summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-phiopt.c
blob: 97847f4c8882fe9bd3fddc27db0a6892783a2618 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
/* Optimization of PHI nodes by converting them into straightline code.
   Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
   Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "flags.h"
#include "tm_p.h"
#include "basic-block.h"
#include "timevar.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-dump.h"
#include "langhooks.h"
#include "pointer-set.h"
#include "domwalk.h"

static unsigned int tree_ssa_phiopt (void);
static unsigned int tree_ssa_phiopt_worker (bool);
static bool conditional_replacement (basic_block, basic_block,
				     edge, edge, gimple, tree, tree);
static bool value_replacement (basic_block, basic_block,
			       edge, edge, gimple, tree, tree);
static bool minmax_replacement (basic_block, basic_block,
				edge, edge, gimple, tree, tree);
static bool abs_replacement (basic_block, basic_block,
			     edge, edge, gimple, tree, tree);
static bool cond_store_replacement (basic_block, basic_block, edge, edge,
				    struct pointer_set_t *);
static struct pointer_set_t * get_non_trapping (void);
static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);

/* This pass tries to replaces an if-then-else block with an
   assignment.  We have four kinds of transformations.  Some of these
   transformations are also performed by the ifcvt RTL optimizer.

   Conditional Replacement
   -----------------------

   This transformation, implemented in conditional_replacement,
   replaces

     bb0:
      if (cond) goto bb2; else goto bb1;
     bb1:
     bb2:
      x = PHI <0 (bb1), 1 (bb0), ...>;

   with

     bb0:
      x' = cond;
      goto bb2;
     bb2:
      x = PHI <x' (bb0), ...>;

   We remove bb1 as it becomes unreachable.  This occurs often due to
   gimplification of conditionals.

   Value Replacement
   -----------------

   This transformation, implemented in value_replacement, replaces

     bb0:
       if (a != b) goto bb2; else goto bb1;
     bb1:
     bb2:
       x = PHI <a (bb1), b (bb0), ...>;

   with

     bb0:
     bb2:
       x = PHI <b (bb0), ...>;

   This opportunity can sometimes occur as a result of other
   optimizations.

   ABS Replacement
   ---------------

   This transformation, implemented in abs_replacement, replaces

     bb0:
       if (a >= 0) goto bb2; else goto bb1;
     bb1:
       x = -a;
     bb2:
       x = PHI <x (bb1), a (bb0), ...>;

   with

     bb0:
       x' = ABS_EXPR< a >;
     bb2:
       x = PHI <x' (bb0), ...>;

   MIN/MAX Replacement
   -------------------

   This transformation, minmax_replacement replaces

     bb0:
       if (a <= b) goto bb2; else goto bb1;
     bb1:
     bb2:
       x = PHI <b (bb1), a (bb0), ...>;

   with

     bb0:
       x' = MIN_EXPR (a, b)
     bb2:
       x = PHI <x' (bb0), ...>;

   A similar transformation is done for MAX_EXPR.  */

static unsigned int
tree_ssa_phiopt (void)
{
  return tree_ssa_phiopt_worker (false);
}

/* This pass tries to transform conditional stores into unconditional
   ones, enabling further simplifications with the simpler then and else
   blocks.  In particular it replaces this:

     bb0:
       if (cond) goto bb2; else goto bb1;
     bb1:
       *p = RHS
     bb2:

   with

     bb0:
       if (cond) goto bb1; else goto bb2;
     bb1:
       condtmp' = *p;
     bb2:
       condtmp = PHI <RHS, condtmp'>
       *p = condtmp

   This transformation can only be done under several constraints,
   documented below.  */

static unsigned int
tree_ssa_cs_elim (void)
{
  return tree_ssa_phiopt_worker (true);
}

/* For conditional store replacement we need a temporary to
   put the old contents of the memory in.  */
static tree condstoretemp;

/* The core routine of conditional store replacement and normal
   phi optimizations.  Both share much of the infrastructure in how
   to match applicable basic block patterns.  DO_STORE_ELIM is true
   when we want to do conditional store replacement, false otherwise.  */
static unsigned int
tree_ssa_phiopt_worker (bool do_store_elim)
{
  basic_block bb;
  basic_block *bb_order;
  unsigned n, i;
  bool cfgchanged = false;
  struct pointer_set_t *nontrap = 0;

  if (do_store_elim)
    {
      condstoretemp = NULL_TREE;
      /* Calculate the set of non-trapping memory accesses.  */
      nontrap = get_non_trapping ();
    }

  /* Search every basic block for COND_EXPR we may be able to optimize.

     We walk the blocks in order that guarantees that a block with
     a single predecessor is processed before the predecessor.
     This ensures that we collapse inner ifs before visiting the
     outer ones, and also that we do not try to visit a removed
     block.  */
  bb_order = blocks_in_phiopt_order ();
  n = n_basic_blocks - NUM_FIXED_BLOCKS;

  for (i = 0; i < n; i++) 
    {
      gimple cond_stmt, phi;
      basic_block bb1, bb2;
      edge e1, e2;
      tree arg0, arg1;

      bb = bb_order[i];

      cond_stmt = last_stmt (bb);
      /* Check to see if the last statement is a GIMPLE_COND.  */
      if (!cond_stmt
          || gimple_code (cond_stmt) != GIMPLE_COND)
        continue;

      e1 = EDGE_SUCC (bb, 0);
      bb1 = e1->dest;
      e2 = EDGE_SUCC (bb, 1);
      bb2 = e2->dest;

      /* We cannot do the optimization on abnormal edges.  */
      if ((e1->flags & EDGE_ABNORMAL) != 0
          || (e2->flags & EDGE_ABNORMAL) != 0)
       continue;

      /* If either bb1's succ or bb2 or bb2's succ is non NULL.  */
      if (EDGE_COUNT (bb1->succs) == 0
          || bb2 == NULL
	  || EDGE_COUNT (bb2->succs) == 0)
        continue;

      /* Find the bb which is the fall through to the other.  */
      if (EDGE_SUCC (bb1, 0)->dest == bb2)
        ;
      else if (EDGE_SUCC (bb2, 0)->dest == bb1)
        {
	  basic_block bb_tmp = bb1;
	  edge e_tmp = e1;
	  bb1 = bb2;
	  bb2 = bb_tmp;
	  e1 = e2;
	  e2 = e_tmp;
	}
      else
        continue;

      e1 = EDGE_SUCC (bb1, 0);

      /* Make sure that bb1 is just a fall through.  */
      if (!single_succ_p (bb1)
	  || (e1->flags & EDGE_FALLTHRU) == 0)
        continue;

      /* Also make sure that bb1 only have one predecessor and that it
	 is bb.  */
      if (!single_pred_p (bb1)
          || single_pred (bb1) != bb)
	continue;

      if (do_store_elim)
	{
	  /* bb1 is the middle block, bb2 the join block, bb the split block,
	     e1 the fallthrough edge from bb1 to bb2.  We can't do the
	     optimization if the join block has more than two predecessors.  */
	  if (EDGE_COUNT (bb2->preds) > 2)
	    continue;
	  if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
	    cfgchanged = true;
	}
      else
	{
	  gimple_seq phis = phi_nodes (bb2);

	  /* Check to make sure that there is only one PHI node.
	     TODO: we could do it with more than one iff the other PHI nodes
	     have the same elements for these two edges.  */
	  if (! gimple_seq_singleton_p (phis))
	    continue;

	  phi = gsi_stmt (gsi_start (phis));
	  arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
	  arg1 = gimple_phi_arg_def (phi, e2->dest_idx);

	  /* Something is wrong if we cannot find the arguments in the PHI
	     node.  */
	  gcc_assert (arg0 != NULL && arg1 != NULL);

	  /* Do the replacement of conditional if it can be done.  */
	  if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
	    cfgchanged = true;
	  else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
	    cfgchanged = true;
	  else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
	    cfgchanged = true;
	  else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
	    cfgchanged = true;
	}
    }

  free (bb_order);
  
  if (do_store_elim)
    pointer_set_destroy (nontrap);
  /* If the CFG has changed, we should cleanup the CFG.  */
  if (cfgchanged && do_store_elim)
    {
      /* In cond-store replacement we have added some loads on edges
         and new VOPS (as we moved the store, and created a load).  */
      gsi_commit_edge_inserts ();
      return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
    }
  else if (cfgchanged)
    return TODO_cleanup_cfg;
  return 0;
}

/* Returns the list of basic blocks in the function in an order that guarantees
   that if a block X has just a single predecessor Y, then Y is after X in the
   ordering.  */

basic_block *
blocks_in_phiopt_order (void)
{
  basic_block x, y;
  basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
  unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS; 
  unsigned np, i;
  sbitmap visited = sbitmap_alloc (last_basic_block); 

#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index)) 
#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index)) 

  sbitmap_zero (visited);

  MARK_VISITED (ENTRY_BLOCK_PTR);
  FOR_EACH_BB (x)
    {
      if (VISITED_P (x))
	continue;

      /* Walk the predecessors of x as long as they have precisely one
	 predecessor and add them to the list, so that they get stored
	 after x.  */
      for (y = x, np = 1;
	   single_pred_p (y) && !VISITED_P (single_pred (y));
	   y = single_pred (y))
	np++;
      for (y = x, i = n - np;
	   single_pred_p (y) && !VISITED_P (single_pred (y));
	   y = single_pred (y), i++)
	{
	  order[i] = y;
	  MARK_VISITED (y);
	}
      order[i] = y;
      MARK_VISITED (y);

      gcc_assert (i == n - 1);
      n -= np;
    }

  sbitmap_free (visited);
  gcc_assert (n == 0);
  return order;

#undef MARK_VISITED
#undef VISITED_P
}


/* Return TRUE if block BB has no executable statements, otherwise return
   FALSE.  */

bool
empty_block_p (basic_block bb)
{
  /* BB must have no executable statements.  */
  return gsi_end_p (gsi_after_labels (bb));
}

/* Replace PHI node element whose edge is E in block BB with variable NEW.
   Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
   is known to have two edges, one of which must reach BB).  */

static void
replace_phi_edge_with_variable (basic_block cond_block,
				edge e, gimple phi, tree new_tree)
{
  basic_block bb = gimple_bb (phi);
  basic_block block_to_remove;
  gimple_stmt_iterator gsi;

  /* Change the PHI argument to new.  */
  SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);

  /* Remove the empty basic block.  */
  if (EDGE_SUCC (cond_block, 0)->dest == bb)
    {
      EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
      EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
      EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
      EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;

      block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
    }
  else
    {
      EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
      EDGE_SUCC (cond_block, 1)->flags
	&= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
      EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
      EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;

      block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
    }
  delete_basic_block (block_to_remove);

  /* Eliminate the COND_EXPR at the end of COND_BLOCK.  */
  gsi = gsi_last_bb (cond_block);
  gsi_remove (&gsi, true);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file,
	      "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
	      cond_block->index,
	      bb->index);
}

/*  The function conditional_replacement does the main work of doing the
    conditional replacement.  Return true if the replacement is done.
    Otherwise return false.
    BB is the basic block where the replacement is going to be done on.  ARG0
    is argument 0 from PHI.  Likewise for ARG1.  */

static bool
conditional_replacement (basic_block cond_bb, basic_block middle_bb,
			 edge e0, edge e1, gimple phi,
			 tree arg0, tree arg1)
{
  tree result;
  gimple stmt, new_stmt;
  tree cond;
  gimple_stmt_iterator gsi;
  edge true_edge, false_edge;
  tree new_var, new_var2;

  /* FIXME: Gimplification of complex type is too hard for now.  */
  if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
      || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
    return false;

  /* The PHI arguments have the constants 0 and 1, then convert
     it to the conditional.  */
  if ((integer_zerop (arg0) && integer_onep (arg1))
      || (integer_zerop (arg1) && integer_onep (arg0)))
    ;
  else
    return false;

  if (!empty_block_p (middle_bb))
    return false;

  /* At this point we know we have a GIMPLE_COND with two successors.
     One successor is BB, the other successor is an empty block which
     falls through into BB.

     There is a single PHI node at the join point (BB) and its arguments
     are constants (0, 1).

     So, given the condition COND, and the two PHI arguments, we can
     rewrite this PHI into non-branching code:

       dest = (COND) or dest = COND'

     We use the condition as-is if the argument associated with the
     true edge has the value one or the argument associated with the
     false edge as the value zero.  Note that those conditions are not
     the same since only one of the outgoing edges from the GIMPLE_COND
     will directly reach BB and thus be associated with an argument.  */

  stmt = last_stmt (cond_bb);
  result = PHI_RESULT (phi);

  /* To handle special cases like floating point comparison, it is easier and
     less error-prone to build a tree and gimplify it on the fly though it is
     less efficient.  */
  cond = fold_build2 (gimple_cond_code (stmt), boolean_type_node,
		      gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));

  /* We need to know which is the true edge and which is the false
     edge so that we know when to invert the condition below.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
  if ((e0 == true_edge && integer_zerop (arg0))
      || (e0 == false_edge && integer_onep (arg0))
      || (e1 == true_edge && integer_zerop (arg1))
      || (e1 == false_edge && integer_onep (arg1)))
    cond = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);

  /* Insert our new statements at the end of conditional block before the
     COND_STMT.  */
  gsi = gsi_for_stmt (stmt);
  new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
				      GSI_SAME_STMT);

  if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
    {
      source_location locus_0, locus_1;

      new_var2 = create_tmp_var (TREE_TYPE (result), NULL);
      add_referenced_var (new_var2);
      new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
					       new_var, NULL);
      new_var2 = make_ssa_name (new_var2, new_stmt);
      gimple_assign_set_lhs (new_stmt, new_var2);
      gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
      new_var = new_var2;

      /* Set the locus to the first argument, unless is doesn't have one.  */
      locus_0 = gimple_phi_arg_location (phi, 0);
      locus_1 = gimple_phi_arg_location (phi, 1);
      if (locus_0 == UNKNOWN_LOCATION)
        locus_0 = locus_1;
      gimple_set_location (new_stmt, locus_0);
    }

  replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);

  /* Note that we optimized this PHI.  */
  return true;
}

/*  The function value_replacement does the main work of doing the value
    replacement.  Return true if the replacement is done.  Otherwise return
    false.
    BB is the basic block where the replacement is going to be done on.  ARG0
    is argument 0 from the PHI.  Likewise for ARG1.  */

static bool
value_replacement (basic_block cond_bb, basic_block middle_bb,
		   edge e0, edge e1, gimple phi,
		   tree arg0, tree arg1)
{
  gimple cond;
  edge true_edge, false_edge;
  enum tree_code code;

  /* If the type says honor signed zeros we cannot do this
     optimization.  */
  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
    return false;

  if (!empty_block_p (middle_bb))
    return false;

  cond = last_stmt (cond_bb);
  code = gimple_cond_code (cond);

  /* This transformation is only valid for equality comparisons.  */
  if (code != NE_EXPR && code != EQ_EXPR)
    return false;

  /* We need to know which is the true edge and which is the false
      edge so that we know if have abs or negative abs.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);

  /* At this point we know we have a COND_EXPR with two successors.
     One successor is BB, the other successor is an empty block which
     falls through into BB.

     The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.

     There is a single PHI node at the join point (BB) with two arguments.

     We now need to verify that the two arguments in the PHI node match
     the two arguments to the equality comparison.  */

  if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
       && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
      || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
	  && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
    {
      edge e;
      tree arg;

      /* For NE_EXPR, we want to build an assignment result = arg where
	 arg is the PHI argument associated with the true edge.  For
	 EQ_EXPR we want the PHI argument associated with the false edge.  */
      e = (code == NE_EXPR ? true_edge : false_edge);

      /* Unfortunately, E may not reach BB (it may instead have gone to
	 OTHER_BLOCK).  If that is the case, then we want the single outgoing
	 edge from OTHER_BLOCK which reaches BB and represents the desired
	 path from COND_BLOCK.  */
      if (e->dest == middle_bb)
	e = single_succ_edge (e->dest);

      /* Now we know the incoming edge to BB that has the argument for the
	 RHS of our new assignment statement.  */
      if (e0 == e)
	arg = arg0;
      else
	arg = arg1;

      replace_phi_edge_with_variable (cond_bb, e1, phi, arg);

      /* Note that we optimized this PHI.  */
      return true;
    }
  return false;
}

/*  The function minmax_replacement does the main work of doing the minmax
    replacement.  Return true if the replacement is done.  Otherwise return
    false.
    BB is the basic block where the replacement is going to be done on.  ARG0
    is argument 0 from the PHI.  Likewise for ARG1.  */

static bool
minmax_replacement (basic_block cond_bb, basic_block middle_bb,
		    edge e0, edge e1, gimple phi,
		    tree arg0, tree arg1)
{
  tree result, type;
  gimple cond, new_stmt;
  edge true_edge, false_edge;
  enum tree_code cmp, minmax, ass_code;
  tree smaller, larger, arg_true, arg_false;
  gimple_stmt_iterator gsi, gsi_from;

  type = TREE_TYPE (PHI_RESULT (phi));

  /* The optimization may be unsafe due to NaNs.  */
  if (HONOR_NANS (TYPE_MODE (type)))
    return false;

  cond = last_stmt (cond_bb);
  cmp = gimple_cond_code (cond);
  result = PHI_RESULT (phi);

  /* This transformation is only valid for order comparisons.  Record which
     operand is smaller/larger if the result of the comparison is true.  */
  if (cmp == LT_EXPR || cmp == LE_EXPR)
    {
      smaller = gimple_cond_lhs (cond);
      larger = gimple_cond_rhs (cond);
    }
  else if (cmp == GT_EXPR || cmp == GE_EXPR)
    {
      smaller = gimple_cond_rhs (cond);
      larger = gimple_cond_lhs (cond);
    }
  else
    return false;

  /* We need to know which is the true edge and which is the false
      edge so that we know if have abs or negative abs.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);

  /* Forward the edges over the middle basic block.  */
  if (true_edge->dest == middle_bb)
    true_edge = EDGE_SUCC (true_edge->dest, 0);
  if (false_edge->dest == middle_bb)
    false_edge = EDGE_SUCC (false_edge->dest, 0);

  if (true_edge == e0)
    {
      gcc_assert (false_edge == e1);
      arg_true = arg0;
      arg_false = arg1;
    }
  else
    {
      gcc_assert (false_edge == e0);
      gcc_assert (true_edge == e1);
      arg_true = arg1;
      arg_false = arg0;
    }

  if (empty_block_p (middle_bb))
    {
      if (operand_equal_for_phi_arg_p (arg_true, smaller)
	  && operand_equal_for_phi_arg_p (arg_false, larger))
	{
	  /* Case
	 
	     if (smaller < larger)
	     rslt = smaller;
	     else
	     rslt = larger;  */
	  minmax = MIN_EXPR;
	}
      else if (operand_equal_for_phi_arg_p (arg_false, smaller)
	       && operand_equal_for_phi_arg_p (arg_true, larger))
	minmax = MAX_EXPR;
      else
	return false;
    }
  else
    {
      /* Recognize the following case, assuming d <= u:

	 if (a <= u)
	   b = MAX (a, d);
	 x = PHI <b, u>

	 This is equivalent to

	 b = MAX (a, d);
	 x = MIN (b, u);  */

      gimple assign = last_and_only_stmt (middle_bb);
      tree lhs, op0, op1, bound;

      if (!assign
	  || gimple_code (assign) != GIMPLE_ASSIGN)
	return false;

      lhs = gimple_assign_lhs (assign);
      ass_code = gimple_assign_rhs_code (assign);
      if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
	return false;
      op0 = gimple_assign_rhs1 (assign);
      op1 = gimple_assign_rhs2 (assign);

      if (true_edge->src == middle_bb)
	{
	  /* We got here if the condition is true, i.e., SMALLER < LARGER.  */
	  if (!operand_equal_for_phi_arg_p (lhs, arg_true))
	    return false;

	  if (operand_equal_for_phi_arg_p (arg_false, larger))
	    {
	      /* Case

		 if (smaller < larger)
		   {
		     r' = MAX_EXPR (smaller, bound)
		   }
		 r = PHI <r', larger>  --> to be turned to MIN_EXPR.  */
	      if (ass_code != MAX_EXPR)
		return false;

	      minmax = MIN_EXPR;
	      if (operand_equal_for_phi_arg_p (op0, smaller))
		bound = op1;
	      else if (operand_equal_for_phi_arg_p (op1, smaller))
		bound = op0;
	      else
		return false;

	      /* We need BOUND <= LARGER.  */
	      if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
						  bound, larger)))
		return false;
	    }
	  else if (operand_equal_for_phi_arg_p (arg_false, smaller))
	    {
	      /* Case

		 if (smaller < larger)
		   {
		     r' = MIN_EXPR (larger, bound)
		   }
		 r = PHI <r', smaller>  --> to be turned to MAX_EXPR.  */
	      if (ass_code != MIN_EXPR)
		return false;

	      minmax = MAX_EXPR;
	      if (operand_equal_for_phi_arg_p (op0, larger))
		bound = op1;
	      else if (operand_equal_for_phi_arg_p (op1, larger))
		bound = op0;
	      else
		return false;

	      /* We need BOUND >= SMALLER.  */
	      if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
						  bound, smaller)))
		return false;
	    }
	  else
	    return false;
	}
      else
	{
	  /* We got here if the condition is false, i.e., SMALLER > LARGER.  */
	  if (!operand_equal_for_phi_arg_p (lhs, arg_false))
	    return false;

	  if (operand_equal_for_phi_arg_p (arg_true, larger))
	    {
	      /* Case

		 if (smaller > larger)
		   {
		     r' = MIN_EXPR (smaller, bound)
		   }
		 r = PHI <r', larger>  --> to be turned to MAX_EXPR.  */
	      if (ass_code != MIN_EXPR)
		return false;

	      minmax = MAX_EXPR;
	      if (operand_equal_for_phi_arg_p (op0, smaller))
		bound = op1;
	      else if (operand_equal_for_phi_arg_p (op1, smaller))
		bound = op0;
	      else
		return false;

	      /* We need BOUND >= LARGER.  */
	      if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
						  bound, larger)))
		return false;
	    }
	  else if (operand_equal_for_phi_arg_p (arg_true, smaller))
	    {
	      /* Case

		 if (smaller > larger)
		   {
		     r' = MAX_EXPR (larger, bound)
		   }
		 r = PHI <r', smaller>  --> to be turned to MIN_EXPR.  */
	      if (ass_code != MAX_EXPR)
		return false;

	      minmax = MIN_EXPR;
	      if (operand_equal_for_phi_arg_p (op0, larger))
		bound = op1;
	      else if (operand_equal_for_phi_arg_p (op1, larger))
		bound = op0;
	      else
		return false;

	      /* We need BOUND <= SMALLER.  */
	      if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
						  bound, smaller)))
		return false;
	    }
	  else
	    return false;
	}

      /* Move the statement from the middle block.  */
      gsi = gsi_last_bb (cond_bb);
      gsi_from = gsi_last_bb (middle_bb);
      gsi_move_before (&gsi_from, &gsi);
    }

  /* Emit the statement to compute min/max.  */
  result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
  new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
  gsi = gsi_last_bb (cond_bb);
  gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);

  replace_phi_edge_with_variable (cond_bb, e1, phi, result);
  return true;
}

/*  The function absolute_replacement does the main work of doing the absolute
    replacement.  Return true if the replacement is done.  Otherwise return
    false.
    bb is the basic block where the replacement is going to be done on.  arg0
    is argument 0 from the phi.  Likewise for arg1.  */

static bool
abs_replacement (basic_block cond_bb, basic_block middle_bb,
		 edge e0 ATTRIBUTE_UNUSED, edge e1,
		 gimple phi, tree arg0, tree arg1)
{
  tree result;
  gimple new_stmt, cond;
  gimple_stmt_iterator gsi;
  edge true_edge, false_edge;
  gimple assign;
  edge e;
  tree rhs, lhs;
  bool negate;
  enum tree_code cond_code;

  /* If the type says honor signed zeros we cannot do this
     optimization.  */
  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
    return false;

  /* OTHER_BLOCK must have only one executable statement which must have the
     form arg0 = -arg1 or arg1 = -arg0.  */

  assign = last_and_only_stmt (middle_bb);
  /* If we did not find the proper negation assignment, then we can not
     optimize.  */
  if (assign == NULL)
    return false;
      
  /* If we got here, then we have found the only executable statement
     in OTHER_BLOCK.  If it is anything other than arg = -arg1 or
     arg1 = -arg0, then we can not optimize.  */
  if (gimple_code (assign) != GIMPLE_ASSIGN)
    return false;

  lhs = gimple_assign_lhs (assign);

  if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
    return false;

  rhs = gimple_assign_rhs1 (assign);
              
  /* The assignment has to be arg0 = -arg1 or arg1 = -arg0.  */
  if (!(lhs == arg0 && rhs == arg1)
      && !(lhs == arg1 && rhs == arg0))
    return false;

  cond = last_stmt (cond_bb);
  result = PHI_RESULT (phi);

  /* Only relationals comparing arg[01] against zero are interesting.  */
  cond_code = gimple_cond_code (cond);
  if (cond_code != GT_EXPR && cond_code != GE_EXPR
      && cond_code != LT_EXPR && cond_code != LE_EXPR)
    return false;

  /* Make sure the conditional is arg[01] OP y.  */
  if (gimple_cond_lhs (cond) != rhs)
    return false;

  if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
	       ? real_zerop (gimple_cond_rhs (cond))
	       : integer_zerop (gimple_cond_rhs (cond)))
    ;
  else
    return false;

  /* We need to know which is the true edge and which is the false
     edge so that we know if have abs or negative abs.  */
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);

  /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
     will need to negate the result.  Similarly for LT_EXPR/LE_EXPR if
     the false edge goes to OTHER_BLOCK.  */
  if (cond_code == GT_EXPR || cond_code == GE_EXPR)
    e = true_edge;
  else
    e = false_edge;

  if (e->dest == middle_bb)
    negate = true;
  else
    negate = false;

  result = duplicate_ssa_name (result, NULL);

  if (negate)
    {
      tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
      add_referenced_var (tmp);
      lhs = make_ssa_name (tmp, NULL);
    }
  else
    lhs = result;

  /* Build the modify expression with abs expression.  */
  new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);

  gsi = gsi_last_bb (cond_bb);
  gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);

  if (negate)
    {
      /* Get the right GSI.  We want to insert after the recently
	 added ABS_EXPR statement (which we know is the first statement
	 in the block.  */
      new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);

      gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
    }

  replace_phi_edge_with_variable (cond_bb, e1, phi, result);

  /* Note that we optimized this PHI.  */
  return true;
}

/* Auxiliary functions to determine the set of memory accesses which
   can't trap because they are preceded by accesses to the same memory
   portion.  We do that for INDIRECT_REFs, so we only need to track
   the SSA_NAME of the pointer indirectly referenced.  The algorithm
   simply is a walk over all instructions in dominator order.  When
   we see an INDIRECT_REF we determine if we've already seen a same
   ref anywhere up to the root of the dominator tree.  If we do the
   current access can't trap.  If we don't see any dominating access
   the current access might trap, but might also make later accesses
   non-trapping, so we remember it.  We need to be careful with loads
   or stores, for instance a load might not trap, while a store would,
   so if we see a dominating read access this doesn't mean that a later
   write access would not trap.  Hence we also need to differentiate the
   type of access(es) seen.

   ??? We currently are very conservative and assume that a load might
   trap even if a store doesn't (write-only memory).  This probably is
   overly conservative.  */

/* A hash-table of SSA_NAMEs, and in which basic block an INDIRECT_REF
   through it was seen, which would constitute a no-trap region for
   same accesses.  */
struct name_to_bb
{
  tree ssa_name;
  basic_block bb;
  unsigned store : 1;
};

/* The hash table for remembering what we've seen.  */
static htab_t seen_ssa_names;

/* The set of INDIRECT_REFs which can't trap.  */
static struct pointer_set_t *nontrap_set;

/* The hash function, based on the pointer to the pointer SSA_NAME.  */
static hashval_t
name_to_bb_hash (const void *p)
{
  const_tree n = ((const struct name_to_bb *)p)->ssa_name;
  return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store;
}

/* The equality function of *P1 and *P2.  SSA_NAMEs are shared, so
   it's enough to simply compare them for equality.  */
static int
name_to_bb_eq (const void *p1, const void *p2)
{
  const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
  const struct name_to_bb *n2 = (const struct name_to_bb *)p2;

  return n1->ssa_name == n2->ssa_name && n1->store == n2->store;
}

/* We see the expression EXP in basic block BB.  If it's an interesting
   expression (an INDIRECT_REF through an SSA_NAME) possibly insert the
   expression into the set NONTRAP or the hash table of seen expressions.
   STORE is true if this expression is on the LHS, otherwise it's on
   the RHS.  */
static void
add_or_mark_expr (basic_block bb, tree exp,
		  struct pointer_set_t *nontrap, bool store)
{
  if (INDIRECT_REF_P (exp)
      && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
    {
      tree name = TREE_OPERAND (exp, 0);
      struct name_to_bb map;
      void **slot;
      struct name_to_bb *n2bb;
      basic_block found_bb = 0;

      /* Try to find the last seen INDIRECT_REF through the same
         SSA_NAME, which can trap.  */
      map.ssa_name = name;
      map.bb = 0;
      map.store = store;
      slot = htab_find_slot (seen_ssa_names, &map, INSERT);
      n2bb = (struct name_to_bb *) *slot;
      if (n2bb)
        found_bb = n2bb->bb;

      /* If we've found a trapping INDIRECT_REF, _and_ it dominates EXP
         (it's in a basic block on the path from us to the dominator root)
	 then we can't trap.  */
      if (found_bb && found_bb->aux == (void *)1)
	{
	  pointer_set_insert (nontrap, exp);
	}
      else
        {
	  /* EXP might trap, so insert it into the hash table.  */
	  if (n2bb)
	    {
	      n2bb->bb = bb;
	    }
	  else
	    {
	      n2bb = XNEW (struct name_to_bb);
	      n2bb->ssa_name = name;
	      n2bb->bb = bb;
	      n2bb->store = store;
	      *slot = n2bb;
	    }
	}
    }
}

/* Called by walk_dominator_tree, when entering the block BB.  */
static void
nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
{
  gimple_stmt_iterator gsi;
  /* Mark this BB as being on the path to dominator root.  */
  bb->aux = (void*)1;

  /* And walk the statements in order.  */
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple stmt = gsi_stmt (gsi);

      if (is_gimple_assign (stmt))
	{
	  add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
	  add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
	  if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1)
	    add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set,
			      false);
	}
    }
}

/* Called by walk_dominator_tree, when basic block BB is exited.  */
static void
nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
{
  /* This BB isn't on the path to dominator root anymore.  */
  bb->aux = NULL;
}

/* This is the entry point of gathering non trapping memory accesses.
   It will do a dominator walk over the whole function, and it will
   make use of the bb->aux pointers.  It returns a set of trees
   (the INDIRECT_REFs itself) which can't trap.  */
static struct pointer_set_t *
get_non_trapping (void)
{
  struct pointer_set_t *nontrap;
  struct dom_walk_data walk_data;

  nontrap = pointer_set_create ();
  seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
				free);
  /* We're going to do a dominator walk, so ensure that we have
     dominance information.  */
  calculate_dominance_info (CDI_DOMINATORS);

  /* Setup callbacks for the generic dominator tree walker.  */
  nontrap_set = nontrap;
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.initialize_block_local_data = NULL;
  walk_data.before_dom_children = nt_init_block;
  walk_data.after_dom_children = nt_fini_block;
  walk_data.global_data = NULL;
  walk_data.block_local_data_size = 0;

  init_walk_dominator_tree (&walk_data);
  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
  fini_walk_dominator_tree (&walk_data);
  htab_delete (seen_ssa_names);

  return nontrap;
}

/* Do the main work of conditional store replacement.  We already know
   that the recognized pattern looks like so:

   split:
     if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
   MIDDLE_BB:
     something
     fallthrough (edge E0)
   JOIN_BB:
     some more

   We check that MIDDLE_BB contains only one store, that that store
   doesn't trap (not via NOTRAP, but via checking if an access to the same
   memory location dominates us) and that the store has a "simple" RHS.  */

static bool
cond_store_replacement (basic_block middle_bb, basic_block join_bb,
			edge e0, edge e1, struct pointer_set_t *nontrap)
{
  gimple assign = last_and_only_stmt (middle_bb);
  tree lhs, rhs, name;
  gimple newphi, new_stmt;
  gimple_stmt_iterator gsi;
  source_location locus;
  enum tree_code code;

  /* Check if middle_bb contains of only one store.  */
  if (!assign
      || gimple_code (assign) != GIMPLE_ASSIGN)
    return false;

  locus = gimple_location (assign);
  lhs = gimple_assign_lhs (assign);
  rhs = gimple_assign_rhs1 (assign);
  if (!INDIRECT_REF_P (lhs))
    return false;

  /* RHS is either a single SSA_NAME or a constant. */
  code = gimple_assign_rhs_code (assign);
  if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
      || (code != SSA_NAME && !is_gimple_min_invariant (rhs)))
    return false;
  /* Prove that we can move the store down.  We could also check
     TREE_THIS_NOTRAP here, but in that case we also could move stores,
     whose value is not available readily, which we want to avoid.  */
  if (!pointer_set_contains (nontrap, lhs))
    return false;

  /* Now we've checked the constraints, so do the transformation:
     1) Remove the single store.  */
  mark_symbols_for_renaming (assign);
  gsi = gsi_for_stmt (assign);
  gsi_remove (&gsi, true);

  /* 2) Create a temporary where we can store the old content
        of the memory touched by the store, if we need to.  */
  if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
    {
      condstoretemp = create_tmp_var (TREE_TYPE (lhs), "cstore");
      get_var_ann (condstoretemp);
      if (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE
          || TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE)
	DECL_GIMPLE_REG_P (condstoretemp) = 1;
    }
  add_referenced_var (condstoretemp);

  /* 3) Insert a load from the memory of the store to the temporary
        on the edge which did not contain the store.  */
  lhs = unshare_expr (lhs);
  new_stmt = gimple_build_assign (condstoretemp, lhs);
  name = make_ssa_name (condstoretemp, new_stmt);
  gimple_assign_set_lhs (new_stmt, name);
  gimple_set_location (new_stmt, locus);
  mark_symbols_for_renaming (new_stmt);
  gsi_insert_on_edge (e1, new_stmt);

  /* 4) Create a PHI node at the join block, with one argument
        holding the old RHS, and the other holding the temporary
        where we stored the old memory contents.  */
  newphi = create_phi_node (condstoretemp, join_bb);
  add_phi_arg (newphi, rhs, e0, locus);
  add_phi_arg (newphi, name, e1, locus);

  lhs = unshare_expr (lhs);
  new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
  mark_symbols_for_renaming (new_stmt);

  /* 5) Insert that PHI node.  */
  gsi = gsi_after_labels (join_bb);
  if (gsi_end_p (gsi))
    {
      gsi = gsi_last_bb (join_bb);
      gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
    }
  else
    gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);

  return true;
}

/* Always do these optimizations if we have SSA
   trees to work on.  */
static bool
gate_phiopt (void)
{
  return 1;
}

struct gimple_opt_pass pass_phiopt =
{
 {
  GIMPLE_PASS,
  "phiopt",				/* name */
  gate_phiopt,				/* gate */
  tree_ssa_phiopt,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_PHIOPT,			/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func
    | TODO_ggc_collect
    | TODO_verify_ssa
    | TODO_verify_flow
    | TODO_verify_stmts	 		/* todo_flags_finish */
 }
};

static bool
gate_cselim (void)
{
  return flag_tree_cselim;
}

struct gimple_opt_pass pass_cselim =
{
 {
  GIMPLE_PASS,
  "cselim",				/* name */
  gate_cselim,				/* gate */
  tree_ssa_cs_elim,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_PHIOPT,			/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func
    | TODO_ggc_collect
    | TODO_verify_ssa
    | TODO_verify_flow
    | TODO_verify_stmts	 		/* todo_flags_finish */
 }
};