_bb ends with either GIMPLE_COND, or cast satisfying
final_range_test_p. */
for (bb = last_bb; ; bb = single_pred (bb))
{
enum tree_code code;
tree lhs, rhs;
inter_bb_range_test_entry bb_ent;
bb_ent.op = NULL_TREE;
bb_ent.first_idx = ops.length ();
bb_ent.last_idx = bb_ent.first_idx;
e = find_edge (bb, other_bb);
stmt = last_stmt (bb);
gimple_set_visited (stmt, true);
if (gimple_code (stmt) != GIMPLE_COND)
{
use_operand_p use_p;
gimple phi;
edge e2;
unsigned int d;
lhs = gimple_assign_lhs (stmt);
rhs = gimple_assign_rhs1 (stmt);
gcc_assert (bb == last_bb);
/* stmt is
_123 = (int) _234;
followed by:
<bb M>:
# _345 = PHI <_123(N), 1(...), 1(...)>
or 0 instead of 1. If it is 0, the _234
range test is anded together with all the
other range tests, if it is 1, it is ored with
them. */
single_imm_use (lhs, &use_p, &phi);
gcc_assert (gimple_code (phi) == GIMPLE_PHI);
e2 = find_edge (first_bb, other_bb);
d = e2->dest_idx;
gcc_assert (gimple_phi_arg_def (phi, e->dest_idx) == lhs);
if (integer_zerop (gimple_phi_arg_def (phi, d)))
code = BIT_AND_EXPR;
else
{
gcc_checking_assert (integer_onep (gimple_phi_arg_def (phi, d)));
code = BIT_IOR_EXPR;
}
/* If _234 SSA_NAME_DEF_STMT is
_234 = _567 | _789;
(or &, corresponding to 1/0 in the phi arguments,
push into ops the individual range test arguments
of the bitwise or resp. and, recursively. */
if (!get_ops (rhs, code, &ops,
loop_containing_stmt (stmt))
&& has_single_use (rhs))
{
/* Otherwise, push the _234 range test itself. */
operand_entry_t oe
= (operand_entry_t) pool_alloc (operand_entry_pool);
oe->op = rhs;
oe->rank = code;
oe->id = 0;
oe->count = 1;
ops.safe_push (oe);
bb_ent.last_idx++;
}
else
bb_ent.last_idx = ops.length ();
bb_ent.op = rhs;
bbinfo.safe_push (bb_ent);
continue;
}
/* Otherwise stmt is GIMPLE_COND. */
code = gimple_cond_code (stmt);
lhs = gimple_cond_lhs (stmt);
rhs = gimple_cond_rhs (stmt);
if (TREE_CODE (lhs) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (lhs))
&& ((code != EQ_EXPR && code != NE_EXPR)
|| rhs != boolean_false_node
/* Either push into ops the individual bitwise
or resp. and operands, depending on which
edge is other_bb. */
|| !get_ops (lhs, (((e->flags & EDGE_TRUE_VALUE) == 0)
^ (code == EQ_EXPR))
? BIT_AND_EXPR : BIT_IOR_EXPR, &ops,
loop_containing_stmt (stmt))))
{
/* Or push the GIMPLE_COND stmt itself. */
operand_entry_t oe
= (operand_entry_t) pool_alloc (operand_entry_pool);
oe->op = NULL;
oe->rank = (e->flags & EDGE_TRUE_VALUE)
? BIT_IOR_EXPR : BIT_AND_EXPR;
/* oe->op = NULL signs that there is no SSA_NAME
for the range test, and oe->id instead is the
basic block number, at which's end the GIMPLE_COND
is. */
oe->id = bb->index;
oe->count = 1;
ops.safe_push (oe);
bb_ent.op = NULL;
bb_ent.last_idx++;
}
else if (ops.length () > bb_ent.first_idx)
{
bb_ent.op = lhs;
bb_ent.last_idx = ops.length ();
}
bbinfo.safe_push (bb_ent);
if (bb == first_bb)
break;
}
if (ops.length () > 1)
any_changes = optimize_range_tests (ERROR_MARK, &ops);
if (any_changes)
{
unsigned int idx;
/* update_ops relies on has_single_use predicates returning the
same values as it did during get_ops earlier. Additionally it
never removes statements, only adds new ones and it should walk
from the single imm use and check the predicate already before
making those changes.
On the other side, the handling of GIMPLE_COND directly can turn
previously multiply used SSA_NAMEs into single use SSA_NAMEs, so
it needs to be done in a separate loop afterwards. */
for (bb = last_bb, idx = 0; ; bb = single_pred (bb), idx++)
{
if (bbinfo[idx].first_idx < bbinfo[idx].last_idx
&& bbinfo[idx].op != NULL_TREE)
{
tree new_op;
stmt = last_stmt (bb);
new_op = update_ops (bbinfo[idx].op,
(enum tree_code)
ops[bbinfo[idx].first_idx]->rank,
ops, &bbinfo[idx].first_idx,
loop_containing_stmt (stmt));
if (new_op == NULL_TREE)
{
gcc_assert (bb == last_bb);
new_op = ops[bbinfo[idx].first_idx++]->op;
}
if (bbinfo[idx].op != new_op)
{
imm_use_iterator iter;
use_operand_p use_p;
gimple use_stmt, cast_stmt = NULL;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, bbinfo[idx].op)
if (is_gimple_debug (use_stmt))
continue;
else if (gimple_code (use_stmt) == GIMPLE_COND
|| gimple_code (use_stmt) == GIMPLE_PHI)
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, new_op);
else if (gimple_assign_cast_p (use_stmt))
cast_stmt = use_stmt;
else
gcc_unreachable ();
if (cast_stmt)
{
gcc_assert (bb == last_bb);
tree lhs = gimple_assign_lhs (cast_stmt);
tree new_lhs = make_ssa_name (TREE_TYPE (lhs), NULL);
enum tree_code rhs_code
= gimple_assign_rhs_code (cast_stmt);
gimple g;
if (is_gimple_min_invariant (new_op))
{
new_op = fold_convert (TREE_TYPE (lhs), new_op);
g = gimple_build_assign (new_lhs, new_op);
}
else
g = gimple_build_assign_with_ops (rhs_code, new_lhs,
new_op, NULL_TREE);
gimple_stmt_iterator gsi = gsi_for_stmt (cast_stmt);
gimple_set_uid (g, gimple_uid (cast_stmt));
gimple_set_visited (g, true);
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
if (is_gimple_debug (use_stmt))
continue;
else if (gimple_code (use_stmt) == GIMPLE_COND
|| gimple_code (use_stmt) == GIMPLE_PHI)
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, new_lhs);
else
gcc_unreachable ();
}
}
}
if (bb == first_bb)
break;
}
for (bb = last_bb, idx = 0; ; bb = single_pred (bb), idx++)
{
if (bbinfo[idx].first_idx < bbinfo[idx].last_idx
&& bbinfo[idx].op == NULL_TREE
&& ops[bbinfo[idx].first_idx]->op != NULL_TREE)
{
stmt = last_stmt (bb);
if (integer_zerop (ops[bbinfo[idx].first_idx]->op))
gimple_cond_make_false (stmt);
else if (integer_onep (ops[bbinfo[idx].first_idx]->op))
gimple_cond_make_true (stmt);
else
{
gimple_cond_set_code (stmt, NE_EXPR);
gimple_cond_set_lhs (stmt, ops[bbinfo[idx].first_idx]->op);
gimple_cond_set_rhs (stmt, boolean_false_node);
}
update_stmt (stmt);
}
if (bb == first_bb)
break;
}
}
}
/* Return true if OPERAND is defined by a PHI node which uses the LHS
of STMT in it's operands. This is also known as a "destructive
update" operation. */
static bool
is_phi_for_stmt (gimple stmt, tree operand)
{
gimple def_stmt;
tree lhs;
use_operand_p arg_p;
ssa_op_iter i;
if (TREE_CODE (operand) != SSA_NAME)
return false;
lhs = gimple_assign_lhs (stmt);
def_stmt = SSA_NAME_DEF_STMT (operand);
if (gimple_code (def_stmt) != GIMPLE_PHI)
return false;
FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
if (lhs == USE_FROM_PTR (arg_p))
return true;
return false;
}
/* Remove def stmt of VAR if VAR has zero uses and recurse
on rhs1 operand if so. */
static void
remove_visited_stmt_chain (tree var)
{
gimple stmt;
gimple_stmt_iterator gsi;
while (1)
{
if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
return;
stmt = SSA_NAME_DEF_STMT (var);
if (is_gimple_assign (stmt) && gimple_visited_p (stmt))
{
var = gimple_assign_rhs1 (stmt);
gsi = gsi_for_stmt (stmt);
reassoc_remove_stmt (&gsi);
release_defs (stmt);
}
else
return;
}
}
/* This function checks three consequtive operands in
passed operands vector OPS starting from OPINDEX and
swaps two operands if it is profitable for binary operation
consuming OPINDEX + 1 abnd OPINDEX + 2 operands.
We pair ops with the same rank if possible.
The alternative we try is to see if STMT is a destructive
update style statement, which is like:
b = phi (a, ...)
a = c + b;
In that case, we want to use the destructive update form to
expose the possible vectorizer sum reduction opportunity.
In that case, the third operand will be the phi node. This
check is not performed if STMT is null.
We could, of course, try to be better as noted above, and do a
lot of work to try to find these opportunities in >3 operand
cases, but it is unlikely to be worth it. */
static void
swap_ops_for_binary_stmt (vec<operand_entry_t> ops,
unsigned int opindex, gimple stmt)
{
operand_entry_t oe1, oe2, oe3;
oe1 = ops[opindex];
oe2 = ops[opindex + 1];
oe3 = ops[opindex + 2];
if ((oe1->rank == oe2->rank
&& oe2->rank != oe3->rank)
|| (stmt && is_phi_for_stmt (stmt, oe3->op)
&& !is_phi_for_stmt (stmt, oe1->op)
&& !is_phi_for_stmt (stmt, oe2->op)))
{
struct operand_entry temp = *oe3;
oe3->op = oe1->op;
oe3->rank = oe1->rank;
oe1->op = temp.op;
oe1->rank= temp.rank;
}
else if ((oe1->rank == oe3->rank
&& oe2->rank != oe3->rank)
|| (stmt && is_phi_for_stmt (stmt, oe2->op)
&& !is_phi_for_stmt (stmt, oe1->op)
&& !is_phi_for_stmt (stmt, oe3->op)))
{
struct operand_entry temp = *oe2;
oe2->op = oe1->op;
oe2->rank = oe1->rank;
oe1->op = temp.op;
oe1->rank = temp.rank;
}
}
/* If definition of RHS1 or RHS2 dominates STMT, return the later of those
two definitions, otherwise return STMT. */
static inline gimple
find_insert_point (gimple stmt, tree rhs1, tree rhs2)
{
if (TREE_CODE (rhs1) == SSA_NAME
&& reassoc_stmt_dominates_stmt_p (stmt, SSA_NAME_DEF_STMT (rhs1)))
stmt = SSA_NAME_DEF_STMT (rhs1);
if (TREE_CODE (rhs2) == SSA_NAME
&& reassoc_stmt_dominates_stmt_p (stmt, SSA_NAME_DEF_STMT (rhs2)))
stmt = SSA_NAME_DEF_STMT (rhs2);
return stmt;
}
/* Recursively rewrite our linearized statements so that the operators
match those in OPS[OPINDEX], putting the computation in rank
order. Return new lhs. */
static tree
rewrite_expr_tree (gimple stmt, unsigned int opindex,
vec<operand_entry_t> ops, bool changed)
{
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs2 = gimple_assign_rhs2 (stmt);
tree lhs = gimple_assign_lhs (stmt);
operand_entry_t oe;
/* The final recursion case for this function is that you have
exactly two operations left.
If we had one exactly one op in the entire list to start with, we
would have never called this function, and the tail recursion
rewrites them one at a time. */
if (opindex + 2 == ops.length ())
{
operand_entry_t oe1, oe2;
oe1 = ops[opindex];
oe2 = ops[opindex + 1];
if (rhs1 != oe1->op || rhs2 != oe2->op)
{
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
unsigned int uid = gimple_uid (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Transforming ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
if (changed)
{
gimple insert_point = find_insert_point (stmt, oe1->op, oe2->op);
lhs = make_ssa_name (TREE_TYPE (lhs), NULL);
stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt),
lhs, oe1->op, oe2->op);
gimple_set_uid (stmt, uid);
gimple_set_visited (stmt, true);
if (insert_point == gsi_stmt (gsi))
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
else
insert_stmt_after (stmt, insert_point);
}
else
{
gcc_checking_assert (find_insert_point (stmt, oe1->op, oe2->op)
== stmt);
gimple_assign_set_rhs1 (stmt, oe1->op);
gimple_assign_set_rhs2 (stmt, oe2->op);
update_stmt (stmt);
}
if (rhs1 != oe1->op && rhs1 != oe2->op)
remove_visited_stmt_chain (rhs1);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " into ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
}
return lhs;
}
/* If we hit here, we should have 3 or more ops left. */
gcc_assert (opindex + 2 < ops.length ());
/* Rewrite the next operator. */
oe = ops[opindex];
/* Recurse on the LHS of the binary operator, which is guaranteed to
be the non-leaf side. */
tree new_rhs1
= rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops,
changed || oe->op != rhs2);
if (oe->op != rhs2 || new_rhs1 != rhs1)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Transforming ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
/* If changed is false, this is either opindex == 0
or all outer rhs2's were equal to corresponding oe->op,
and powi_result is NULL.
That means lhs is equivalent before and after reassociation.
Otherwise ensure the old lhs SSA_NAME is not reused and
create a new stmt as well, so that any debug stmts will be
properly adjusted. */
if (changed)
{
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
unsigned int uid = gimple_uid (stmt);
gimple insert_point = find_insert_point (stmt, new_rhs1, oe->op);
lhs = make_ssa_name (TREE_TYPE (lhs), NULL);
stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt),
lhs, new_rhs1, oe->op);
gimple_set_uid (stmt, uid);
gimple_set_visited (stmt, true);
if (insert_point == gsi_stmt (gsi))
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
else
insert_stmt_after (stmt, insert_point);
}
else
{
gcc_checking_assert (find_insert_point (stmt, new_rhs1, oe->op)
== stmt);
gimple_assign_set_rhs1 (stmt, new_rhs1);
gimple_assign_set_rhs2 (stmt, oe->op);
update_stmt (stmt);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " into ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
}
return lhs;
}
/* Find out how many cycles we need to compute statements chain.
OPS_NUM holds number os statements in a chain. CPU_WIDTH is a
maximum number of independent statements we may execute per cycle. */
static int
get_required_cycles (int ops_num, int cpu_width)
{
int res;
int elog;
unsigned int rest;
/* While we have more than 2 * cpu_width operands
we may reduce number of operands by cpu_width
per cycle. */
res = ops_num / (2 * cpu_width);
/* Remained operands count may be reduced twice per cycle
until we have only one operand. */
rest = (unsigned)(ops_num - res * cpu_width);
elog = exact_log2 (rest);
if (elog >= 0)
res += elog;
else
res += floor_log2 (rest) + 1;
return res;
}
/* Returns an optimal number of registers to use for computation of
given statements. */
static int
get_reassociation_width (int ops_num, enum tree_code opc,
enum machine_mode mode)
{
int param_width = PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH);
int width;
int width_min;
int cycles_best;
if (param_width > 0)
width = param_width;
else
width = targetm.sched.reassociation_width (opc, mode);
if (width == 1)
return width;
/* Get the minimal time required for sequence computation. */
cycles_best = get_required_cycles (ops_num, width);
/* Check if we may use less width and still compute sequence for
the same time. It will allow us to reduce registers usage.
get_required_cycles is monotonically increasing with lower width
so we can perform a binary search for the minimal width that still
results in the optimal cycle count. */
width_min = 1;
while (width > width_min)
{
int width_mid = (width + width_min) / 2;
if (get_required_cycles (ops_num, width_mid) == cycles_best)
width = width_mid;
else if (width_min < width_mid)
width_min = width_mid;
else
break;
}
return width;
}
/* Recursively rewrite our linearized statements so that the operators
match those in OPS[OPINDEX], putting the computation in rank
order and trying to allow operations to be executed in
parallel. */
static void
rewrite_expr_tree_parallel (gimple stmt, int width,
vec<operand_entry_t> ops)
{
enum tree_code opcode = gimple_assign_rhs_code (stmt);
int op_num = ops.length ();
int stmt_num = op_num - 1;
gimple *stmts = XALLOCAVEC (gimple, stmt_num);
int op_index = op_num - 1;
int stmt_index = 0;
int ready_stmts_end = 0;
int i = 0;
tree last_rhs1 = gimple_assign_rhs1 (stmt);
/* We start expression rewriting from the top statements.
So, in this loop we create a full list of statements
we will work with. */
stmts[stmt_num - 1] = stmt;
for (i = stmt_num - 2; i >= 0; i--)
stmts[i] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts[i+1]));
for (i = 0; i < stmt_num; i++)
{
tree op1, op2;
/* Determine whether we should use results of
already handled statements or not. */
if (ready_stmts_end == 0
&& (i - stmt_index >= width || op_index < 1))
ready_stmts_end = i;
/* Now we choose operands for the next statement. Non zero
value in ready_stmts_end means here that we should use
the result of already generated statements as new operand. */
if (ready_stmts_end > 0)
{
op1 = gimple_assign_lhs (stmts[stmt_index++]);
if (ready_stmts_end > stmt_index)
op2 = gimple_assign_lhs (stmts[stmt_index++]);
else if (op_index >= 0)
op2 = ops[op_index--]->op;
else
{
gcc_assert (stmt_index < i);
op2 = gimple_assign_lhs (stmts[stmt_index++]);
}
if (stmt_index >= ready_stmts_end)
ready_stmts_end = 0;
}
else
{
if (op_index > 1)
swap_ops_for_binary_stmt (ops, op_index - 2, NULL);
op2 = ops[op_index--]->op;
op1 = ops[op_index--]->op;
}
/* If we emit the last statement then we should put
operands into the last statement. It will also
break the loop. */
if (op_index < 0 && stmt_index == i)
i = stmt_num - 1;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Transforming ");
print_gimple_stmt (dump_file, stmts[i], 0, 0);
}
/* We keep original statement only for the last one. All
others are recreated. */
if (i == stmt_num - 1)
{
gimple_assign_set_rhs1 (stmts[i], op1);
gimple_assign_set_rhs2 (stmts[i], op2);
update_stmt (stmts[i]);
}
else
stmts[i] = build_and_add_sum (TREE_TYPE (last_rhs1), op1, op2, opcode);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " into ");
print_gimple_stmt (dump_file, stmts[i], 0, 0);
}
}
remove_visited_stmt_chain (last_rhs1);
}
/* Transform STMT, which is really (A +B) + (C + D) into the left
linear form, ((A+B)+C)+D.
Recurse on D if necessary. */
static void
linearize_expr (gimple stmt)
{
gimple_stmt_iterator gsi;
gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
gimple oldbinrhs = binrhs;
enum tree_code rhscode = gimple_assign_rhs_code (stmt);
gimple newbinrhs = NULL;
struct loop *loop = loop_containing_stmt (stmt);
tree lhs = gimple_assign_lhs (stmt);
gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
&& is_reassociable_op (binrhs, rhscode, loop));
gsi = gsi_for_stmt (stmt);
gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
binrhs = gimple_build_assign_with_ops (gimple_assign_rhs_code (binrhs),
make_ssa_name (TREE_TYPE (lhs), NULL),
gimple_assign_lhs (binlhs),
gimple_assign_rhs2 (binrhs));
gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
gsi_insert_before (&gsi, binrhs, GSI_SAME_STMT);
gimple_set_uid (binrhs, gimple_uid (stmt));
if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Linearized: ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
reassociate_stats.linearized++;
update_stmt (stmt);
gsi = gsi_for_stmt (oldbinrhs);
reassoc_remove_stmt (&gsi);
release_defs (oldbinrhs);
gimple_set_visited (stmt, true);
gimple_set_visited (binlhs, true);
gimple_set_visited (binrhs, true);
/* Tail recurse on the new rhs if it still needs reassociation. */
if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
/* ??? This should probably be linearize_expr (newbinrhs) but I don't
want to change the algorithm while converting to tuples. */
linearize_expr (stmt);
}
/* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
it. Otherwise, return NULL. */
static gimple
get_single_immediate_use (tree lhs)
{
use_operand_p immuse;
gimple immusestmt;
if (TREE_CODE (lhs) == SSA_NAME
&& single_imm_use (lhs, &immuse, &immusestmt)
&& is_gimple_assign (immusestmt))
return immusestmt;
return NULL;
}
/* Recursively negate the value of TONEGATE, and return the SSA_NAME
representing the negated value. Insertions of any necessary
instructions go before GSI.
This function is recursive in that, if you hand it "a_5" as the
value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
static tree
negate_value (tree tonegate, gimple_stmt_iterator *gsip)
{
gimple negatedefstmt = NULL;
tree resultofnegate;
gimple_stmt_iterator gsi;
unsigned int uid;
/* If we are trying to negate a name, defined by an add, negate the
add operands instead. */
if (TREE_CODE (tonegate) == SSA_NAME)
negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
if (TREE_CODE (tonegate) == SSA_NAME
&& is_gimple_assign (negatedefstmt)
&& TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
&& has_single_use (gimple_assign_lhs (negatedefstmt))
&& gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
{
tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
tree lhs = gimple_assign_lhs (negatedefstmt);
gimple g;
gsi = gsi_for_stmt (negatedefstmt);
rhs1 = negate_value (rhs1, &gsi);
gsi = gsi_for_stmt (negatedefstmt);
rhs2 = negate_value (rhs2, &gsi);
gsi = gsi_for_stmt (negatedefstmt);
lhs = make_ssa_name (TREE_TYPE (lhs), NULL);
gimple_set_visited (negatedefstmt, true);
g = gimple_build_assign_with_ops (PLUS_EXPR, lhs, rhs1, rhs2);
gimple_set_uid (g, gimple_uid (negatedefstmt));
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
return lhs;
}
tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
resultofnegate = force_gimple_operand_gsi (gsip, tonegate, true,
NULL_TREE, true, GSI_SAME_STMT);
gsi = *gsip;
uid = gimple_uid (gsi_stmt (gsi));
for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (gimple_uid (stmt) != 0)
break;
gimple_set_uid (stmt, uid);
}
return resultofnegate;
}
/* Return true if we should break up the subtract in STMT into an add
with negate. This is true when we the subtract operands are really
adds, or the subtract itself is used in an add expression. In
either case, breaking up the subtract into an add with negate
exposes the adds to reassociation. */
static bool
should_break_up_subtract (gimple stmt)
{
tree lhs = gimple_assign_lhs (stmt);
tree binlhs = gimple_assign_rhs1 (stmt);
tree binrhs = gimple_assign_rhs2 (stmt);
gimple immusestmt;
struct loop *loop = loop_containing_stmt (stmt);
if (TREE_CODE (binlhs) == SSA_NAME
&& is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
return true;
if (TREE_CODE (binrhs) == SSA_NAME
&& is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
return true;
if (TREE_CODE (lhs) == SSA_NAME
&& (immusestmt = get_single_immediate_use (lhs))
&& is_gimple_assign (immusestmt)
&& (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
|| gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
return true;
return false;
}
/* Transform STMT from A - B into A + -B. */
static void
break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
{
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs2 = gimple_assign_rhs2 (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Breaking up subtract ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
rhs2 = negate_value (rhs2, gsip);
gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
update_stmt (stmt);
}
/* Determine whether STMT is a builtin call that raises an SSA name
to an integer power and has only one use. If so, and this is early
reassociation and unsafe math optimizations are permitted, place
the SSA name in *BASE and the exponent in *EXPONENT, and return TRUE.
If any of these conditions does not hold, return FALSE. */
static bool
acceptable_pow_call (gimple stmt, tree *base, HOST_WIDE_INT *exponent)
{
tree fndecl, arg1;
REAL_VALUE_TYPE c, cint;
if (!first_pass_instance
|| !flag_unsafe_math_optimizations
|| !is_gimple_call (stmt)
|| !has_single_use (gimple_call_lhs (stmt)))
return false;
fndecl = gimple_call_fndecl (stmt);
if (!fndecl
|| DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
return false;
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_POW):
*base = gimple_call_arg (stmt, 0);
arg1 = gimple_call_arg (stmt, 1);
if (TREE_CODE (arg1) != REAL_CST)
return false;
c = TREE_REAL_CST (arg1);
if (REAL_EXP (&c) > HOST_BITS_PER_WIDE_INT)
return false;
*exponent = real_to_integer (&c);
real_from_integer (&cint, VOIDmode, *exponent, SIGNED);
if (!real_identical (&c, &cint))
return false;
break;
CASE_FLT_FN (BUILT_IN_POWI):
*base = gimple_call_arg (stmt, 0);
arg1 = gimple_call_arg (stmt, 1);
if (!tree_fits_shwi_p (arg1))
return false;
*exponent = tree_to_shwi (arg1);
break;
default:
return false;
}
/* Expanding negative exponents is generally unproductive, so we don't
complicate matters with those. Exponents of zero and one should
have been handled by expression folding. */
if (*exponent < 2 || TREE_CODE (*base) != SSA_NAME)
return false;
return true;
}
/* Recursively linearize a binary expression that is the RHS of STMT.
Place the operands of the expression tree in the vector named OPS. */
static void
linearize_expr_tree (vec<operand_entry_t> *ops, gimple stmt,
bool is_associative, bool set_visited)
{
tree binlhs = gimple_assign_rhs1 (stmt);
tree binrhs = gimple_assign_rhs2 (stmt);
gimple binlhsdef = NULL, binrhsdef = NULL;
bool binlhsisreassoc = false;
bool binrhsisreassoc = false;
enum tree_code rhscode = gimple_assign_rhs_code (stmt);
struct loop *loop = loop_containing_stmt (stmt);
tree base = NULL_TREE;
HOST_WIDE_INT exponent = 0;
if (set_visited)
gimple_set_visited (stmt, true);
if (TREE_CODE (binlhs) == SSA_NAME)
{
binlhsdef = SSA_NAME_DEF_STMT (binlhs);
binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop)
&& !stmt_could_throw_p (binlhsdef));
}
if (TREE_CODE (binrhs) == SSA_NAME)
{
binrhsdef = SSA_NAME_DEF_STMT (binrhs);
binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop)
&& !stmt_could_throw_p (binrhsdef));
}
/* If the LHS is not reassociable, but the RHS is, we need to swap
them. If neither is reassociable, there is nothing we can do, so
just put them in the ops vector. If the LHS is reassociable,
linearize it. If both are reassociable, then linearize the RHS
and the LHS. */
if (!binlhsisreassoc)
{
tree temp;
/* If this is not a associative operation like division, give up. */
if (!is_associative)
{
add_to_ops_vec (ops, binrhs);
return;
}
if (!binrhsisreassoc)
{
if (rhscode == MULT_EXPR
&& TREE_CODE (binrhs) == SSA_NAME
&& acceptable_pow_call (binrhsdef, &base, &exponent))
{
add_repeat_to_ops_vec (ops, base, exponent);
gimple_set_visited (binrhsdef, true);
}
else
add_to_ops_vec (ops, binrhs);
if (rhscode == MULT_EXPR
&& TREE_CODE (binlhs) == SSA_NAME
&& acceptable_pow_call (binlhsdef, &base, &exponent))
{
add_repeat_to_ops_vec (ops, base, exponent);
gimple_set_visited (binlhsdef, true);
}
else
add_to_ops_vec (ops, binlhs);
return;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "swapping operands of ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
swap_ssa_operands (stmt,
gimple_assign_rhs1_ptr (stmt),
gimple_assign_rhs2_ptr (stmt));
update_stmt (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " is now ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
/* We want to make it so the lhs is always the reassociative op,
so swap. */
temp = binlhs;
binlhs = binrhs;
binrhs = temp;
}
else if (binrhsisreassoc)
{
linearize_expr (stmt);
binlhs = gimple_assign_rhs1 (stmt);
binrhs = gimple_assign_rhs2 (stmt);
}
gcc_assert (TREE_CODE (binrhs) != SSA_NAME
|| !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
rhscode, loop));
linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
is_associative, set_visited);
if (rhscode == MULT_EXPR
&& TREE_CODE (binrhs) == SSA_NAME
&& acceptable_pow_call (SSA_NAME_DEF_STMT (binrhs), &base, &exponent))
{
add_repeat_to_ops_vec (ops, base, exponent);
gimple_set_visited (SSA_NAME_DEF_STMT (binrhs), true);
}
else
add_to_ops_vec (ops, binrhs);
}
/* Repropagate the negates back into subtracts, since no other pass
currently does it. */
static void
repropagate_negates (void)
{
unsigned int i = 0;
tree negate;
FOR_EACH_VEC_ELT (plus_negates, i, negate)
{
gimple user = get_single_immediate_use (negate);
if (!user || !is_gimple_assign (user))
continue;
/* The negate operand can be either operand of a PLUS_EXPR
(it can be the LHS if the RHS is a constant for example).
Force the negate operand to the RHS of the PLUS_EXPR, then
transform the PLUS_EXPR into a MINUS_EXPR. */
if (gimple_assign_rhs_code (user) == PLUS_EXPR)
{
/* If the negated operand appears on the LHS of the
PLUS_EXPR, exchange the operands of the PLUS_EXPR
to force the negated operand to the RHS of the PLUS_EXPR. */
if (gimple_assign_rhs1 (user) == negate)
{
swap_ssa_operands (user,
gimple_assign_rhs1_ptr (user),
gimple_assign_rhs2_ptr (user));
}
/* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
if (gimple_assign_rhs2 (user) == negate)
{
tree rhs1 = gimple_assign_rhs1 (user);
tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
gimple_stmt_iterator gsi = gsi_for_stmt (user);
gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
update_stmt (user);
}
}
else if (gimple_assign_rhs_code (user) == MINUS_EXPR)
{
if (gimple_assign_rhs1 (user) == negate)
{
/* We have
x = -a
y = x - b
which we transform into
x = a + b
y = -x .
This pushes down the negate which we possibly can merge
into some other operation, hence insert it into the
plus_negates vector. */
gimple feed = SSA_NAME_DEF_STMT (negate);
tree a = gimple_assign_rhs1 (feed);
tree b = gimple_assign_rhs2 (user);
gimple_stmt_iterator gsi = gsi_for_stmt (feed);
gimple_stmt_iterator gsi2 = gsi_for_stmt (user);
tree x = make_ssa_name (TREE_TYPE (gimple_assign_lhs (feed)), NULL);
gimple g = gimple_build_assign_with_ops (PLUS_EXPR, x, a, b);
gsi_insert_before (&gsi2, g, GSI_SAME_STMT);
gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, x, NULL);
user = gsi_stmt (gsi2);
update_stmt (user);
reassoc_remove_stmt (&gsi);
release_defs (feed);
plus_negates.safe_push (gimple_assign_lhs (user));
}
else
{
/* Transform "x = -a; y = b - x" into "y = b + a", getting
rid of one operation. */
gimple feed = SSA_NAME_DEF_STMT (negate);
tree a = gimple_assign_rhs1 (feed);
tree rhs1 = gimple_assign_rhs1 (user);
gimple_stmt_iterator gsi = gsi_for_stmt (user);
gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a);
update_stmt (gsi_stmt (gsi));
}
}
}
}
/* Returns true if OP is of a type for which we can do reassociation.
That is for integral or non-saturating fixed-point types, and for
floating point type when associative-math is enabled. */
static bool
can_reassociate_p (tree op)
{
tree type = TREE_TYPE (op);
if ((INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
|| NON_SAT_FIXED_POINT_TYPE_P (type)
|| (flag_associative_math && FLOAT_TYPE_P (type)))
return true;
return false;
}
/* Break up subtract operations in block BB.
We do this top down because we don't know whether the subtract is
part of a possible chain of reassociation except at the top.
IE given
d = f + g
c = a + e
b = c - d
q = b - r
k = t - q
we want to break up k = t - q, but we won't until we've transformed q
= b - r, which won't be broken up until we transform b = c - d.
En passant, clear the GIMPLE visited flag on every statement
and set UIDs within each basic block. */
static void
break_up_subtract_bb (basic_block bb)
{
gimple_stmt_iterator gsi;
basic_block son;
unsigned int uid = 1;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
gimple_set_visited (stmt, false);
gimple_set_uid (stmt, uid++);
if (!is_gimple_assign (stmt)
|| !can_reassociate_p (gimple_assign_lhs (stmt)))
continue;
/* Look for simple gimple subtract operations. */
if (gimple_assign_rhs_code (stmt) == MINUS_EXPR)
{
if (!can_reassociate_p (gimple_assign_rhs1 (stmt))
|| !can_reassociate_p (gimple_assign_rhs2 (stmt)))
continue;
/* Check for a subtract used only in an addition. If this
is the case, transform it into add of a negate for better
reassociation. IE transform C = A-B into C = A + -B if C
is only used in an addition. */
if (should_break_up_subtract (stmt))
break_up_subtract (stmt, &gsi);
}
else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR
&& can_reassociate_p (gimple_assign_rhs1 (stmt)))
plus_negates.safe_push (gimple_assign_lhs (stmt));
}
for (son = first_dom_son (CDI_DOMINATORS, bb);
son;
son = next_dom_son (CDI_DOMINATORS, son))
break_up_subtract_bb (son);
}
/* Used for repeated factor analysis. */
struct repeat_factor_d
{
/* An SSA name that occurs in a multiply chain. */
tree factor;
/* Cached rank of the factor. */
unsigned rank;
/* Number of occurrences of the factor in the chain. */
HOST_WIDE_INT count;
/* An SSA name representing the product of this factor and
all factors appearing later in the repeated factor vector. */
tree repr;
};
typedef struct repeat_factor_d repeat_factor, *repeat_factor_t;
typedef const struct repeat_factor_d *const_repeat_factor_t;
static vec<repeat_factor> repeat_factor_vec;
/* Used for sorting the repeat factor vector. Sort primarily by
ascending occurrence count, secondarily by descending rank. */
static int
compare_repeat_factors (const void *x1, const void *x2)
{
const_repeat_factor_t rf1 = (const_repeat_factor_t) x1;
const_repeat_factor_t rf2 = (const_repeat_factor_t) x2;
if (rf1->count != rf2->count)
return rf1->count - rf2->count;
return rf2->rank - rf1->rank;
}
/* Look for repeated operands in OPS in the multiply tree rooted at
STMT. Replace them with an optimal sequence of multiplies and powi
builtin calls, and remove the used operands from OPS. Return an
SSA name representing the value of the replacement sequence. */
static tree
attempt_builtin_powi (gimple stmt, vec<operand_entry_t> *ops)
{
unsigned i, j, vec_len;
int ii;
operand_entry_t oe;
repeat_factor_t rf1, rf2;
repeat_factor rfnew;
tree result = NULL_TREE;
tree target_ssa, iter_result;
tree type = TREE_TYPE (gimple_get_lhs (stmt));
tree powi_fndecl = mathfn_built_in (type, BUILT_IN_POWI);
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
gimple mul_stmt, pow_stmt;
/* Nothing to do if BUILT_IN_POWI doesn't exist for this type and
target. */
if (!powi_fndecl)
return NULL_TREE;
/* Allocate the repeated factor vector. */
repeat_factor_vec.create (10);
/* Scan the OPS vector for all SSA names in the product and build
up a vector of occurrence counts for each factor. */
FOR_EACH_VEC_ELT (*ops, i, oe)
{
if (TREE_CODE (oe->op) == SSA_NAME)
{
FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
{
if (rf1->factor == oe->op)
{
rf1->count += oe->count;
break;
}
}
if (j >= repeat_factor_vec.length ())
{
rfnew.factor = oe->op;
rfnew.rank = oe->rank;
rfnew.count = oe->count;
rfnew.repr = NULL_TREE;
repeat_factor_vec.safe_push (rfnew);
}
}
}
/* Sort the repeated factor vector by (a) increasing occurrence count,
and (b) decreasing rank. */
repeat_factor_vec.qsort (compare_repeat_factors);
/* It is generally best to combine as many base factors as possible
into a product before applying __builtin_powi to the result.
However, the sort order chosen for the repeated factor vector
allows us to cache partial results for the product of the base
factors for subsequent use. When we already have a cached partial
result from a previous iteration, it is best to make use of it
before looking for another __builtin_pow opportunity.
As an example, consider x * x * y * y * y * z * z * z * z.
We want to first compose the product x * y * z, raise it to the
second power, then multiply this by y * z, and finally multiply
by z. This can be done in 5 multiplies provided we cache y * z
for use in both expressions:
t1 = y * z
t2 = t1 * x
t3 = t2 * t2
t4 = t1 * t3
result = t4 * z
If we instead ignored the cached y * z and first multiplied by
the __builtin_pow opportunity z * z, we would get the inferior:
t1 = y * z
t2 = t1 * x
t3 = t2 * t2
t4 = z * z
t5 = t3 * t4
result = t5 * y */
vec_len = repeat_factor_vec.length ();
/* Repeatedly look for opportunities to create a builtin_powi call. */
while (true)
{
HOST_WIDE_INT power;
/* First look for the largest cached product of factors from
preceding iterations. If found, create a builtin_powi for
it if the minimum occurrence count for its factors is at
least 2, or just use this cached product as our next
multiplicand if the minimum occurrence count is 1. */
FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
{
if (rf1->repr && rf1->count > 0)
break;
}
if (j < vec_len)
{
power = rf1->count;
if (power == 1)
{
iter_result = rf1->repr;
if (dump_file && (dump_flags & TDF_DETAILS))
{
unsigned elt;
repeat_factor_t rf;
fputs ("Multiplying by cached product ", dump_file);
for (elt = j; elt < vec_len; elt++)
{
rf = &repeat_factor_vec[elt];
print_generic_expr (dump_file, rf->factor, 0);
if (elt < vec_len - 1)
fputs (" * ", dump_file);
}
fputs ("\n", dump_file);
}
}
else
{
iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
build_int_cst (integer_type_node,
power));
gimple_call_set_lhs (pow_stmt, iter_result);
gimple_set_location (pow_stmt, gimple_location (stmt));
gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
if (dump_file && (dump_flags & TDF_DETAILS))
{
unsigned elt;
repeat_factor_t rf;
fputs ("Building __builtin_pow call for cached product (",
dump_file);
for (elt = j; elt < vec_len; elt++)
{
rf = &repeat_factor_vec[elt];
print_generic_expr (dump_file, rf->factor, 0);
if (elt < vec_len - 1)
fputs (" * ", dump_file);
}
fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n",
power);
}
}
}
else
{
/* Otherwise, find the first factor in the repeated factor
vector whose occurrence count is at least 2. If no such
factor exists, there are no builtin_powi opportunities
remaining. */
FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
{
if (rf1->count >= 2)
break;
}
if (j >= vec_len)
break;
power = rf1->count;
if (dump_file && (dump_flags & TDF_DETAILS))
{
unsigned elt;
repeat_factor_t rf;
fputs ("Building __builtin_pow call for (", dump_file);
for (elt = j; elt < vec_len; elt++)
{
rf = &repeat_factor_vec[elt];
print_generic_expr (dump_file, rf->factor, 0);
if (elt < vec_len - 1)
fputs (" * ", dump_file);
}
fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n", power);
}
reassociate_stats.pows_created++;
/* Visit each element of the vector in reverse order (so that
high-occurrence elements are visited first, and within the
same occurrence count, lower-ranked elements are visited
first). Form a linear product of all elements in this order
whose occurrencce count is at least that of element J.
Record the SSA name representing the product of each element
with all subsequent elements in the vector. */
if (j == vec_len - 1)
rf1->repr = rf1->factor;
else
{
for (ii = vec_len - 2; ii >= (int)j; ii--)
{
tree op1, op2;
rf1 = &repeat_factor_vec[ii];
rf2 = &repeat_factor_vec[ii + 1];
/* Init the last factor's representative to be itself. */
if (!rf2->repr)
rf2->repr = rf2->factor;
op1 = rf1->factor;
op2 = rf2->repr;
target_ssa = make_temp_ssa_name (type, NULL, "reassocpow");
mul_stmt = gimple_build_assign_with_ops (MULT_EXPR,
target_ssa,
op1, op2);
gimple_set_location (mul_stmt, gimple_location (stmt));
gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
rf1->repr = target_ssa;
/* Don't reprocess the multiply we just introduced. */
gimple_set_visited (mul_stmt, true);
}
}
/* Form a call to __builtin_powi for the maximum product
just formed, raised to the power obtained earlier. */
rf1 = &repeat_factor_vec[j];
iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
build_int_cst (integer_type_node,
power));
gimple_call_set_lhs (pow_stmt, iter_result);
gimple_set_location (pow_stmt, gimple_location (stmt));
gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
}
/* If we previously formed at least one other builtin_powi call,
form the product of this one and those others. */
if (result)
{
tree new_result = make_temp_ssa_name (type, NULL, "reassocpow");
mul_stmt = gimple_build_assign_with_ops (MULT_EXPR, new_result,
result, iter_result);
gimple_set_location (mul_stmt, gimple_location (stmt));
gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
gimple_set_visited (mul_stmt, true);
result = new_result;
}
else
result = iter_result;
/* Decrement the occurrence count of each element in the product
by the count found above, and remove this many copies of each
factor from OPS. */
for (i = j; i < vec_len; i++)
{
unsigned k = power;
unsigned n;
rf1 = &repeat_factor_vec[i];
rf1->count -= power;
FOR_EACH_VEC_ELT_REVERSE (*ops, n, oe)
{
if (oe->op == rf1->factor)
{
if (oe->count <= k)
{
ops->ordered_remove (n);
k -= oe->count;
if (k == 0)
break;
}
else
{
oe->count -= k;
break;
}
}
}
}
}
/* At this point all elements in the repeated factor vector have a
remaining occurrence count of 0 or 1, and those with a count of 1
don't have cached representatives. Re-sort the ops vector and
clean up. */
ops->qsort (sort_by_operand_rank);
repeat_factor_vec.release ();
/* Return the final product computed herein. Note that there may
still be some elements with single occurrence count left in OPS;
those will be handled by the normal reassociation logic. */
return result;
}
/* Transform STMT at *GSI into a copy by replacing its rhs with NEW_RHS. */
static void
transform_stmt_to_copy (gimple_stmt_iterator *gsi, gimple stmt, tree new_rhs)
{
tree rhs1;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Transforming ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
rhs1 = gimple_assign_rhs1 (stmt);
gimple_assign_set_rhs_from_tree (gsi, new_rhs);
update_stmt (stmt);
remove_visited_stmt_chain (rhs1);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " into ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
}
/* Transform STMT at *GSI into a multiply of RHS1 and RHS2. */
static void
transform_stmt_to_multiply (gimple_stmt_iterator *gsi, gimple stmt,
tree rhs1, tree rhs2)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Transforming ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
gimple_assign_set_rhs_with_ops (gsi, MULT_EXPR, rhs1, rhs2);
update_stmt (gsi_stmt (*gsi));
remove_visited_stmt_chain (rhs1);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " into ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
}
/* Reassociate expressions in basic block BB and its post-dominator as
children. */
static void
reassociate_bb (basic_block bb)
{
gimple_stmt_iterator gsi;
basic_block son;
gimple stmt = last_stmt (bb);
if (stmt && !gimple_visited_p (stmt))
maybe_optimize_range_tests (stmt);
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
{
stmt = gsi_stmt (gsi);
if (is_gimple_assign (stmt)
&& !stmt_could_throw_p (stmt))
{
tree lhs, rhs1, rhs2;
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
/* If this is not a gimple binary expression, there is
nothing for us to do with it. */
if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
continue;
/* If this was part of an already processed statement,
we don't need to touch it again. */
if (gimple_visited_p (stmt))
{
/* This statement might have become dead because of previous
reassociations. */
if (has_zero_uses (gimple_get_lhs (stmt)))
{
reassoc_remove_stmt (&gsi);
release_defs (stmt);
/* We might end up removing the last stmt above which
places the iterator to the end of the sequence.
Reset it to the last stmt in this case which might
be the end of the sequence as well if we removed
the last statement of the sequence. In which case
we need to bail out. */
if (gsi_end_p (gsi))
{
gsi = gsi_last_bb (bb);
if (gsi_end_p (gsi))
break;
}
}
continue;
}
lhs = gimple_assign_lhs (stmt);
rhs1 = gimple_assign_rhs1 (stmt);
rhs2 = gimple_assign_rhs2 (stmt);
/* For non-bit or min/max operations we can't associate
all types. Verify that here. */
if (rhs_code != BIT_IOR_EXPR
&& rhs_code != BIT_AND_EXPR
&& rhs_code != BIT_XOR_EXPR
&& rhs_code != MIN_EXPR
&& rhs_code != MAX_EXPR
&& (!can_reassociate_p (lhs)
|| !can_reassociate_p (rhs1)
|| !can_reassociate_p (rhs2)))
continue;
if (associative_tree_code (rhs_code))
{
auto_vec<operand_entry_t> ops;
tree powi_result = NULL_TREE;
/* There may be no immediate uses left by the time we
get here because we may have eliminated them all. */
if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
continue;
gimple_set_visited (stmt, true);
linearize_expr_tree (&ops, stmt, true, true);
ops.qsort (sort_by_operand_rank);
optimize_ops_list (rhs_code, &ops);
if (undistribute_ops_list (rhs_code, &ops,
loop_containing_stmt (stmt)))
{
ops.qsort (sort_by_operand_rank);
optimize_ops_list (rhs_code, &ops);
}
if (rhs_code == BIT_IOR_EXPR || rhs_code == BIT_AND_EXPR)
optimize_range_tests (rhs_code, &ops);
if (first_pass_instance
&& rhs_code == MULT_EXPR
&& flag_unsafe_math_optimizations)
powi_result = attempt_builtin_powi (stmt, &ops);
/* If the operand vector is now empty, all operands were
consumed by the __builtin_powi optimization. */
if (ops.length () == 0)
transform_stmt_to_copy (&gsi, stmt, powi_result);
else if (ops.length () == 1)
{
tree last_op = ops.last ()->op;
if (powi_result)
transform_stmt_to_multiply (&gsi, stmt, last_op,
powi_result);
else
transform_stmt_to_copy (&gsi, stmt, last_op);
}
else
{
enum machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
int ops_num = ops.length ();
int width = get_reassociation_width (ops_num, rhs_code, mode);
tree new_lhs = lhs;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Width = %d was chosen for reassociation\n", width);
if (width > 1
&& ops.length () > 3)
rewrite_expr_tree_parallel (stmt, width, ops);
else
{
/* When there are three operands left, we want
to make sure the ones that get the double
binary op are chosen wisely. */
int len = ops.length ();
if (len >= 3)
swap_ops_for_binary_stmt (ops, len - 3, stmt);
new_lhs = rewrite_expr_tree (stmt, 0, ops,
powi_result != NULL);
}
/* If we combined some repeated factors into a
__builtin_powi call, multiply that result by the
reassociated operands. */
if (powi_result)
{
gimple mul_stmt, lhs_stmt = SSA_NAME_DEF_STMT (lhs);
tree type = TREE_TYPE (lhs);
tree target_ssa = make_temp_ssa_name (type, NULL,
"reassocpow");
gimple_set_lhs (lhs_stmt, target_ssa);
update_stmt (lhs_stmt);
if (lhs != new_lhs)
target_ssa = new_lhs;
mul_stmt = gimple_build_assign_with_ops (MULT_EXPR, lhs,
powi_result,
target_ssa);
gimple_set_location (mul_stmt, gimple_location (stmt));
gsi_insert_after (&gsi, mul_stmt, GSI_NEW_STMT);
}
}
}
}
}
for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
son;
son = next_dom_son (CDI_POST_DOMINATORS, son))
reassociate_bb (son);
}
void dump_ops_vector (FILE *file, vec<operand_entry_t> ops);
void debug_ops_vector (vec<operand_entry_t> ops);
/* Dump the operand entry vector OPS to FILE. */
void
dump_ops_vector (FILE *file, vec<operand_entry_t> ops)
{
operand_entry_t oe;
unsigned int i;
FOR_EACH_VEC_ELT (ops, i, oe)
{
fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
print_generic_expr (file, oe->op, 0);
}
}
/* Dump the operand entry vector OPS to STDERR. */
DEBUG_FUNCTION void
debug_ops_vector (vec<operand_entry_t> ops)
{
dump_ops_vector (stderr, ops);
}
static void
do_reassoc (void)
{
break_up_subtract_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
reassociate_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
}
/* Initialize the reassociation pass. */
static void
init_reassoc (void)
{
int i;
long rank = 2;
int *bbs = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
/* Find the loops, so that we can prevent moving calculations in
them. */
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
memset (&reassociate_stats, 0, sizeof (reassociate_stats));
operand_entry_pool = create_alloc_pool ("operand entry pool",
sizeof (struct operand_entry), 30);
next_operand_entry_id = 0;
/* Reverse RPO (Reverse Post Order) will give us something where
deeper loops come later. */
pre_and_rev_post_order_compute (NULL, bbs, false);
bb_rank = XCNEWVEC (long, last_basic_block_for_fn (cfun));
operand_rank = pointer_map_create ();
/* Give each default definition a distinct rank. This includes
parameters and the static chain. Walk backwards over all
SSA names so that we get proper rank ordering according
to tree_swap_operands_p. */
for (i = num_ssa_names - 1; i > 0; --i)
{
tree name = ssa_name (i);
if (name && SSA_NAME_IS_DEFAULT_DEF (name))
insert_operand_rank (name, ++rank);
}
/* Set up rank for each BB */
for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
bb_rank[bbs[i]] = ++rank << 16;
free (bbs);
calculate_dominance_info (CDI_POST_DOMINATORS);
plus_negates = vNULL;
}
/* Cleanup after the reassociation pass, and print stats if
requested. */
static void
fini_reassoc (void)
{
statistics_counter_event (cfun, "Linearized",
reassociate_stats.linearized);
statistics_counter_event (cfun, "Constants eliminated",
reassociate_stats.constants_eliminated);
statistics_counter_event (cfun, "Ops eliminated",
reassociate_stats.ops_eliminated);
statistics_counter_event (cfun, "Statements rewritten",
reassociate_stats.rewritten);
statistics_counter_event (cfun, "Built-in pow[i] calls encountered",
reassociate_stats.pows_encountered);
statistics_counter_event (cfun, "Built-in powi calls created",
reassociate_stats.pows_created);
pointer_map_destroy (operand_rank);
free_alloc_pool (operand_entry_pool);
free (bb_rank);
plus_negates.release ();
free_dominance_info (CDI_POST_DOMINATORS);
loop_optimizer_finalize ();
}
/* Gate and execute functions for Reassociation. */
static unsigned int
execute_reassoc (void)
{
init_reassoc ();
do_reassoc ();
repropagate_negates ();
fini_reassoc ();
return 0;
}
namespace {
const pass_data pass_data_reassoc =
{
GIMPLE_PASS, /* type */
"reassoc", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_REASSOC, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa_only_virtuals, /* todo_flags_finish */
};
class pass_reassoc : public gimple_opt_pass
{
public:
pass_reassoc (gcc::context *ctxt)
: gimple_opt_pass (pass_data_reassoc, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_reassoc (m_ctxt); }
virtual bool gate (function *) { return flag_tree_reassoc != 0; }
virtual unsigned int execute (function *) { return execute_reassoc (); }
}; // class pass_reassoc
} // anon namespace
gimple_opt_pass *
make_pass_reassoc (gcc::context *ctxt)
{
return new pass_reassoc (ctxt);
}
|