summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-operands.c
blob: 2c776836ce6ab98b22551bd2a8abbadbcc279763 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
/* SSA operands management for trees.
   Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "function.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-inline.h"
#include "tree-pass.h"
#include "ggc.h"
#include "timevar.h"
#include "toplev.h"
#include "langhooks.h"
#include "ipa-reference.h"

/* This file contains the code required to manage the operands cache of the 
   SSA optimizer.  For every stmt, we maintain an operand cache in the stmt 
   annotation.  This cache contains operands that will be of interest to 
   optimizers and other passes wishing to manipulate the IL. 

   The operand type are broken up into REAL and VIRTUAL operands.  The real 
   operands are represented as pointers into the stmt's operand tree.  Thus 
   any manipulation of the real operands will be reflected in the actual tree.
   Virtual operands are represented solely in the cache, although the base 
   variable for the SSA_NAME may, or may not occur in the stmt's tree.  
   Manipulation of the virtual operands will not be reflected in the stmt tree.

   The routines in this file are concerned with creating this operand cache 
   from a stmt tree.

   The operand tree is the parsed by the various get_* routines which look 
   through the stmt tree for the occurrence of operands which may be of 
   interest, and calls are made to the append_* routines whenever one is 
   found.  There are 5 of these routines, each representing one of the 
   5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and 
   Virtual Must Defs.

   The append_* routines check for duplication, and simply keep a list of 
   unique objects for each operand type in the build_* extendable vectors.

   Once the stmt tree is completely parsed, the finalize_ssa_operands() 
   routine is called, which proceeds to perform the finalization routine 
   on each of the 5 operand vectors which have been built up.

   If the stmt had a previous operand cache, the finalization routines 
   attempt to match up the new operands with the old ones.  If it's a perfect 
   match, the old vector is simply reused.  If it isn't a perfect match, then 
   a new vector is created and the new operands are placed there.  For 
   virtual operands, if the previous cache had SSA_NAME version of a 
   variable, and that same variable occurs in the same operands cache, then 
   the new cache vector will also get the same SSA_NAME.

  i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand 
  vector for VUSE, then the new vector will also be modified such that 
  it contains 'a_5' rather than 'a'.  */

/* Flags to describe operand properties in helpers.  */

/* By default, operands are loaded.  */
#define opf_none	0

/* Operand is the target of an assignment expression or a 
   call-clobbered variable.  */
#define opf_is_def 	(1 << 0)

/* Operand is the target of an assignment expression.  */
#define opf_kill_def 	(1 << 1)

/* No virtual operands should be created in the expression.  This is used
   when traversing ADDR_EXPR nodes which have different semantics than
   other expressions.  Inside an ADDR_EXPR node, the only operands that we
   need to consider are indices into arrays.  For instance, &a.b[i] should
   generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
   VUSE for 'b'.  */
#define opf_no_vops 	(1 << 2)

/* Operand is a "non-specific" kill for call-clobbers and such.  This
   is used to distinguish "reset the world" events from explicit
   MODIFY_EXPRs.  */
#define opf_non_specific  (1 << 3)

/* Array for building all the def operands.  */
static VEC(tree,heap) *build_defs;

/* Array for building all the use operands.  */
static VEC(tree,heap) *build_uses;

/* Array for building all the V_MAY_DEF operands.  */
static VEC(tree,heap) *build_v_may_defs;

/* Array for building all the VUSE operands.  */
static VEC(tree,heap) *build_vuses;

/* Array for building all the V_MUST_DEF operands.  */
static VEC(tree,heap) *build_v_must_defs;

/* These arrays are the cached operand vectors for call clobbered calls.  */
static bool ops_active = false;

static GTY (()) struct ssa_operand_memory_d *operand_memory = NULL;
static unsigned operand_memory_index;

static void get_expr_operands (tree, tree *, int);

static def_optype_p free_defs = NULL;
static use_optype_p free_uses = NULL;
static vuse_optype_p free_vuses = NULL;
static maydef_optype_p free_maydefs = NULL;
static mustdef_optype_p free_mustdefs = NULL;

/* Allocates operand OP of given TYPE from the appropriate free list,
   or of the new value if the list is empty.  */

#define ALLOC_OPTYPE(OP, TYPE)				\
  do							\
    {							\
      TYPE##_optype_p ret = free_##TYPE##s;		\
      if (ret)						\
	free_##TYPE##s = ret->next;			\
      else						\
	ret = ssa_operand_alloc (sizeof (*ret));	\
      (OP) = ret;					\
    } while (0) 

/* Return the DECL_UID of the base variable of T.  */

static inline unsigned
get_name_decl (tree t)
{
  if (TREE_CODE (t) != SSA_NAME)
    return DECL_UID (t);
  else
    return DECL_UID (SSA_NAME_VAR (t));
}


/* Comparison function for qsort used in operand_build_sort_virtual.  */

static int
operand_build_cmp (const void *p, const void *q)
{
  tree e1 = *((const tree *)p);
  tree e2 = *((const tree *)q);
  unsigned int u1,u2;

  u1 = get_name_decl (e1);
  u2 = get_name_decl (e2);

  /* We want to sort in ascending order.  They can never be equal.  */
#ifdef ENABLE_CHECKING
  gcc_assert (u1 != u2);
#endif
  return (u1 > u2 ? 1 : -1);
}


/* Sort the virtual operands in LIST from lowest DECL_UID to highest.  */

static inline void
operand_build_sort_virtual (VEC(tree,heap) *list)
{
  int num = VEC_length (tree, list);

  if (num < 2)
    return;

  if (num == 2)
    {
      if (get_name_decl (VEC_index (tree, list, 0)) 
	  > get_name_decl (VEC_index (tree, list, 1)))
	{  
	  /* Swap elements if in the wrong order.  */
	  tree tmp = VEC_index (tree, list, 0);
	  VEC_replace (tree, list, 0, VEC_index (tree, list, 1));
	  VEC_replace (tree, list, 1, tmp);
	}
      return;
    }

  /* There are 3 or more elements, call qsort.  */
  qsort (VEC_address (tree, list), 
	 VEC_length (tree, list), 
	 sizeof (tree),
	 operand_build_cmp);
}


/*  Return true if the SSA operands cache is active.  */

bool
ssa_operands_active (void)
{
  return ops_active;
}


/* Structure storing statistics on how many call clobbers we have, and
   how many where avoided.  */

static struct 
{
  /* Number of call-clobbered ops we attempt to add to calls in
     add_call_clobber_ops.  */
  unsigned int clobbered_vars;

  /* Number of write-clobbers (V_MAY_DEFs) avoided by using
     not_written information.  */
  unsigned int static_write_clobbers_avoided;

  /* Number of reads (VUSEs) avoided by using not_read information.  */
  unsigned int static_read_clobbers_avoided;
  
  /* Number of write-clobbers avoided because the variable can't escape to
     this call.  */
  unsigned int unescapable_clobbers_avoided;

  /* Number of read-only uses we attempt to add to calls in
     add_call_read_ops.  */
  unsigned int readonly_clobbers;

  /* Number of read-only uses we avoid using not_read information.  */
  unsigned int static_readonly_clobbers_avoided;
} clobber_stats;
  

/* Initialize the operand cache routines.  */

void
init_ssa_operands (void)
{
  build_defs = VEC_alloc (tree, heap, 5);
  build_uses = VEC_alloc (tree, heap, 10);
  build_vuses = VEC_alloc (tree, heap, 25);
  build_v_may_defs = VEC_alloc (tree, heap, 25);
  build_v_must_defs = VEC_alloc (tree, heap, 25);

  gcc_assert (operand_memory == NULL);
  operand_memory_index = SSA_OPERAND_MEMORY_SIZE;
  ops_active = true;
  memset (&clobber_stats, 0, sizeof (clobber_stats));
}


/* Dispose of anything required by the operand routines.  */

void
fini_ssa_operands (void)
{
  struct ssa_operand_memory_d *ptr;
  VEC_free (tree, heap, build_defs);
  VEC_free (tree, heap, build_uses);
  VEC_free (tree, heap, build_v_must_defs);
  VEC_free (tree, heap, build_v_may_defs);
  VEC_free (tree, heap, build_vuses);
  free_defs = NULL;
  free_uses = NULL;
  free_vuses = NULL;
  free_maydefs = NULL;
  free_mustdefs = NULL;
  while ((ptr = operand_memory) != NULL)
    {
      operand_memory = operand_memory->next;
      ggc_free (ptr);
    }

  ops_active = false;
  
  if (dump_file && (dump_flags & TDF_STATS))
    {
      fprintf (dump_file, "Original clobbered vars:%d\n",
	       clobber_stats.clobbered_vars);
      fprintf (dump_file, "Static write clobbers avoided:%d\n",
	       clobber_stats.static_write_clobbers_avoided);
      fprintf (dump_file, "Static read clobbers avoided:%d\n",
	       clobber_stats.static_read_clobbers_avoided);
      fprintf (dump_file, "Unescapable clobbers avoided:%d\n",
	       clobber_stats.unescapable_clobbers_avoided);
      fprintf (dump_file, "Original read-only clobbers:%d\n",
	       clobber_stats.readonly_clobbers);
      fprintf (dump_file, "Static read-only clobbers avoided:%d\n",
	       clobber_stats.static_readonly_clobbers_avoided);
    }
}


/* Return memory for operands of SIZE chunks.  */
                                                                              
static inline void *
ssa_operand_alloc (unsigned size)
{
  char *ptr;
  if (operand_memory_index + size >= SSA_OPERAND_MEMORY_SIZE)
    {
      struct ssa_operand_memory_d *ptr;
      ptr = GGC_NEW (struct ssa_operand_memory_d);
      ptr->next = operand_memory;
      operand_memory = ptr;
      operand_memory_index = 0;
    }
  ptr = &(operand_memory->mem[operand_memory_index]);
  operand_memory_index += size;
  return ptr;
}



/* This routine makes sure that PTR is in an immediate use list, and makes
   sure the stmt pointer is set to the current stmt.  */

static inline void
set_virtual_use_link (use_operand_p ptr, tree stmt)
{
  /*  fold_stmt may have changed the stmt pointers.  */
  if (ptr->stmt != stmt)
    ptr->stmt = stmt;

  /* If this use isn't in a list, add it to the correct list.  */
  if (!ptr->prev)
    link_imm_use (ptr, *(ptr->use));
}

/* Appends ELT after TO, and moves the TO pointer to ELT.  */

#define APPEND_OP_AFTER(ELT, TO)	\
  do					\
    {					\
      (TO)->next = (ELT);		\
      (TO) = (ELT);			\
    } while (0)

/* Appends head of list FROM after TO, and move both pointers
   to their successors.  */

#define MOVE_HEAD_AFTER(FROM, TO)	\
  do					\
    {					\
      APPEND_OP_AFTER (FROM, TO);	\
      (FROM) = (FROM)->next;		\
    } while (0)

/* Moves OP to appropriate freelist.  OP is set to its successor.  */

#define MOVE_HEAD_TO_FREELIST(OP, TYPE)			\
  do							\
    {							\
      TYPE##_optype_p next = (OP)->next;		\
      (OP)->next = free_##TYPE##s;			\
      free_##TYPE##s = (OP);				\
      (OP) = next;					\
    } while (0)

/* Initializes immediate use at USE_PTR to value VAL, and links it to the list
   of immediate uses.  STMT is the current statement.  */

#define INITIALIZE_USE(USE_PTR, VAL, STMT)		\
  do							\
    {							\
      (USE_PTR)->use = (VAL);				\
      link_imm_use_stmt ((USE_PTR), *(VAL), (STMT));	\
    } while (0)

/* Adds OP to the list of defs after LAST, and moves
   LAST to the new element.  */

static inline void
add_def_op (tree *op, def_optype_p *last)
{
  def_optype_p new;

  ALLOC_OPTYPE (new, def);
  DEF_OP_PTR (new) = op;
  APPEND_OP_AFTER (new, *last);  
}

/* Adds OP to the list of uses of statement STMT after LAST, and moves
   LAST to the new element.  */

static inline void
add_use_op (tree stmt, tree *op, use_optype_p *last)
{
  use_optype_p new;

  ALLOC_OPTYPE (new, use);
  INITIALIZE_USE (USE_OP_PTR (new), op, stmt);
  APPEND_OP_AFTER (new, *last);  
}

/* Adds OP to the list of vuses of statement STMT after LAST, and moves
   LAST to the new element.  */

static inline void
add_vuse_op (tree stmt, tree op, vuse_optype_p *last)
{
  vuse_optype_p new;

  ALLOC_OPTYPE (new, vuse);
  VUSE_OP (new) = op;
  INITIALIZE_USE (VUSE_OP_PTR (new), &VUSE_OP (new), stmt);
  APPEND_OP_AFTER (new, *last);  
}

/* Adds OP to the list of maydefs of statement STMT after LAST, and moves
   LAST to the new element.  */

static inline void
add_maydef_op (tree stmt, tree op, maydef_optype_p *last)
{
  maydef_optype_p new;

  ALLOC_OPTYPE (new, maydef);
  MAYDEF_RESULT (new) = op;
  MAYDEF_OP (new) = op;
  INITIALIZE_USE (MAYDEF_OP_PTR (new), &MAYDEF_OP (new), stmt);
  APPEND_OP_AFTER (new, *last);  
}

/* Adds OP to the list of mustdefs of statement STMT after LAST, and moves
   LAST to the new element.  */

static inline void
add_mustdef_op (tree stmt, tree op, mustdef_optype_p *last)
{
  mustdef_optype_p new;

  ALLOC_OPTYPE (new, mustdef);
  MUSTDEF_RESULT (new) = op;
  MUSTDEF_KILL (new) = op;
  INITIALIZE_USE (MUSTDEF_KILL_PTR (new), &MUSTDEF_KILL (new), stmt);
  APPEND_OP_AFTER (new, *last);
}

/* Takes elements from build_defs and turns them into def operands of STMT.
   TODO -- Given that def operands list is not necessarily sorted, merging
	   the operands this way does not make much sense.
	-- Make build_defs VEC of tree *.  */

static inline void
finalize_ssa_def_ops (tree stmt)
{
  unsigned new_i;
  struct def_optype_d new_list;
  def_optype_p old_ops, last;
  tree *old_base;

  new_list.next = NULL;
  last = &new_list;

  old_ops = DEF_OPS (stmt);

  new_i = 0;
  while (old_ops && new_i < VEC_length (tree, build_defs))
    {
      tree *new_base = (tree *) VEC_index (tree, build_defs, new_i);
      old_base = DEF_OP_PTR (old_ops);

      if (old_base == new_base)
        {
	  /* if variables are the same, reuse this node.  */
	  MOVE_HEAD_AFTER (old_ops, last);
	  new_i++;
	}
      else if (old_base < new_base)
	{
	  /* if old is less than new, old goes to the free list.  */
	  MOVE_HEAD_TO_FREELIST (old_ops, def);
	}
      else
	{
	  /* This is a new operand.  */
	  add_def_op (new_base, &last);
	  new_i++;
	}
    }

  /* If there is anything remaining in the build_defs list, simply emit it.  */
  for ( ; new_i < VEC_length (tree, build_defs); new_i++)
    add_def_op ((tree *) VEC_index (tree, build_defs, new_i), &last);

  last->next = NULL;

  /* If there is anything in the old list, free it.  */
  if (old_ops)
    {
      old_ops->next = free_defs;
      free_defs = old_ops;
    }

  /* Now set the stmt's operands.  */
  DEF_OPS (stmt) = new_list.next;

#ifdef ENABLE_CHECKING
  {
    def_optype_p ptr;
    unsigned x = 0;
    for (ptr = DEF_OPS (stmt); ptr; ptr = ptr->next)
      x++;

    gcc_assert (x == VEC_length (tree, build_defs));
  }
#endif
}

/* This routine will create stmt operands for STMT from the def build list.  */

static void
finalize_ssa_defs (tree stmt)
{
  unsigned int num = VEC_length (tree, build_defs);

  /* There should only be a single real definition per assignment.  */
  gcc_assert ((stmt && TREE_CODE (stmt) != MODIFY_EXPR) || num <= 1);

  /* If there is an old list, often the new list is identical, or close, so
     find the elements at the beginning that are the same as the vector.  */
  finalize_ssa_def_ops (stmt);
  VEC_truncate (tree, build_defs, 0);
}

/* Takes elements from build_uses and turns them into use operands of STMT.
   TODO -- Make build_uses VEC of tree *.  */

static inline void
finalize_ssa_use_ops (tree stmt)
{
  unsigned new_i;
  struct use_optype_d new_list;
  use_optype_p old_ops, ptr, last;

  new_list.next = NULL;
  last = &new_list;

  old_ops = USE_OPS (stmt);

  /* If there is anything in the old list, free it.  */
  if (old_ops)
    {
      for (ptr = old_ops; ptr; ptr = ptr->next)
	delink_imm_use (USE_OP_PTR (ptr));
      old_ops->next = free_uses;
      free_uses = old_ops;
    }

  /* Now create nodes for all the new nodes.  */
  for (new_i = 0; new_i < VEC_length (tree, build_uses); new_i++)
    add_use_op (stmt, (tree *) VEC_index (tree, build_uses, new_i), &last);

  last->next = NULL;

  /* Now set the stmt's operands.  */
  USE_OPS (stmt) = new_list.next;

#ifdef ENABLE_CHECKING
  {
    unsigned x = 0;
    for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
      x++;

    gcc_assert (x == VEC_length (tree, build_uses));
  }
#endif
}

/* Return a new use operand vector for STMT, comparing to OLD_OPS_P.  */
                                                                              
static void
finalize_ssa_uses (tree stmt)
{
#ifdef ENABLE_CHECKING
  {
    unsigned x;
    unsigned num = VEC_length (tree, build_uses);

    /* If the pointer to the operand is the statement itself, something is
       wrong.  It means that we are pointing to a local variable (the 
       initial call to update_stmt_operands does not pass a pointer to a 
       statement).  */
    for (x = 0; x < num; x++)
      gcc_assert (*((tree *)VEC_index (tree, build_uses, x)) != stmt);
  }
#endif
  finalize_ssa_use_ops (stmt);
  VEC_truncate (tree, build_uses, 0);
}


/* Takes elements from build_v_may_defs and turns them into maydef operands of
   STMT.  */

static inline void
finalize_ssa_v_may_def_ops (tree stmt)
{
  unsigned new_i;
  struct maydef_optype_d new_list;
  maydef_optype_p old_ops, ptr, last;
  tree act;
  unsigned old_base, new_base;

  new_list.next = NULL;
  last = &new_list;

  old_ops = MAYDEF_OPS (stmt);

  new_i = 0;
  while (old_ops && new_i < VEC_length (tree, build_v_may_defs))
    {
      act = VEC_index (tree, build_v_may_defs, new_i);
      new_base = get_name_decl (act);
      old_base = get_name_decl (MAYDEF_OP (old_ops));

      if (old_base == new_base)
        {
	  /* if variables are the same, reuse this node.  */
	  MOVE_HEAD_AFTER (old_ops, last);
	  set_virtual_use_link (MAYDEF_OP_PTR (last), stmt);
	  new_i++;
	}
      else if (old_base < new_base)
	{
	  /* if old is less than new, old goes to the free list.  */
	  delink_imm_use (MAYDEF_OP_PTR (old_ops));
	  MOVE_HEAD_TO_FREELIST (old_ops, maydef);
	}
      else
	{
	  /* This is a new operand.  */
	  add_maydef_op (stmt, act, &last);
	  new_i++;
	}
    }

  /* If there is anything remaining in the build_v_may_defs list, simply emit it.  */
  for ( ; new_i < VEC_length (tree, build_v_may_defs); new_i++)
    add_maydef_op (stmt, VEC_index (tree, build_v_may_defs, new_i), &last);

  last->next = NULL;

  /* If there is anything in the old list, free it.  */
  if (old_ops)
    {
      for (ptr = old_ops; ptr; ptr = ptr->next)
	delink_imm_use (MAYDEF_OP_PTR (ptr));
      old_ops->next = free_maydefs;
      free_maydefs = old_ops;
    }

  /* Now set the stmt's operands.  */
  MAYDEF_OPS (stmt) = new_list.next;

#ifdef ENABLE_CHECKING
  {
    unsigned x = 0;
    for (ptr = MAYDEF_OPS (stmt); ptr; ptr = ptr->next)
      x++;

    gcc_assert (x == VEC_length (tree, build_v_may_defs));
  }
#endif
}

static void
finalize_ssa_v_may_defs (tree stmt)
{
  finalize_ssa_v_may_def_ops (stmt);
}
                                                                               

/* Clear the in_list bits and empty the build array for V_MAY_DEFs.  */

static inline void
cleanup_v_may_defs (void)
{
  unsigned x, num;
  num = VEC_length (tree, build_v_may_defs);

  for (x = 0; x < num; x++)
    {
      tree t = VEC_index (tree, build_v_may_defs, x);
      if (TREE_CODE (t) != SSA_NAME)
	{
	  var_ann_t ann = var_ann (t);
	  ann->in_v_may_def_list = 0;
	}
    }
  VEC_truncate (tree, build_v_may_defs, 0);
}                                                                             


/* Takes elements from build_vuses and turns them into vuse operands of
   STMT.  */

static inline void
finalize_ssa_vuse_ops (tree stmt)
{
  unsigned new_i;
  struct vuse_optype_d new_list;
  vuse_optype_p old_ops, ptr, last;
  tree act;
  unsigned old_base, new_base;

  new_list.next = NULL;
  last = &new_list;

  old_ops = VUSE_OPS (stmt);

  new_i = 0;
  while (old_ops && new_i < VEC_length (tree, build_vuses))
    {
      act = VEC_index (tree, build_vuses, new_i);
      new_base = get_name_decl (act);
      old_base = get_name_decl (VUSE_OP (old_ops));

      if (old_base == new_base)
        {
	  /* if variables are the same, reuse this node.  */
	  MOVE_HEAD_AFTER (old_ops, last);
	  set_virtual_use_link (VUSE_OP_PTR (last), stmt);
	  new_i++;
	}
      else if (old_base < new_base)
	{
	  /* if old is less than new, old goes to the free list.  */
	  delink_imm_use (USE_OP_PTR (old_ops));
	  MOVE_HEAD_TO_FREELIST (old_ops, vuse);
	}
      else
	{
	  /* This is a new operand.  */
	  add_vuse_op (stmt, act, &last);
	  new_i++;
	}
    }

  /* If there is anything remaining in the build_vuses list, simply emit it.  */
  for ( ; new_i < VEC_length (tree, build_vuses); new_i++)
    add_vuse_op (stmt, VEC_index (tree, build_vuses, new_i), &last);

  last->next = NULL;

  /* If there is anything in the old list, free it.  */
  if (old_ops)
    {
      for (ptr = old_ops; ptr; ptr = ptr->next)
	delink_imm_use (VUSE_OP_PTR (ptr));
      old_ops->next = free_vuses;
      free_vuses = old_ops;
    }

  /* Now set the stmt's operands.  */
  VUSE_OPS (stmt) = new_list.next;

#ifdef ENABLE_CHECKING
  {
    unsigned x = 0;
    for (ptr = VUSE_OPS (stmt); ptr; ptr = ptr->next)
      x++;

    gcc_assert (x == VEC_length (tree, build_vuses));
  }
#endif
}
                                                                              
/* Return a new VUSE operand vector, comparing to OLD_OPS_P.  */
                                                                              
static void
finalize_ssa_vuses (tree stmt)
{
  unsigned num, num_v_may_defs;
  unsigned vuse_index;

  /* Remove superfluous VUSE operands.  If the statement already has a
     V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is
     not needed because V_MAY_DEFs imply a VUSE of the variable.  For
     instance, suppose that variable 'a' is aliased:

	      # VUSE <a_2>
	      # a_3 = V_MAY_DEF <a_2>
	      a = a + 1;

     The VUSE <a_2> is superfluous because it is implied by the
     V_MAY_DEF operation.  */
  num = VEC_length (tree, build_vuses);
  num_v_may_defs = VEC_length (tree, build_v_may_defs);

  if (num > 0 && num_v_may_defs > 0)
    {
      for (vuse_index = 0; vuse_index < VEC_length (tree, build_vuses); )
        {
	  tree vuse;
	  vuse = VEC_index (tree, build_vuses, vuse_index);
	  if (TREE_CODE (vuse) != SSA_NAME)
	    {
	      var_ann_t ann = var_ann (vuse);
	      ann->in_vuse_list = 0;
	      if (ann->in_v_may_def_list)
	        {
		  VEC_ordered_remove (tree, build_vuses, vuse_index);
		  continue;
		}
	    }
	  vuse_index++;
	}
    }
  else
    {
      /* Clear out the in_list bits.  */
      for (vuse_index = 0;
	  vuse_index < VEC_length (tree, build_vuses);
	  vuse_index++)
	{
	  tree t = VEC_index (tree, build_vuses, vuse_index);
	  if (TREE_CODE (t) != SSA_NAME)
	    {
	      var_ann_t ann = var_ann (t);
	      ann->in_vuse_list = 0;
	    }
	}
    }

  finalize_ssa_vuse_ops (stmt);

  /* The V_MAY_DEF build vector wasn't cleaned up because we needed it.  */
  cleanup_v_may_defs ();
                                                                              
  /* Free the VUSEs build vector.  */
  VEC_truncate (tree, build_vuses, 0);

}

/* Takes elements from build_v_must_defs and turns them into mustdef operands of
   STMT.  */

static inline void
finalize_ssa_v_must_def_ops (tree stmt)
{
  unsigned new_i;
  struct mustdef_optype_d new_list;
  mustdef_optype_p old_ops, ptr, last;
  tree act;
  unsigned old_base, new_base;

  new_list.next = NULL;
  last = &new_list;

  old_ops = MUSTDEF_OPS (stmt);

  new_i = 0;
  while (old_ops && new_i < VEC_length (tree, build_v_must_defs))
    {
      act = VEC_index (tree, build_v_must_defs, new_i);
      new_base = get_name_decl (act);
      old_base = get_name_decl (MUSTDEF_KILL (old_ops));

      if (old_base == new_base)
        {
	  /* If variables are the same, reuse this node.  */
	  MOVE_HEAD_AFTER (old_ops, last);
	  set_virtual_use_link (MUSTDEF_KILL_PTR (last), stmt);
	  new_i++;
	}
      else if (old_base < new_base)
	{
	  /* If old is less than new, old goes to the free list.  */
	  delink_imm_use (MUSTDEF_KILL_PTR (old_ops));
	  MOVE_HEAD_TO_FREELIST (old_ops, mustdef);
	}
      else
	{
	  /* This is a new operand.  */
	  add_mustdef_op (stmt, act, &last);
	  new_i++;
	}
    }

  /* If there is anything remaining in the build_v_must_defs list, simply emit it.  */
  for ( ; new_i < VEC_length (tree, build_v_must_defs); new_i++)
    add_mustdef_op (stmt, VEC_index (tree, build_v_must_defs, new_i), &last);

  last->next = NULL;

  /* If there is anything in the old list, free it.  */
  if (old_ops)
    {
      for (ptr = old_ops; ptr; ptr = ptr->next)
	delink_imm_use (MUSTDEF_KILL_PTR (ptr));
      old_ops->next = free_mustdefs;
      free_mustdefs = old_ops;
    }

  /* Now set the stmt's operands.  */
  MUSTDEF_OPS (stmt) = new_list.next;

#ifdef ENABLE_CHECKING
  {
    unsigned x = 0;
    for (ptr = MUSTDEF_OPS (stmt); ptr; ptr = ptr->next)
      x++;

    gcc_assert (x == VEC_length (tree, build_v_must_defs));
  }
#endif
}

static void
finalize_ssa_v_must_defs (tree stmt)
{
  /* In the presence of subvars, there may be more than one V_MUST_DEF
     per statement (one for each subvar).  It is a bit expensive to
     verify that all must-defs in a statement belong to subvars if
     there is more than one must-def, so we don't do it.  Suffice to
     say, if you reach here without having subvars, and have num >1,
     you have hit a bug.  */
  finalize_ssa_v_must_def_ops (stmt);
  VEC_truncate (tree, build_v_must_defs, 0);
}


/* Finalize all the build vectors, fill the new ones into INFO.  */
                                                                              
static inline void
finalize_ssa_stmt_operands (tree stmt)
{
  finalize_ssa_defs (stmt);
  finalize_ssa_uses (stmt);
  finalize_ssa_v_must_defs (stmt);
  finalize_ssa_v_may_defs (stmt);
  finalize_ssa_vuses (stmt);
}


/* Start the process of building up operands vectors in INFO.  */

static inline void
start_ssa_stmt_operands (void)
{
  gcc_assert (VEC_length (tree, build_defs) == 0);
  gcc_assert (VEC_length (tree, build_uses) == 0);
  gcc_assert (VEC_length (tree, build_vuses) == 0);
  gcc_assert (VEC_length (tree, build_v_may_defs) == 0);
  gcc_assert (VEC_length (tree, build_v_must_defs) == 0);
}


/* Add DEF_P to the list of pointers to operands.  */

static inline void
append_def (tree *def_p)
{
  VEC_safe_push (tree, heap, build_defs, (tree)def_p);
}


/* Add USE_P to the list of pointers to operands.  */

static inline void
append_use (tree *use_p)
{
  VEC_safe_push (tree, heap, build_uses, (tree)use_p);
}


/* Add a new virtual may def for variable VAR to the build array.  */

static inline void
append_v_may_def (tree var)
{
  if (TREE_CODE (var) != SSA_NAME)
    {
      var_ann_t ann = get_var_ann (var);

      /* Don't allow duplicate entries.  */
      if (ann->in_v_may_def_list)
	return;
      ann->in_v_may_def_list = 1;
    }

  VEC_safe_push (tree, heap, build_v_may_defs, (tree)var);
}


/* Add VAR to the list of virtual uses.  */

static inline void
append_vuse (tree var)
{
  /* Don't allow duplicate entries.  */
  if (TREE_CODE (var) != SSA_NAME)
    {
      var_ann_t ann = get_var_ann (var);

      if (ann->in_vuse_list || ann->in_v_may_def_list)
        return;
      ann->in_vuse_list = 1;
    }

  VEC_safe_push (tree, heap, build_vuses, (tree)var);
}


/* Add VAR to the list of virtual must definitions for INFO.  */

static inline void
append_v_must_def (tree var)
{
  unsigned i;

  /* Don't allow duplicate entries.  */
  for (i = 0; i < VEC_length (tree, build_v_must_defs); i++)
    if (var == VEC_index (tree, build_v_must_defs, i))
      return;

  VEC_safe_push (tree, heap, build_v_must_defs, (tree)var);
}


/* REF is a tree that contains the entire pointer dereference
   expression, if available, or NULL otherwise.  ALIAS is the variable
   we are asking if REF can access.  OFFSET and SIZE come from the
   memory access expression that generated this virtual operand.  */

static bool
access_can_touch_variable (tree ref, tree alias, HOST_WIDE_INT offset,
			   HOST_WIDE_INT size)
{  
  bool offsetgtz = offset > 0;
  unsigned HOST_WIDE_INT uoffset = (unsigned HOST_WIDE_INT) offset;
  tree base = ref ? get_base_address (ref) : NULL;

  /* If ALIAS is .GLOBAL_VAR then the memory reference REF must be
     using a call-clobbered memory tag.  By definition, call-clobbered
     memory tags can always touch .GLOBAL_VAR.  */
  if (alias == global_var)
    return true;

  /* We cannot prune nonlocal aliases because they are not type
     specific.  */
  if (alias == nonlocal_all)
    return true;

  /* If ALIAS is an SFT, it can't be touched if the offset     
     and size of the access is not overlapping with the SFT offset and
     size.  This is only true if we are accessing through a pointer
     to a type that is the same as SFT_PARENT_VAR.  Otherwise, we may
     be accessing through a pointer to some substruct of the
     structure, and if we try to prune there, we will have the wrong
     offset, and get the wrong answer.
     i.e., we can't prune without more work if we have something like

     struct gcc_target
     {
       struct asm_out
       {
         const char *byte_op;
	 struct asm_int_op
	 {    
	   const char *hi;
	 } aligned_op;
       } asm_out;
     } targetm;
     
     foo = &targetm.asm_out.aligned_op;
     return foo->hi;

     SFT.1, which represents hi, will have SFT_OFFSET=32 because in
     terms of SFT_PARENT_VAR, that is where it is.
     However, the access through the foo pointer will be at offset 0.  */
  if (size != -1
      && TREE_CODE (alias) == STRUCT_FIELD_TAG
      && base
      && TREE_TYPE (base) == TREE_TYPE (SFT_PARENT_VAR (alias))
      && !overlap_subvar (offset, size, alias, NULL))
    {
#ifdef ACCESS_DEBUGGING
      fprintf (stderr, "Access to ");
      print_generic_expr (stderr, ref, 0);
      fprintf (stderr, " may not touch ");
      print_generic_expr (stderr, alias, 0);
      fprintf (stderr, " in function %s\n", get_name (current_function_decl));
#endif
      return false;
    }

  /* Without strict aliasing, it is impossible for a component access
     through a pointer to touch a random variable, unless that
     variable *is* a structure or a pointer.

     That is, given p->c, and some random global variable b,
     there is no legal way that p->c could be an access to b.
     
     Without strict aliasing on, we consider it legal to do something
     like:

     struct foos { int l; };
     int foo;
     static struct foos *getfoo(void);
     int main (void)
     {
       struct foos *f = getfoo();
       f->l = 1;
       foo = 2;
       if (f->l == 1)
         abort();
       exit(0);
     }
     static struct foos *getfoo(void)     
     { return (struct foos *)&foo; }
     
     (taken from 20000623-1.c)

     The docs also say/imply that access through union pointers
     is legal (but *not* if you take the address of the union member,
     i.e. the inverse), such that you can do

     typedef union {
       int d;
     } U;

     int rv;
     void breakme()
     {
       U *rv0;
       U *pretmp = (U*)&rv;
       rv0 = pretmp;
       rv0->d = 42;    
     }
     To implement this, we just punt on accesses through union
     pointers entirely.
  */
  else if (ref 
	   && flag_strict_aliasing
	   && TREE_CODE (ref) != INDIRECT_REF
	   && !MTAG_P (alias)
	   && (TREE_CODE (base) != INDIRECT_REF
	       || TREE_CODE (TREE_TYPE (base)) != UNION_TYPE)
	   && !AGGREGATE_TYPE_P (TREE_TYPE (alias))
	   && TREE_CODE (TREE_TYPE (alias)) != COMPLEX_TYPE
#if 0
	   /* FIXME: PR tree-optimization/29680.  */
	   && !var_ann (alias)->is_heapvar
#else
	   && !POINTER_TYPE_P (TREE_TYPE (alias))
#endif
	   /* When the struct has may_alias attached to it, we need not to
	      return true.  */
	   && get_alias_set (base))
    {
#ifdef ACCESS_DEBUGGING
      fprintf (stderr, "Access to ");
      print_generic_expr (stderr, ref, 0);
      fprintf (stderr, " may not touch ");
      print_generic_expr (stderr, alias, 0);
      fprintf (stderr, " in function %s\n", get_name (current_function_decl));
#endif
      return false;
    }

  /* If the offset of the access is greater than the size of one of
     the possible aliases, it can't be touching that alias, because it
     would be past the end of the structure.  */
  else if (ref
	   && flag_strict_aliasing
	   && TREE_CODE (ref) != INDIRECT_REF
	   && !MTAG_P (alias)
	   && !POINTER_TYPE_P (TREE_TYPE (alias))
	   && offsetgtz
	   && DECL_SIZE (alias)
	   && TREE_CODE (DECL_SIZE (alias)) == INTEGER_CST
	   && uoffset > TREE_INT_CST_LOW (DECL_SIZE (alias)))
    {
#ifdef ACCESS_DEBUGGING
      fprintf (stderr, "Access to ");
      print_generic_expr (stderr, ref, 0);
      fprintf (stderr, " may not touch ");
      print_generic_expr (stderr, alias, 0);
      fprintf (stderr, " in function %s\n", get_name (current_function_decl));
#endif
      return false;
    }	   

  return true;
}


/* Add VAR to the virtual operands array.  FLAGS is as in
   get_expr_operands.  FULL_REF is a tree that contains the entire
   pointer dereference expression, if available, or NULL otherwise.
   OFFSET and SIZE come from the memory access expression that
   generated this virtual operand.  FOR_CLOBBER is true is this is
   adding a virtual operand for a call clobber.  */

static void 
add_virtual_operand (tree var, stmt_ann_t s_ann, int flags,
		     tree full_ref, HOST_WIDE_INT offset,
		     HOST_WIDE_INT size, bool for_clobber)
{
  VEC(tree,gc) *aliases;
  tree sym;
  var_ann_t v_ann;
  
  sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
  v_ann = var_ann (sym);
  
  /* Mark statements with volatile operands.  Optimizers should back
     off from statements having volatile operands.  */
  if (TREE_THIS_VOLATILE (sym) && s_ann)
    s_ann->has_volatile_ops = true;

  /* If the variable cannot be modified and this is a V_MAY_DEF change
     it into a VUSE.  This happens when read-only variables are marked
     call-clobbered and/or aliased to writable variables.  So we only
     check that this only happens on non-specific stores.

     Note that if this is a specific store, i.e. associated with a
     modify_expr, then we can't suppress the V_MAY_DEF, lest we run
     into validation problems.

     This can happen when programs cast away const, leaving us with a
     store to read-only memory.  If the statement is actually executed
     at runtime, then the program is ill formed.  If the statement is
     not executed then all is well.  At the very least, we cannot ICE.  */
  if ((flags & opf_non_specific) && unmodifiable_var_p (var))
    flags &= ~(opf_is_def | opf_kill_def);
  
  /* The variable is not a GIMPLE register.  Add it (or its aliases) to
     virtual operands, unless the caller has specifically requested
     not to add virtual operands (used when adding operands inside an
     ADDR_EXPR expression).  */
  if (flags & opf_no_vops)
    return;
  
  aliases = v_ann->may_aliases;
  if (aliases == NULL)
    {
      /* The variable is not aliased or it is an alias tag.  */
      if (flags & opf_is_def)
	{
	  if (flags & opf_kill_def)
	    {
	      /* V_MUST_DEF for non-aliased, non-GIMPLE register 
		 variable definitions.  */
	      gcc_assert (!MTAG_P (var)
			  || TREE_CODE (var) == STRUCT_FIELD_TAG);
	      append_v_must_def (var);
	    }
	  else
	    {
	      /* Add a V_MAY_DEF for call-clobbered variables and
		 memory tags.  */
	      append_v_may_def (var);
	    }
	}
      else
	append_vuse (var);
    }
  else
    {
      unsigned i;
      tree al;
      
      /* The variable is aliased.  Add its aliases to the virtual
	 operands.  */
      gcc_assert (VEC_length (tree, aliases) != 0);
      
      if (flags & opf_is_def)
	{
	  
	  bool none_added = true;

	  for (i = 0; VEC_iterate (tree, aliases, i, al); i++)
	    {
	      if (!access_can_touch_variable (full_ref, al, offset, size))
		continue;
	      
	      none_added = false;
	      append_v_may_def (al);
	    }

	  /* If the variable is also an alias tag, add a virtual
	     operand for it, otherwise we will miss representing
	     references to the members of the variable's alias set.	     
	     This fixes the bug in gcc.c-torture/execute/20020503-1.c.
	     
	     It is also necessary to add bare defs on clobbers for
	     SMT's, so that bare SMT uses caused by pruning all the
	     aliases will link up properly with calls.   In order to
	     keep the number of these bare defs we add down to the
	     minimum necessary, we keep track of which SMT's were used
	     alone in statement vdefs or VUSEs.  */
	  if (v_ann->is_aliased
	      || none_added
	      || (TREE_CODE (var) == SYMBOL_MEMORY_TAG
		  && for_clobber
		  && SMT_USED_ALONE (var)))
	    {
	      /* Every bare SMT def we add should have SMT_USED_ALONE
		 set on it, or else we will get the wrong answer on
		 clobbers.  */
	      if (none_added
		  && !updating_used_alone && aliases_computed_p
		  && TREE_CODE (var) == SYMBOL_MEMORY_TAG)
		gcc_assert (SMT_USED_ALONE (var));

	      append_v_may_def (var);
	    }
	}
      else
	{
	  bool none_added = true;
	  for (i = 0; VEC_iterate (tree, aliases, i, al); i++)
	    {
	      if (!access_can_touch_variable (full_ref, al, offset, size))
		continue;
	      none_added = false;
	      append_vuse (al);
	    }

	  /* Similarly, append a virtual uses for VAR itself, when
	     it is an alias tag.  */
	  if (v_ann->is_aliased || none_added)
	    append_vuse (var);
	}
    }
}


/* Add *VAR_P to the appropriate operand array for S_ANN.  FLAGS is as in
   get_expr_operands.  If *VAR_P is a GIMPLE register, it will be added to
   the statement's real operands, otherwise it is added to virtual
   operands.  */

static void
add_stmt_operand (tree *var_p, stmt_ann_t s_ann, int flags)
{
  bool is_real_op;
  tree var, sym;
  var_ann_t v_ann;

  var = *var_p;
  gcc_assert (SSA_VAR_P (var));

  is_real_op = is_gimple_reg (var);

  /* If this is a real operand, the operand is either an SSA name or a 
     decl.  Virtual operands may only be decls.  */
  gcc_assert (is_real_op || DECL_P (var));

  sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
  v_ann = var_ann (sym);

  /* Mark statements with volatile operands.  Optimizers should back
     off from statements having volatile operands.  */
  if (TREE_THIS_VOLATILE (sym) && s_ann)
    s_ann->has_volatile_ops = true;

  if (is_real_op)
    {
      /* The variable is a GIMPLE register.  Add it to real operands.  */
      if (flags & opf_is_def)
	append_def (var_p);
      else
	append_use (var_p);
    }
  else
    add_virtual_operand (var, s_ann, flags, NULL_TREE, 0, -1, false);
}


/* A subroutine of get_expr_operands to handle INDIRECT_REF,
   ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF.  

   STMT is the statement being processed, EXPR is the INDIRECT_REF
      that got us here.
   
   FLAGS is as in get_expr_operands.

   FULL_REF contains the full pointer dereference expression, if we
      have it, or NULL otherwise.

   OFFSET and SIZE are the location of the access inside the
      dereferenced pointer, if known.

   RECURSE_ON_BASE should be set to true if we want to continue
      calling get_expr_operands on the base pointer, and false if
      something else will do it for us.  */

static void
get_indirect_ref_operands (tree stmt, tree expr, int flags,
			   tree full_ref,
			   HOST_WIDE_INT offset, HOST_WIDE_INT size,
			   bool recurse_on_base)
{
  tree *pptr = &TREE_OPERAND (expr, 0);
  tree ptr = *pptr;
  stmt_ann_t s_ann = stmt_ann (stmt);

  /* Stores into INDIRECT_REF operands are never killing definitions.  */
  flags &= ~opf_kill_def;

  if (SSA_VAR_P (ptr))
    {
      struct ptr_info_def *pi = NULL;

      /* If PTR has flow-sensitive points-to information, use it.  */
      if (TREE_CODE (ptr) == SSA_NAME
	  && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
	  && pi->name_mem_tag)
	{
	  /* PTR has its own memory tag.  Use it.  */
	  add_virtual_operand (pi->name_mem_tag, s_ann, flags,
			       full_ref, offset, size, false);
	}
      else
	{
	  /* If PTR is not an SSA_NAME or it doesn't have a name
	     tag, use its symbol memory tag.  */
	  var_ann_t v_ann;

	  /* If we are emitting debugging dumps, display a warning if
	     PTR is an SSA_NAME with no flow-sensitive alias
	     information.  That means that we may need to compute
	     aliasing again.  */
	  if (dump_file
	      && TREE_CODE (ptr) == SSA_NAME
	      && pi == NULL)
	    {
	      fprintf (dump_file,
		  "NOTE: no flow-sensitive alias info for ");
	      print_generic_expr (dump_file, ptr, dump_flags);
	      fprintf (dump_file, " in ");
	      print_generic_stmt (dump_file, stmt, dump_flags);
	    }

	  if (TREE_CODE (ptr) == SSA_NAME)
	    ptr = SSA_NAME_VAR (ptr);
	  v_ann = var_ann (ptr);

	  if (v_ann->symbol_mem_tag)
	    add_virtual_operand (v_ann->symbol_mem_tag, s_ann, flags,
				 full_ref, offset, size, false);
	}
    }
  else if (TREE_CODE (ptr) == INTEGER_CST)
    {
      /* If a constant is used as a pointer, we can't generate a real
	 operand for it but we mark the statement volatile to prevent
	 optimizations from messing things up.  */
      if (s_ann)
	s_ann->has_volatile_ops = true;
      return;
    }
  else
    {
      /* Ok, this isn't even is_gimple_min_invariant.  Something's broke.  */
      gcc_unreachable ();
    }

  /* If requested, add a USE operand for the base pointer.  */
  if (recurse_on_base)
    get_expr_operands (stmt, pptr, opf_none);
}


/* A subroutine of get_expr_operands to handle TARGET_MEM_REF.  */

static void
get_tmr_operands (tree stmt, tree expr, int flags)
{
  tree tag = TMR_TAG (expr), ref;
  HOST_WIDE_INT offset, size, maxsize;
  subvar_t svars, sv;
  stmt_ann_t s_ann = stmt_ann (stmt);

  /* First record the real operands.  */
  get_expr_operands (stmt, &TMR_BASE (expr), opf_none);
  get_expr_operands (stmt, &TMR_INDEX (expr), opf_none);

  /* MEM_REFs should never be killing.  */
  flags &= ~opf_kill_def;

  if (TMR_SYMBOL (expr))
    {
      stmt_ann_t ann = stmt_ann (stmt);
      add_to_addressable_set (TMR_SYMBOL (expr), &ann->addresses_taken);
    }

  if (!tag)
    {
      /* Something weird, so ensure that we will be careful.  */
      stmt_ann (stmt)->has_volatile_ops = true;
      return;
    }

  if (DECL_P (tag))
    {
      get_expr_operands (stmt, &tag, flags);
      return;
    }

  ref = get_ref_base_and_extent (tag, &offset, &size, &maxsize);
  gcc_assert (ref != NULL_TREE);
  svars = get_subvars_for_var (ref);
  for (sv = svars; sv; sv = sv->next)
    {
      bool exact;		
      if (overlap_subvar (offset, maxsize, sv->var, &exact))
	{
	  int subvar_flags = flags;
	  if (!exact || size != maxsize)
	    subvar_flags &= ~opf_kill_def;
	  add_stmt_operand (&sv->var, s_ann, subvar_flags);
	}
    }
}


/* Add clobbering definitions for .GLOBAL_VAR or for each of the call
   clobbered variables in the function.  */

static void
add_call_clobber_ops (tree stmt, tree callee)
{
  unsigned u;
  bitmap_iterator bi;
  stmt_ann_t s_ann = stmt_ann (stmt);
  bitmap not_read_b, not_written_b;
  
  /* Functions that are not const, pure or never return may clobber
     call-clobbered variables.  */
  if (s_ann)
    s_ann->makes_clobbering_call = true;

  /* If we created .GLOBAL_VAR earlier, just use it.  See compute_may_aliases 
     for the heuristic used to decide whether to create .GLOBAL_VAR or not.  */
  if (global_var)
    {
      add_stmt_operand (&global_var, s_ann, opf_is_def);
      return;
    }

  /* Get info for local and module level statics.  There is a bit
     set for each static if the call being processed does not read
     or write that variable.  */
  not_read_b = callee ? ipa_reference_get_not_read_global (callee) : NULL; 
  not_written_b = callee ? ipa_reference_get_not_written_global (callee) : NULL; 
  /* Add a V_MAY_DEF operand for every call clobbered variable.  */
  EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, u, bi)
    {
      tree var = referenced_var_lookup (u);
      unsigned int escape_mask = var_ann (var)->escape_mask;
      tree real_var = var;
      bool not_read;
      bool not_written;
      
      /* Not read and not written are computed on regular vars, not
	 subvars, so look at the parent var if this is an SFT. */
      if (TREE_CODE (var) == STRUCT_FIELD_TAG)
	real_var = SFT_PARENT_VAR (var);

      not_read = not_read_b ? bitmap_bit_p (not_read_b, 
					    DECL_UID (real_var)) : false;
      not_written = not_written_b ? bitmap_bit_p (not_written_b, 
						  DECL_UID (real_var)) : false;
      gcc_assert (!unmodifiable_var_p (var));
      
      clobber_stats.clobbered_vars++;

      /* See if this variable is really clobbered by this function.  */

      /* Trivial case: Things escaping only to pure/const are not
	 clobbered by non-pure-const, and only read by pure/const. */
      if ((escape_mask & ~(ESCAPE_TO_PURE_CONST)) == 0)
	{
	  tree call = get_call_expr_in (stmt);
	  if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
	    {
	      add_stmt_operand (&var, s_ann, opf_none);
	      clobber_stats.unescapable_clobbers_avoided++;
	      continue;
	    }
	  else
	    {
	      clobber_stats.unescapable_clobbers_avoided++;
	      continue;
	    }
	}
            
      if (not_written)
	{
	  clobber_stats.static_write_clobbers_avoided++;
	  if (!not_read)
	    add_stmt_operand (&var, s_ann, opf_none);
	  else
	    clobber_stats.static_read_clobbers_avoided++;
	}
      else
	add_virtual_operand (var, s_ann, opf_is_def, NULL, 0, -1, true);
    }
}


/* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
   function.  */

static void
add_call_read_ops (tree stmt, tree callee)
{
  unsigned u;
  bitmap_iterator bi;
  stmt_ann_t s_ann = stmt_ann (stmt);
  bitmap not_read_b;

  /* if the function is not pure, it may reference memory.  Add
     a VUSE for .GLOBAL_VAR if it has been created.  See add_referenced_var
     for the heuristic used to decide whether to create .GLOBAL_VAR.  */
  if (global_var)
    {
      add_stmt_operand (&global_var, s_ann, opf_none);
      return;
    }
  
  not_read_b = callee ? ipa_reference_get_not_read_global (callee) : NULL; 

  /* Add a VUSE for each call-clobbered variable.  */
  EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, u, bi)
    {
      tree var = referenced_var (u);
      tree real_var = var;
      bool not_read;
      
      clobber_stats.readonly_clobbers++;

      /* Not read and not written are computed on regular vars, not
	 subvars, so look at the parent var if this is an SFT. */

      if (TREE_CODE (var) == STRUCT_FIELD_TAG)
	real_var = SFT_PARENT_VAR (var);

      not_read = not_read_b ? bitmap_bit_p (not_read_b, DECL_UID (real_var))
	                    : false;
      
      if (not_read)
	{
	  clobber_stats.static_readonly_clobbers_avoided++;
	  continue;
	}
            
      add_stmt_operand (&var, s_ann, opf_none | opf_non_specific);
    }
}


/* A subroutine of get_expr_operands to handle CALL_EXPR.  */

static void
get_call_expr_operands (tree stmt, tree expr)
{
  tree op;
  int call_flags = call_expr_flags (expr);

  /* If aliases have been computed already, add V_MAY_DEF or V_USE
     operands for all the symbols that have been found to be
     call-clobbered.
     
     Note that if aliases have not been computed, the global effects
     of calls will not be included in the SSA web. This is fine
     because no optimizer should run before aliases have been
     computed.  By not bothering with virtual operands for CALL_EXPRs
     we avoid adding superfluous virtual operands, which can be a
     significant compile time sink (See PR 15855).  */
  if (aliases_computed_p
      && !bitmap_empty_p (call_clobbered_vars)
      && !(call_flags & ECF_NOVOPS))
    {
      /* A 'pure' or a 'const' function never call-clobbers anything. 
	 A 'noreturn' function might, but since we don't return anyway 
	 there is no point in recording that.  */ 
      if (TREE_SIDE_EFFECTS (expr)
	  && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
	add_call_clobber_ops (stmt, get_callee_fndecl (expr));
      else if (!(call_flags & ECF_CONST))
	add_call_read_ops (stmt, get_callee_fndecl (expr));
    }

  /* Find uses in the called function.  */
  get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);

  for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
    get_expr_operands (stmt, &TREE_VALUE (op), opf_none);

  get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
}


/* Scan operands in the ASM_EXPR stmt referred to in INFO.  */

static void
get_asm_expr_operands (tree stmt)
{
  stmt_ann_t s_ann = stmt_ann (stmt);
  int noutputs = list_length (ASM_OUTPUTS (stmt));
  const char **oconstraints
    = (const char **) alloca ((noutputs) * sizeof (const char *));
  int i;
  tree link;
  const char *constraint;
  bool allows_mem, allows_reg, is_inout;

  for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
    {
      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
      oconstraints[i] = constraint;
      parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
	                       &allows_reg, &is_inout);

      /* This should have been split in gimplify_asm_expr.  */
      gcc_assert (!allows_reg || !is_inout);

      /* Memory operands are addressable.  Note that STMT needs the
	 address of this operand.  */
      if (!allows_reg && allows_mem)
	{
	  tree t = get_base_address (TREE_VALUE (link));
	  if (t && DECL_P (t) && s_ann)
	    add_to_addressable_set (t, &s_ann->addresses_taken);
	}

      get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
    }

  for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
    {
      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
      parse_input_constraint (&constraint, 0, 0, noutputs, 0,
			      oconstraints, &allows_mem, &allows_reg);

      /* Memory operands are addressable.  Note that STMT needs the
	 address of this operand.  */
      if (!allows_reg && allows_mem)
	{
	  tree t = get_base_address (TREE_VALUE (link));
	  if (t && DECL_P (t) && s_ann)
	    add_to_addressable_set (t, &s_ann->addresses_taken);
	}

      get_expr_operands (stmt, &TREE_VALUE (link), 0);
    }


  /* Clobber memory for asm ("" : : : "memory");  */
  for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
    if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
      {
	unsigned i;
	bitmap_iterator bi;

	/* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
	   decided to group them).  */
	if (global_var)
	  add_stmt_operand (&global_var, s_ann, opf_is_def);
	else
	  EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
	    {
	      tree var = referenced_var (i);
	      add_stmt_operand (&var, s_ann, opf_is_def | opf_non_specific);
	    }

	/* Now clobber all addressables.  */
	EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
	    {
	      tree var = referenced_var (i);

	      /* Subvars are explicitly represented in this list, so
		 we don't need the original to be added to the clobber
		 ops, but the original *will* be in this list because 
		 we keep the addressability of the original
		 variable up-to-date so we don't screw up the rest of
		 the backend.  */
	      if (var_can_have_subvars (var)
		  && get_subvars_for_var (var) != NULL)
		continue;		

	      add_stmt_operand (&var, s_ann, opf_is_def | opf_non_specific);
	    }

	break;
      }
}


/* Scan operands for the assignment expression EXPR in statement STMT.  */

static void
get_modify_expr_operands (tree stmt, tree expr)
{
  /* First get operands from the RHS.  */
  get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);

  /* For the LHS, use a regular definition (OPF_IS_DEF) for GIMPLE
     registers.  If the LHS is a store to memory, we will either need
     a preserving definition (V_MAY_DEF) or a killing definition
     (V_MUST_DEF).

     Preserving definitions are those that modify a part of an
     aggregate object for which no subvars have been computed (or the
     reference does not correspond exactly to one of them). Stores
     through a pointer are also represented with V_MAY_DEF operators.

     The determination of whether to use a preserving or a killing
     definition is done while scanning the LHS of the assignment.  By
     default, assume that we will emit a V_MUST_DEF.  */
  get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_is_def|opf_kill_def);
}


/* Recursively scan the expression pointed to by EXPR_P in statement
   STMT.  FLAGS is one of the OPF_* constants modifying how to
   interpret the operands found.  */

static void
get_expr_operands (tree stmt, tree *expr_p, int flags)
{
  enum tree_code code;
  enum tree_code_class class;
  tree expr = *expr_p;
  stmt_ann_t s_ann = stmt_ann (stmt);

  if (expr == NULL)
    return;

  code = TREE_CODE (expr);
  class = TREE_CODE_CLASS (code);

  switch (code)
    {
    case ADDR_EXPR:
      /* Taking the address of a variable does not represent a
	 reference to it, but the fact that the statement takes its
	 address will be of interest to some passes (e.g. alias
	 resolution).  */
      add_to_addressable_set (TREE_OPERAND (expr, 0), &s_ann->addresses_taken);

      /* If the address is invariant, there may be no interesting
	 variable references inside.  */
      if (is_gimple_min_invariant (expr))
	return;

      /* Otherwise, there may be variables referenced inside but there
	 should be no VUSEs created, since the referenced objects are
	 not really accessed.  The only operands that we should find
	 here are ARRAY_REF indices which will always be real operands
	 (GIMPLE does not allow non-registers as array indices).  */
      flags |= opf_no_vops;
      get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
      return;

    case SSA_NAME:
    case STRUCT_FIELD_TAG:
    case SYMBOL_MEMORY_TAG:
    case NAME_MEMORY_TAG:
     add_stmt_operand (expr_p, s_ann, flags);
     return;

    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
      {
	subvar_t svars;
	
	/* Add the subvars for a variable, if it has subvars, to DEFS
	   or USES.  Otherwise, add the variable itself.  Whether it
	   goes to USES or DEFS depends on the operand flags.  */
	if (var_can_have_subvars (expr)
	    && (svars = get_subvars_for_var (expr)))
	  {
	    subvar_t sv;
	    for (sv = svars; sv; sv = sv->next)
	      add_stmt_operand (&sv->var, s_ann, flags);
	  }
	else
	  add_stmt_operand (expr_p, s_ann, flags);

	return;
      }

    case MISALIGNED_INDIRECT_REF:
      get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
      /* fall through */

    case ALIGN_INDIRECT_REF:
    case INDIRECT_REF:
      get_indirect_ref_operands (stmt, expr, flags, NULL_TREE, 0, -1, true);
      return;

    case TARGET_MEM_REF:
      get_tmr_operands (stmt, expr, flags);
      return;

    case ARRAY_REF:
    case ARRAY_RANGE_REF:
    case COMPONENT_REF:
    case REALPART_EXPR:
    case IMAGPART_EXPR:
      {
	tree ref;
	HOST_WIDE_INT offset, size, maxsize;
	bool none = true;

	/* This component reference becomes an access to all of the
	   subvariables it can touch, if we can determine that, but
	   *NOT* the real one.  If we can't determine which fields we
	   could touch, the recursion will eventually get to a
	   variable and add *all* of its subvars, or whatever is the
	   minimum correct subset.  */
	ref = get_ref_base_and_extent (expr, &offset, &size, &maxsize);
	if (SSA_VAR_P (ref) && get_subvars_for_var (ref))
	  {
	    subvar_t sv;
	    subvar_t svars = get_subvars_for_var (ref);

	    for (sv = svars; sv; sv = sv->next)
	      {
		bool exact;		

		if (overlap_subvar (offset, maxsize, sv->var, &exact))
		  {
	            int subvar_flags = flags;
		    none = false;
		    if (!exact || size != maxsize)
		      subvar_flags &= ~opf_kill_def;
		    add_stmt_operand (&sv->var, s_ann, subvar_flags);
		  }
	      }

	    if (!none)
	      flags |= opf_no_vops;
	  }
	else if (TREE_CODE (ref) == INDIRECT_REF)
	  {
	    get_indirect_ref_operands (stmt, ref, flags, expr, offset,
		                       maxsize, false);
	    flags |= opf_no_vops;
	  }

	/* Even if we found subvars above we need to ensure to see
	   immediate uses for d in s.a[d].  In case of s.a having
	   a subvar or we would miss it otherwise.  */
	get_expr_operands (stmt, &TREE_OPERAND (expr, 0),
			   flags & ~opf_kill_def);
	
	if (code == COMPONENT_REF)
	  {
	    if (s_ann && TREE_THIS_VOLATILE (TREE_OPERAND (expr, 1)))
	      s_ann->has_volatile_ops = true; 
	    get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
	  }
	else if (code == ARRAY_REF || code == ARRAY_RANGE_REF)
	  {
            get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
            get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
            get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
	  }

	return;
      }

    case WITH_SIZE_EXPR:
      /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
	 and an rvalue reference to its second argument.  */
      get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
      get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
      return;

    case CALL_EXPR:
      get_call_expr_operands (stmt, expr);
      return;

    case COND_EXPR:
    case VEC_COND_EXPR:
      get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
      get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
      get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
      return;

    case MODIFY_EXPR:
      get_modify_expr_operands (stmt, expr);
      return;

    case CONSTRUCTOR:
      {
	/* General aggregate CONSTRUCTORs have been decomposed, but they
	   are still in use as the COMPLEX_EXPR equivalent for vectors.  */
	constructor_elt *ce;
	unsigned HOST_WIDE_INT idx;

	for (idx = 0;
	     VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (expr), idx, ce);
	     idx++)
	  get_expr_operands (stmt, &ce->value, opf_none);

	return;
      }

    case BIT_FIELD_REF:
      /* Stores using BIT_FIELD_REF are always preserving definitions.  */
      flags &= ~opf_kill_def;

      /* Fallthru  */

    case TRUTH_NOT_EXPR:
    case VIEW_CONVERT_EXPR:
    do_unary:
      get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
      return;

    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
    case COMPOUND_EXPR:
    case OBJ_TYPE_REF:
    case ASSERT_EXPR:
    do_binary:
      {
	get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
	get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
	return;
      }

    case DOT_PROD_EXPR:
    case REALIGN_LOAD_EXPR:
      {
	get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
        get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
        get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
        return;
      }

    case BLOCK:
    case FUNCTION_DECL:
    case EXC_PTR_EXPR:
    case FILTER_EXPR:
    case LABEL_DECL:
    case CONST_DECL:
    case OMP_PARALLEL:
    case OMP_SECTIONS:
    case OMP_FOR:
    case OMP_SINGLE:
    case OMP_MASTER:
    case OMP_ORDERED:
    case OMP_CRITICAL:
    case OMP_RETURN:
    case OMP_CONTINUE:
      /* Expressions that make no memory references.  */
      return;

    default:
      if (class == tcc_unary)
	goto do_unary;
      if (class == tcc_binary || class == tcc_comparison)
	goto do_binary;
      if (class == tcc_constant || class == tcc_type)
	return;
    }

  /* If we get here, something has gone wrong.  */
#ifdef ENABLE_CHECKING
  fprintf (stderr, "unhandled expression in get_expr_operands():\n");
  debug_tree (expr);
  fputs ("\n", stderr);
#endif
  gcc_unreachable ();
}


/* Parse STMT looking for operands.  When finished, the various
   build_* operand vectors will have potential operands in them.  */

static void
parse_ssa_operands (tree stmt)
{
  enum tree_code code;

  code = TREE_CODE (stmt);
  switch (code)
    {
    case MODIFY_EXPR:
      get_modify_expr_operands (stmt, stmt);
      break;

    case COND_EXPR:
      get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
      break;

    case SWITCH_EXPR:
      get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
      break;

    case ASM_EXPR:
      get_asm_expr_operands (stmt);
      break;

    case RETURN_EXPR:
      get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
      break;

    case GOTO_EXPR:
      get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
      break;

    case LABEL_EXPR:
      get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
      break;

    case BIND_EXPR:
    case CASE_LABEL_EXPR:
    case TRY_CATCH_EXPR:
    case TRY_FINALLY_EXPR:
    case EH_FILTER_EXPR:
    case CATCH_EXPR:
    case RESX_EXPR:
      /* These nodes contain no variable references.  */
      break;

    default:
      /* Notice that if get_expr_operands tries to use &STMT as the
	 operand pointer (which may only happen for USE operands), we
	 will fail in add_stmt_operand.  This default will handle
	 statements like empty statements, or CALL_EXPRs that may
	 appear on the RHS of a statement or as statements themselves.  */
      get_expr_operands (stmt, &stmt, opf_none);
      break;
    }
}


/* Create an operands cache for STMT.  */

static void
build_ssa_operands (tree stmt)
{
  stmt_ann_t ann = get_stmt_ann (stmt);
  
  /* Initially assume that the statement has no volatile operands.  */
  if (ann)
    ann->has_volatile_ops = false;

  start_ssa_stmt_operands ();

  parse_ssa_operands (stmt);
  operand_build_sort_virtual (build_vuses);
  operand_build_sort_virtual (build_v_may_defs);
  operand_build_sort_virtual (build_v_must_defs);

  finalize_ssa_stmt_operands (stmt);
}


/* Free any operands vectors in OPS.  */

void 
free_ssa_operands (stmt_operands_p ops)
{
  ops->def_ops = NULL;
  ops->use_ops = NULL;
  ops->maydef_ops = NULL;
  ops->mustdef_ops = NULL;
  ops->vuse_ops = NULL;
}


/* Get the operands of statement STMT.  */

void
update_stmt_operands (tree stmt)
{
  stmt_ann_t ann = get_stmt_ann (stmt);

  /* If update_stmt_operands is called before SSA is initialized, do
     nothing.  */
  if (!ssa_operands_active ())
    return;

  /* The optimizers cannot handle statements that are nothing but a
     _DECL.  This indicates a bug in the gimplifier.  */
  gcc_assert (!SSA_VAR_P (stmt));

  gcc_assert (ann->modified);

  timevar_push (TV_TREE_OPS);

  build_ssa_operands (stmt);

  /* Clear the modified bit for STMT.  */
  ann->modified = 0;

  timevar_pop (TV_TREE_OPS);
}


/* Copies virtual operands from SRC to DST.  */

void
copy_virtual_operands (tree dest, tree src)
{
  tree t;
  ssa_op_iter iter, old_iter;
  use_operand_p use_p, u2;
  def_operand_p def_p, d2;

  build_ssa_operands (dest);

  /* Copy all the virtual fields.  */
  FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VUSE)
    append_vuse (t);
  FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VMAYDEF)
    append_v_may_def (t);
  FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VMUSTDEF)
    append_v_must_def (t);

  if (VEC_length (tree, build_vuses) == 0
      && VEC_length (tree, build_v_may_defs) == 0
      && VEC_length (tree, build_v_must_defs) == 0)
    return;

  /* Now commit the virtual operands to this stmt.  */
  finalize_ssa_v_must_defs (dest);
  finalize_ssa_v_may_defs (dest);
  finalize_ssa_vuses (dest);

  /* Finally, set the field to the same values as then originals.  */
  t = op_iter_init_tree (&old_iter, src, SSA_OP_VUSE);
  FOR_EACH_SSA_USE_OPERAND (use_p, dest, iter, SSA_OP_VUSE)
    {
      gcc_assert (!op_iter_done (&old_iter));
      SET_USE (use_p, t);
      t = op_iter_next_tree (&old_iter);
    }
  gcc_assert (op_iter_done (&old_iter));

  op_iter_init_maydef (&old_iter, src, &u2, &d2);
  FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, dest, iter)
    {
      gcc_assert (!op_iter_done (&old_iter));
      SET_USE (use_p, USE_FROM_PTR (u2));
      SET_DEF (def_p, DEF_FROM_PTR (d2));
      op_iter_next_maymustdef (&u2, &d2, &old_iter);
    }
  gcc_assert (op_iter_done (&old_iter));

  op_iter_init_mustdef (&old_iter, src, &u2, &d2);
  FOR_EACH_SSA_MUSTDEF_OPERAND (def_p, use_p, dest, iter)
    {
      gcc_assert (!op_iter_done (&old_iter));
      SET_USE (use_p, USE_FROM_PTR (u2));
      SET_DEF (def_p, DEF_FROM_PTR (d2));
      op_iter_next_maymustdef (&u2, &d2, &old_iter);
    }
  gcc_assert (op_iter_done (&old_iter));

}


/* Specifically for use in DOM's expression analysis.  Given a store, we
   create an artificial stmt which looks like a load from the store, this can
   be used to eliminate redundant loads.  OLD_OPS are the operands from the 
   store stmt, and NEW_STMT is the new load which represents a load of the
   values stored.  */

void
create_ssa_artficial_load_stmt (tree new_stmt, tree old_stmt)
{
  stmt_ann_t ann;
  tree op;
  ssa_op_iter iter;
  use_operand_p use_p;
  unsigned x;

  ann = get_stmt_ann (new_stmt);

  /* Process the stmt looking for operands.  */
  start_ssa_stmt_operands ();
  parse_ssa_operands (new_stmt);

  for (x = 0; x < VEC_length (tree, build_vuses); x++)
    {
      tree t = VEC_index (tree, build_vuses, x);
      if (TREE_CODE (t) != SSA_NAME)
	{
	  var_ann_t ann = var_ann (t);
	  ann->in_vuse_list = 0;
	}
    }
   
  for (x = 0; x < VEC_length (tree, build_v_may_defs); x++)
    {
      tree t = VEC_index (tree, build_v_may_defs, x);
      if (TREE_CODE (t) != SSA_NAME)
	{
	  var_ann_t ann = var_ann (t);
	  ann->in_v_may_def_list = 0;
	}
    }

  /* Remove any virtual operands that were found.  */
  VEC_truncate (tree, build_v_may_defs, 0);
  VEC_truncate (tree, build_v_must_defs, 0);
  VEC_truncate (tree, build_vuses, 0);

  /* For each VDEF on the original statement, we want to create a
     VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new 
     statement.  */
  FOR_EACH_SSA_TREE_OPERAND (op, old_stmt, iter, 
			     (SSA_OP_VMAYDEF | SSA_OP_VMUSTDEF))
    append_vuse (op);
    
  /* Now build the operands for this new stmt.  */
  finalize_ssa_stmt_operands (new_stmt);

  /* All uses in this fake stmt must not be in the immediate use lists.  */
  FOR_EACH_SSA_USE_OPERAND (use_p, new_stmt, iter, SSA_OP_ALL_USES)
    delink_imm_use (use_p);
}


/* Swap operands EXP0 and EXP1 in statement STMT.  No attempt is done
   to test the validity of the swap operation.  */

void
swap_tree_operands (tree stmt, tree *exp0, tree *exp1)
{
  tree op0, op1;
  op0 = *exp0;
  op1 = *exp1;

  /* If the operand cache is active, attempt to preserve the relative
     positions of these two operands in their respective immediate use
     lists.  */
  if (ssa_operands_active () && op0 != op1)
    {
      use_optype_p use0, use1, ptr;
      use0 = use1 = NULL;

      /* Find the 2 operands in the cache, if they are there.  */
      for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
	if (USE_OP_PTR (ptr)->use == exp0)
	  {
	    use0 = ptr;
	    break;
	  }

      for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
	if (USE_OP_PTR (ptr)->use == exp1)
	  {
	    use1 = ptr;
	    break;
	  }

      /* If both uses don't have operand entries, there isn't much we can do
         at this point.  Presumably we don't need to worry about it.  */
      if (use0 && use1)
        {
	  tree *tmp = USE_OP_PTR (use1)->use;
	  USE_OP_PTR (use1)->use = USE_OP_PTR (use0)->use;
	  USE_OP_PTR (use0)->use = tmp;
	}
    }

  /* Now swap the data.  */
  *exp0 = op1;
  *exp1 = op0;
}


/* Add the base address of REF to the set *ADDRESSES_TAKEN.  If
   *ADDRESSES_TAKEN is NULL, a new set is created.  REF may be
   a single variable whose address has been taken or any other valid
   GIMPLE memory reference (structure reference, array, etc).  If the
   base address of REF is a decl that has sub-variables, also add all
   of its sub-variables.  */

void
add_to_addressable_set (tree ref, bitmap *addresses_taken)
{
  tree var;
  subvar_t svars;

  gcc_assert (addresses_taken);

  /* Note that it is *NOT OKAY* to use the target of a COMPONENT_REF
     as the only thing we take the address of.  If VAR is a structure,
     taking the address of a field means that the whole structure may
     be referenced using pointer arithmetic.  See PR 21407 and the
     ensuing mailing list discussion.  */
  var = get_base_address (ref);
  if (var && SSA_VAR_P (var))
    {
      if (*addresses_taken == NULL)
	*addresses_taken = BITMAP_GGC_ALLOC ();      
      
      if (var_can_have_subvars (var)
	  && (svars = get_subvars_for_var (var)))
	{
	  subvar_t sv;
	  for (sv = svars; sv; sv = sv->next)
	    {
	      bitmap_set_bit (*addresses_taken, DECL_UID (sv->var));
	      TREE_ADDRESSABLE (sv->var) = 1;
	    }
	}
      else
	{
	  bitmap_set_bit (*addresses_taken, DECL_UID (var));
	  TREE_ADDRESSABLE (var) = 1;
	}
    }
}


/* Scan the immediate_use list for VAR making sure its linked properly.
   Return TRUE if there is a problem and emit an error message to F.  */

bool
verify_imm_links (FILE *f, tree var)
{
  use_operand_p ptr, prev, list;
  int count;

  gcc_assert (TREE_CODE (var) == SSA_NAME);

  list = &(SSA_NAME_IMM_USE_NODE (var));
  gcc_assert (list->use == NULL);

  if (list->prev == NULL)
    {
      gcc_assert (list->next == NULL);
      return false;
    }

  prev = list;
  count = 0;
  for (ptr = list->next; ptr != list; )
    {
      if (prev != ptr->prev)
	goto error;
      
      if (ptr->use == NULL)
	goto error; /* 2 roots, or SAFE guard node.  */
      else if (*(ptr->use) != var)
	goto error;

      prev = ptr;
      ptr = ptr->next;

      /* Avoid infinite loops.  50,000,000 uses probably indicates a
	 problem.  */
      if (count++ > 50000000)
	goto error;
    }

  /* Verify list in the other direction.  */
  prev = list;
  for (ptr = list->prev; ptr != list; )
    {
      if (prev != ptr->next)
	goto error;
      prev = ptr;
      ptr = ptr->prev;
      if (count-- < 0)
	goto error;
    }

  if (count != 0)
    goto error;

  return false;

 error:
  if (ptr->stmt && stmt_modified_p (ptr->stmt))
    {
      fprintf (f, " STMT MODIFIED. - <%p> ", (void *)ptr->stmt);
      print_generic_stmt (f, ptr->stmt, TDF_SLIM);
    }
  fprintf (f, " IMM ERROR : (use_p : tree - %p:%p)", (void *)ptr, 
	   (void *)ptr->use);
  print_generic_expr (f, USE_FROM_PTR (ptr), TDF_SLIM);
  fprintf(f, "\n");
  return true;
}


/* Dump all the immediate uses to FILE.  */

void
dump_immediate_uses_for (FILE *file, tree var)
{
  imm_use_iterator iter;
  use_operand_p use_p;

  gcc_assert (var && TREE_CODE (var) == SSA_NAME);

  print_generic_expr (file, var, TDF_SLIM);
  fprintf (file, " : -->");
  if (has_zero_uses (var))
    fprintf (file, " no uses.\n");
  else
    if (has_single_use (var))
      fprintf (file, " single use.\n");
    else
      fprintf (file, "%d uses.\n", num_imm_uses (var));

  FOR_EACH_IMM_USE_FAST (use_p, iter, var)
    {
      if (use_p->stmt == NULL && use_p->use == NULL)
        fprintf (file, "***end of stmt iterator marker***\n");
      else
	if (!is_gimple_reg (USE_FROM_PTR (use_p)))
	  print_generic_stmt (file, USE_STMT (use_p), TDF_VOPS);
	else
	  print_generic_stmt (file, USE_STMT (use_p), TDF_SLIM);
    }
  fprintf(file, "\n");
}


/* Dump all the immediate uses to FILE.  */

void
dump_immediate_uses (FILE *file)
{
  tree var;
  unsigned int x;

  fprintf (file, "Immediate_uses: \n\n");
  for (x = 1; x < num_ssa_names; x++)
    {
      var = ssa_name(x);
      if (!var)
        continue;
      dump_immediate_uses_for (file, var);
    }
}


/* Dump def-use edges on stderr.  */

void
debug_immediate_uses (void)
{
  dump_immediate_uses (stderr);
}


/* Dump def-use edges on stderr.  */

void
debug_immediate_uses_for (tree var)
{
  dump_immediate_uses_for (stderr, var);
}

#include "gt-tree-ssa-operands.h"