1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
|
/* Functions to determine/estimate number of iterations of a loop.
Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "diagnostic.h"
#include "intl.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "tree-pass.h"
#include "ggc.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "tree-data-ref.h"
#include "params.h"
#include "flags.h"
#include "toplev.h"
#include "tree-inline.h"
#include "gmp.h"
#define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
/* The maximum number of dominator BBs we search for conditions
of loop header copies we use for simplifying a conditional
expression. */
#define MAX_DOMINATORS_TO_WALK 8
/*
Analysis of number of iterations of an affine exit test.
*/
/* Bounds on some value, BELOW <= X <= UP. */
typedef struct
{
mpz_t below, up;
} bounds;
/* Splits expression EXPR to a variable part VAR and constant OFFSET. */
static void
split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
{
tree type = TREE_TYPE (expr);
tree op0, op1;
double_int off;
bool negate = false;
*var = expr;
mpz_set_ui (offset, 0);
switch (TREE_CODE (expr))
{
case MINUS_EXPR:
negate = true;
/* Fallthru. */
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
op0 = TREE_OPERAND (expr, 0);
op1 = TREE_OPERAND (expr, 1);
if (TREE_CODE (op1) != INTEGER_CST)
break;
*var = op0;
/* Always sign extend the offset. */
off = double_int_sext (tree_to_double_int (op1),
TYPE_PRECISION (type));
mpz_set_double_int (offset, off, false);
break;
case INTEGER_CST:
*var = build_int_cst_type (type, 0);
off = tree_to_double_int (expr);
mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
break;
default:
break;
}
}
/* Stores estimate on the minimum/maximum value of the expression VAR + OFF
in TYPE to MIN and MAX. */
static void
determine_value_range (tree type, tree var, mpz_t off,
mpz_t min, mpz_t max)
{
/* If the expression is a constant, we know its value exactly. */
if (integer_zerop (var))
{
mpz_set (min, off);
mpz_set (max, off);
return;
}
/* If the computation may wrap, we know nothing about the value, except for
the range of the type. */
get_type_static_bounds (type, min, max);
if (!nowrap_type_p (type))
return;
/* Since the addition of OFF does not wrap, if OFF is positive, then we may
add it to MIN, otherwise to MAX. */
if (mpz_sgn (off) < 0)
mpz_add (max, max, off);
else
mpz_add (min, min, off);
}
/* Stores the bounds on the difference of the values of the expressions
(var + X) and (var + Y), computed in TYPE, to BNDS. */
static void
bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
bounds *bnds)
{
int rel = mpz_cmp (x, y);
bool may_wrap = !nowrap_type_p (type);
mpz_t m;
/* If X == Y, then the expressions are always equal.
If X > Y, there are the following possibilities:
a) neither of var + X and var + Y overflow or underflow, or both of
them do. Then their difference is X - Y.
b) var + X overflows, and var + Y does not. Then the values of the
expressions are var + X - M and var + Y, where M is the range of
the type, and their difference is X - Y - M.
c) var + Y underflows and var + X does not. Their difference again
is M - X + Y.
Therefore, if the arithmetics in type does not overflow, then the
bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
(X - Y, X - Y + M). */
if (rel == 0)
{
mpz_set_ui (bnds->below, 0);
mpz_set_ui (bnds->up, 0);
return;
}
mpz_init (m);
mpz_set_double_int (m, double_int_mask (TYPE_PRECISION (type)), true);
mpz_add_ui (m, m, 1);
mpz_sub (bnds->up, x, y);
mpz_set (bnds->below, bnds->up);
if (may_wrap)
{
if (rel > 0)
mpz_sub (bnds->below, bnds->below, m);
else
mpz_add (bnds->up, bnds->up, m);
}
mpz_clear (m);
}
/* From condition C0 CMP C1 derives information regarding the
difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
and stores it to BNDS. */
static void
refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
tree vary, mpz_t offy,
tree c0, enum tree_code cmp, tree c1,
bounds *bnds)
{
tree varc0, varc1, tmp, ctype;
mpz_t offc0, offc1, loffx, loffy, bnd;
bool lbound = false;
bool no_wrap = nowrap_type_p (type);
bool x_ok, y_ok;
switch (cmp)
{
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
STRIP_SIGN_NOPS (c0);
STRIP_SIGN_NOPS (c1);
ctype = TREE_TYPE (c0);
if (!useless_type_conversion_p (ctype, type))
return;
break;
case EQ_EXPR:
/* We could derive quite precise information from EQ_EXPR, however, such
a guard is unlikely to appear, so we do not bother with handling
it. */
return;
case NE_EXPR:
/* NE_EXPR comparisons do not contain much of useful information, except for
special case of comparing with the bounds of the type. */
if (TREE_CODE (c1) != INTEGER_CST
|| !INTEGRAL_TYPE_P (type))
return;
/* Ensure that the condition speaks about an expression in the same type
as X and Y. */
ctype = TREE_TYPE (c0);
if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
return;
c0 = fold_convert (type, c0);
c1 = fold_convert (type, c1);
if (TYPE_MIN_VALUE (type)
&& operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
{
cmp = GT_EXPR;
break;
}
if (TYPE_MAX_VALUE (type)
&& operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
{
cmp = LT_EXPR;
break;
}
return;
default:
return;
}
mpz_init (offc0);
mpz_init (offc1);
split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
/* We are only interested in comparisons of expressions based on VARX and
VARY. TODO -- we might also be able to derive some bounds from
expressions containing just one of the variables. */
if (operand_equal_p (varx, varc1, 0))
{
tmp = varc0; varc0 = varc1; varc1 = tmp;
mpz_swap (offc0, offc1);
cmp = swap_tree_comparison (cmp);
}
if (!operand_equal_p (varx, varc0, 0)
|| !operand_equal_p (vary, varc1, 0))
goto end;
mpz_init_set (loffx, offx);
mpz_init_set (loffy, offy);
if (cmp == GT_EXPR || cmp == GE_EXPR)
{
tmp = varx; varx = vary; vary = tmp;
mpz_swap (offc0, offc1);
mpz_swap (loffx, loffy);
cmp = swap_tree_comparison (cmp);
lbound = true;
}
/* If there is no overflow, the condition implies that
(VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
The overflows and underflows may complicate things a bit; each
overflow decreases the appropriate offset by M, and underflow
increases it by M. The above inequality would not necessarily be
true if
-- VARX + OFFX underflows and VARX + OFFC0 does not, or
VARX + OFFC0 overflows, but VARX + OFFX does not.
This may only happen if OFFX < OFFC0.
-- VARY + OFFY overflows and VARY + OFFC1 does not, or
VARY + OFFC1 underflows and VARY + OFFY does not.
This may only happen if OFFY > OFFC1. */
if (no_wrap)
{
x_ok = true;
y_ok = true;
}
else
{
x_ok = (integer_zerop (varx)
|| mpz_cmp (loffx, offc0) >= 0);
y_ok = (integer_zerop (vary)
|| mpz_cmp (loffy, offc1) <= 0);
}
if (x_ok && y_ok)
{
mpz_init (bnd);
mpz_sub (bnd, loffx, loffy);
mpz_add (bnd, bnd, offc1);
mpz_sub (bnd, bnd, offc0);
if (cmp == LT_EXPR)
mpz_sub_ui (bnd, bnd, 1);
if (lbound)
{
mpz_neg (bnd, bnd);
if (mpz_cmp (bnds->below, bnd) < 0)
mpz_set (bnds->below, bnd);
}
else
{
if (mpz_cmp (bnd, bnds->up) < 0)
mpz_set (bnds->up, bnd);
}
mpz_clear (bnd);
}
mpz_clear (loffx);
mpz_clear (loffy);
end:
mpz_clear (offc0);
mpz_clear (offc1);
}
/* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
The subtraction is considered to be performed in arbitrary precision,
without overflows.
We do not attempt to be too clever regarding the value ranges of X and
Y; most of the time, they are just integers or ssa names offsetted by
integer. However, we try to use the information contained in the
comparisons before the loop (usually created by loop header copying). */
static void
bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
{
tree type = TREE_TYPE (x);
tree varx, vary;
mpz_t offx, offy;
mpz_t minx, maxx, miny, maxy;
int cnt = 0;
edge e;
basic_block bb;
tree cond, c0, c1;
enum tree_code cmp;
/* Get rid of unnecessary casts, but preserve the value of
the expressions. */
STRIP_SIGN_NOPS (x);
STRIP_SIGN_NOPS (y);
mpz_init (bnds->below);
mpz_init (bnds->up);
mpz_init (offx);
mpz_init (offy);
split_to_var_and_offset (x, &varx, offx);
split_to_var_and_offset (y, &vary, offy);
if (!integer_zerop (varx)
&& operand_equal_p (varx, vary, 0))
{
/* Special case VARX == VARY -- we just need to compare the
offsets. The matters are a bit more complicated in the
case addition of offsets may wrap. */
bound_difference_of_offsetted_base (type, offx, offy, bnds);
}
else
{
/* Otherwise, use the value ranges to determine the initial
estimates on below and up. */
mpz_init (minx);
mpz_init (maxx);
mpz_init (miny);
mpz_init (maxy);
determine_value_range (type, varx, offx, minx, maxx);
determine_value_range (type, vary, offy, miny, maxy);
mpz_sub (bnds->below, minx, maxy);
mpz_sub (bnds->up, maxx, miny);
mpz_clear (minx);
mpz_clear (maxx);
mpz_clear (miny);
mpz_clear (maxy);
}
/* If both X and Y are constants, we cannot get any more precise. */
if (integer_zerop (varx) && integer_zerop (vary))
goto end;
/* Now walk the dominators of the loop header and use the entry
guards to refine the estimates. */
for (bb = loop->header;
bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
if (!single_pred_p (bb))
continue;
e = single_pred_edge (bb);
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
continue;
cond = COND_EXPR_COND (last_stmt (e->src));
if (!COMPARISON_CLASS_P (cond))
continue;
c0 = TREE_OPERAND (cond, 0);
cmp = TREE_CODE (cond);
c1 = TREE_OPERAND (cond, 1);
if (e->flags & EDGE_FALSE_VALUE)
cmp = invert_tree_comparison (cmp, false);
refine_bounds_using_guard (type, varx, offx, vary, offy,
c0, cmp, c1, bnds);
++cnt;
}
end:
mpz_clear (offx);
mpz_clear (offy);
}
/* Update the bounds in BNDS that restrict the value of X to the bounds
that restrict the value of X + DELTA. X can be obtained as a
difference of two values in TYPE. */
static void
bounds_add (bounds *bnds, double_int delta, tree type)
{
mpz_t mdelta, max;
mpz_init (mdelta);
mpz_set_double_int (mdelta, delta, false);
mpz_init (max);
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
mpz_add (bnds->up, bnds->up, mdelta);
mpz_add (bnds->below, bnds->below, mdelta);
if (mpz_cmp (bnds->up, max) > 0)
mpz_set (bnds->up, max);
mpz_neg (max, max);
if (mpz_cmp (bnds->below, max) < 0)
mpz_set (bnds->below, max);
mpz_clear (mdelta);
mpz_clear (max);
}
/* Update the bounds in BNDS that restrict the value of X to the bounds
that restrict the value of -X. */
static void
bounds_negate (bounds *bnds)
{
mpz_t tmp;
mpz_init_set (tmp, bnds->up);
mpz_neg (bnds->up, bnds->below);
mpz_neg (bnds->below, tmp);
mpz_clear (tmp);
}
/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
static tree
inverse (tree x, tree mask)
{
tree type = TREE_TYPE (x);
tree rslt;
unsigned ctr = tree_floor_log2 (mask);
if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
{
unsigned HOST_WIDE_INT ix;
unsigned HOST_WIDE_INT imask;
unsigned HOST_WIDE_INT irslt = 1;
gcc_assert (cst_and_fits_in_hwi (x));
gcc_assert (cst_and_fits_in_hwi (mask));
ix = int_cst_value (x);
imask = int_cst_value (mask);
for (; ctr; ctr--)
{
irslt *= ix;
ix *= ix;
}
irslt &= imask;
rslt = build_int_cst_type (type, irslt);
}
else
{
rslt = build_int_cst (type, 1);
for (; ctr; ctr--)
{
rslt = int_const_binop (MULT_EXPR, rslt, x, 0);
x = int_const_binop (MULT_EXPR, x, x, 0);
}
rslt = int_const_binop (BIT_AND_EXPR, rslt, mask, 0);
}
return rslt;
}
/* Derives the upper bound BND on the number of executions of loop with exit
condition S * i <> C, assuming that the loop is not infinite. If
NO_OVERFLOW is true, then the control variable of the loop does not
overflow. If NO_OVERFLOW is true or BNDS.below >= 0, then BNDS.up
contains the upper bound on the value of C. */
static void
number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
bounds *bnds)
{
double_int max;
mpz_t d;
/* If the control variable does not overflow, the number of iterations is
at most c / s. Otherwise it is at most the period of the control
variable. */
if (!no_overflow && !multiple_of_p (TREE_TYPE (c), c, s))
{
max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
- tree_low_cst (num_ending_zeros (s), 1));
mpz_set_double_int (bnd, max, true);
return;
}
/* Determine the upper bound on C. */
if (no_overflow || mpz_sgn (bnds->below) >= 0)
mpz_set (bnd, bnds->up);
else if (TREE_CODE (c) == INTEGER_CST)
mpz_set_double_int (bnd, tree_to_double_int (c), true);
else
mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
true);
mpz_init (d);
mpz_set_double_int (d, tree_to_double_int (s), true);
mpz_fdiv_q (bnd, bnd, d);
mpz_clear (d);
}
/* Determines number of iterations of loop whose ending condition
is IV <> FINAL. TYPE is the type of the iv. The number of
iterations is stored to NITER. NEVER_INFINITE is true if
we know that the exit must be taken eventually, i.e., that the IV
ever reaches the value FINAL (we derived this earlier, and possibly set
NITER->assumptions to make sure this is the case). BNDS contains the
bounds on the difference FINAL - IV->base. */
static bool
number_of_iterations_ne (tree type, affine_iv *iv, tree final,
struct tree_niter_desc *niter, bool never_infinite,
bounds *bnds)
{
tree niter_type = unsigned_type_for (type);
tree s, c, d, bits, assumption, tmp, bound;
mpz_t max;
niter->control = *iv;
niter->bound = final;
niter->cmp = NE_EXPR;
/* Rearrange the terms so that we get inequality S * i <> C, with S
positive. Also cast everything to the unsigned type. If IV does
not overflow, BNDS bounds the value of C. Also, this is the
case if the computation |FINAL - IV->base| does not overflow, i.e.,
if BNDS->below in the result is nonnegative. */
if (tree_int_cst_sign_bit (iv->step))
{
s = fold_convert (niter_type,
fold_build1 (NEGATE_EXPR, type, iv->step));
c = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, iv->base),
fold_convert (niter_type, final));
bounds_negate (bnds);
}
else
{
s = fold_convert (niter_type, iv->step);
c = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, final),
fold_convert (niter_type, iv->base));
}
mpz_init (max);
number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds);
niter->max = mpz_get_double_int (niter_type, max, false);
mpz_clear (max);
/* First the trivial cases -- when the step is 1. */
if (integer_onep (s))
{
niter->niter = c;
return true;
}
/* Let nsd (step, size of mode) = d. If d does not divide c, the loop
is infinite. Otherwise, the number of iterations is
(inverse(s/d) * (c/d)) mod (size of mode/d). */
bits = num_ending_zeros (s);
bound = build_low_bits_mask (niter_type,
(TYPE_PRECISION (niter_type)
- tree_low_cst (bits, 1)));
d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
build_int_cst (niter_type, 1), bits);
s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
if (!never_infinite)
{
/* If we cannot assume that the loop is not infinite, record the
assumptions for divisibility of c. */
assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
assumption = fold_build2 (EQ_EXPR, boolean_type_node,
assumption, build_int_cst (niter_type, 0));
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
}
c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
return true;
}
/* Checks whether we can determine the final value of the control variable
of the loop with ending condition IV0 < IV1 (computed in TYPE).
DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
of the step. The assumptions necessary to ensure that the computation
of the final value does not overflow are recorded in NITER. If we
find the final value, we adjust DELTA and return TRUE. Otherwise
we return false. BNDS bounds the value of IV1->base - IV0->base,
and will be updated by the same amount as DELTA. */
static bool
number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
struct tree_niter_desc *niter,
tree *delta, tree step,
bounds *bnds)
{
tree niter_type = TREE_TYPE (step);
tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
tree tmod;
mpz_t mmod;
tree assumption = boolean_true_node, bound, noloop;
bool ret = false;
tree type1 = type;
if (POINTER_TYPE_P (type))
type1 = sizetype;
if (TREE_CODE (mod) != INTEGER_CST)
return false;
if (integer_nonzerop (mod))
mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
tmod = fold_convert (type1, mod);
mpz_init (mmod);
mpz_set_double_int (mmod, tree_to_double_int (mod), true);
mpz_neg (mmod, mmod);
if (integer_nonzerop (iv0->step))
{
/* The final value of the iv is iv1->base + MOD, assuming that this
computation does not overflow, and that
iv0->base <= iv1->base + MOD. */
if (!iv1->no_overflow && !integer_zerop (mod))
{
bound = fold_build2 (MINUS_EXPR, type,
TYPE_MAX_VALUE (type1), tmod);
assumption = fold_build2 (LE_EXPR, boolean_type_node,
iv1->base, bound);
if (integer_zerop (assumption))
goto end;
}
if (mpz_cmp (mmod, bnds->below) < 0)
noloop = boolean_false_node;
else
noloop = fold_build2 (GT_EXPR, boolean_type_node,
iv0->base,
fold_build2 (PLUS_EXPR, type1,
iv1->base, tmod));
}
else
{
/* The final value of the iv is iv0->base - MOD, assuming that this
computation does not overflow, and that
iv0->base - MOD <= iv1->base. */
if (!iv0->no_overflow && !integer_zerop (mod))
{
bound = fold_build2 (PLUS_EXPR, type1,
TYPE_MIN_VALUE (type1), tmod);
assumption = fold_build2 (GE_EXPR, boolean_type_node,
iv0->base, bound);
if (integer_zerop (assumption))
goto end;
}
if (mpz_cmp (mmod, bnds->below) < 0)
noloop = boolean_false_node;
else
noloop = fold_build2 (GT_EXPR, boolean_type_node,
fold_build2 (MINUS_EXPR, type1,
iv0->base, tmod),
iv1->base);
}
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions,
assumption);
if (!integer_zerop (noloop))
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
niter->may_be_zero,
noloop);
bounds_add (bnds, tree_to_double_int (mod), type);
*delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
ret = true;
end:
mpz_clear (mmod);
return ret;
}
/* Add assertions to NITER that ensure that the control variable of the loop
with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
are TYPE. Returns false if we can prove that there is an overflow, true
otherwise. STEP is the absolute value of the step. */
static bool
assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
struct tree_niter_desc *niter, tree step)
{
tree bound, d, assumption, diff;
tree niter_type = TREE_TYPE (step);
if (integer_nonzerop (iv0->step))
{
/* for (i = iv0->base; i < iv1->base; i += iv0->step) */
if (iv0->no_overflow)
return true;
/* If iv0->base is a constant, we can determine the last value before
overflow precisely; otherwise we conservatively assume
MAX - STEP + 1. */
if (TREE_CODE (iv0->base) == INTEGER_CST)
{
d = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, TYPE_MAX_VALUE (type)),
fold_convert (niter_type, iv0->base));
diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
}
else
diff = fold_build2 (MINUS_EXPR, niter_type, step,
build_int_cst (niter_type, 1));
bound = fold_build2 (MINUS_EXPR, type,
TYPE_MAX_VALUE (type), fold_convert (type, diff));
assumption = fold_build2 (LE_EXPR, boolean_type_node,
iv1->base, bound);
}
else
{
/* for (i = iv1->base; i > iv0->base; i += iv1->step) */
if (iv1->no_overflow)
return true;
if (TREE_CODE (iv1->base) == INTEGER_CST)
{
d = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, iv1->base),
fold_convert (niter_type, TYPE_MIN_VALUE (type)));
diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
}
else
diff = fold_build2 (MINUS_EXPR, niter_type, step,
build_int_cst (niter_type, 1));
bound = fold_build2 (PLUS_EXPR, type,
TYPE_MIN_VALUE (type), fold_convert (type, diff));
assumption = fold_build2 (GE_EXPR, boolean_type_node,
iv0->base, bound);
}
if (integer_zerop (assumption))
return false;
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
iv0->no_overflow = true;
iv1->no_overflow = true;
return true;
}
/* Add an assumption to NITER that a loop whose ending condition
is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
bounds the value of IV1->base - IV0->base. */
static void
assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
struct tree_niter_desc *niter, bounds *bnds)
{
tree assumption = boolean_true_node, bound, diff;
tree mbz, mbzl, mbzr, type1;
bool rolls_p, no_overflow_p;
double_int dstep;
mpz_t mstep, max;
/* We are going to compute the number of iterations as
(iv1->base - iv0->base + step - 1) / step, computed in the unsigned
variant of TYPE. This formula only works if
-step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
(where MAX is the maximum value of the unsigned variant of TYPE, and
the computations in this formula are performed in full precision
(without overflows).
Usually, for loops with exit condition iv0->base + step * i < iv1->base,
we have a condition of form iv0->base - step < iv1->base before the loop,
and for loops iv0->base < iv1->base - step * i the condition
iv0->base < iv1->base + step, due to loop header copying, which enable us
to prove the lower bound.
The upper bound is more complicated. Unless the expressions for initial
and final value themselves contain enough information, we usually cannot
derive it from the context. */
/* First check whether the answer does not follow from the bounds we gathered
before. */
if (integer_nonzerop (iv0->step))
dstep = tree_to_double_int (iv0->step);
else
{
dstep = double_int_sext (tree_to_double_int (iv1->step),
TYPE_PRECISION (type));
dstep = double_int_neg (dstep);
}
mpz_init (mstep);
mpz_set_double_int (mstep, dstep, true);
mpz_neg (mstep, mstep);
mpz_add_ui (mstep, mstep, 1);
rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
mpz_init (max);
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
mpz_add (max, max, mstep);
no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
/* For pointers, only values lying inside a single object
can be compared or manipulated by pointer arithmetics.
Gcc in general does not allow or handle objects larger
than half of the address space, hence the upper bound
is satisfied for pointers. */
|| POINTER_TYPE_P (type));
mpz_clear (mstep);
mpz_clear (max);
if (rolls_p && no_overflow_p)
return;
type1 = type;
if (POINTER_TYPE_P (type))
type1 = sizetype;
/* Now the hard part; we must formulate the assumption(s) as expressions, and
we must be careful not to introduce overflow. */
if (integer_nonzerop (iv0->step))
{
diff = fold_build2 (MINUS_EXPR, type1,
iv0->step, build_int_cst (type1, 1));
/* We need to know that iv0->base >= MIN + iv0->step - 1. Since
0 address never belongs to any object, we can assume this for
pointers. */
if (!POINTER_TYPE_P (type))
{
bound = fold_build2 (PLUS_EXPR, type1,
TYPE_MIN_VALUE (type), diff);
assumption = fold_build2 (GE_EXPR, boolean_type_node,
iv0->base, bound);
}
/* And then we can compute iv0->base - diff, and compare it with
iv1->base. */
mbzl = fold_build2 (MINUS_EXPR, type1,
fold_convert (type1, iv0->base), diff);
mbzr = fold_convert (type1, iv1->base);
}
else
{
diff = fold_build2 (PLUS_EXPR, type1,
iv1->step, build_int_cst (type1, 1));
if (!POINTER_TYPE_P (type))
{
bound = fold_build2 (PLUS_EXPR, type1,
TYPE_MAX_VALUE (type), diff);
assumption = fold_build2 (LE_EXPR, boolean_type_node,
iv1->base, bound);
}
mbzl = fold_convert (type1, iv0->base);
mbzr = fold_build2 (MINUS_EXPR, type1,
fold_convert (type1, iv1->base), diff);
}
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
if (!rolls_p)
{
mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
niter->may_be_zero, mbz);
}
}
/* Determines number of iterations of loop whose ending condition
is IV0 < IV1. TYPE is the type of the iv. The number of
iterations is stored to NITER. BNDS bounds the difference
IV1->base - IV0->base. */
static bool
number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
struct tree_niter_desc *niter,
bool never_infinite ATTRIBUTE_UNUSED,
bounds *bnds)
{
tree niter_type = unsigned_type_for (type);
tree delta, step, s;
mpz_t mstep, tmp;
if (integer_nonzerop (iv0->step))
{
niter->control = *iv0;
niter->cmp = LT_EXPR;
niter->bound = iv1->base;
}
else
{
niter->control = *iv1;
niter->cmp = GT_EXPR;
niter->bound = iv0->base;
}
delta = fold_build2 (MINUS_EXPR, niter_type,
fold_convert (niter_type, iv1->base),
fold_convert (niter_type, iv0->base));
/* First handle the special case that the step is +-1. */
if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
|| (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
{
/* for (i = iv0->base; i < iv1->base; i++)
or
for (i = iv1->base; i > iv0->base; i--).
In both cases # of iterations is iv1->base - iv0->base, assuming that
iv1->base >= iv0->base.
First try to derive a lower bound on the value of
iv1->base - iv0->base, computed in full precision. If the difference
is nonnegative, we are done, otherwise we must record the
condition. */
if (mpz_sgn (bnds->below) < 0)
niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
iv1->base, iv0->base);
niter->niter = delta;
niter->max = mpz_get_double_int (niter_type, bnds->up, false);
return true;
}
if (integer_nonzerop (iv0->step))
step = fold_convert (niter_type, iv0->step);
else
step = fold_convert (niter_type,
fold_build1 (NEGATE_EXPR, type, iv1->step));
/* If we can determine the final value of the control iv exactly, we can
transform the condition to != comparison. In particular, this will be
the case if DELTA is constant. */
if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
bnds))
{
affine_iv zps;
zps.base = build_int_cst (niter_type, 0);
zps.step = step;
/* number_of_iterations_lt_to_ne will add assumptions that ensure that
zps does not overflow. */
zps.no_overflow = true;
return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
}
/* Make sure that the control iv does not overflow. */
if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
return false;
/* We determine the number of iterations as (delta + step - 1) / step. For
this to work, we must know that iv1->base >= iv0->base - step + 1,
otherwise the loop does not roll. */
assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
s = fold_build2 (MINUS_EXPR, niter_type,
step, build_int_cst (niter_type, 1));
delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
mpz_init (mstep);
mpz_init (tmp);
mpz_set_double_int (mstep, tree_to_double_int (step), true);
mpz_add (tmp, bnds->up, mstep);
mpz_sub_ui (tmp, tmp, 1);
mpz_fdiv_q (tmp, tmp, mstep);
niter->max = mpz_get_double_int (niter_type, tmp, false);
mpz_clear (mstep);
mpz_clear (tmp);
return true;
}
/* Determines number of iterations of loop whose ending condition
is IV0 <= IV1. TYPE is the type of the iv. The number of
iterations is stored to NITER. NEVER_INFINITE is true if
we know that this condition must eventually become false (we derived this
earlier, and possibly set NITER->assumptions to make sure this
is the case). BNDS bounds the difference IV1->base - IV0->base. */
static bool
number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
struct tree_niter_desc *niter, bool never_infinite,
bounds *bnds)
{
tree assumption;
tree type1 = type;
if (POINTER_TYPE_P (type))
type1 = sizetype;
/* Say that IV0 is the control variable. Then IV0 <= IV1 iff
IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
value of the type. This we must know anyway, since if it is
equal to this value, the loop rolls forever. */
if (!never_infinite)
{
if (integer_nonzerop (iv0->step))
assumption = fold_build2 (NE_EXPR, boolean_type_node,
iv1->base, TYPE_MAX_VALUE (type1));
else
assumption = fold_build2 (NE_EXPR, boolean_type_node,
iv0->base, TYPE_MIN_VALUE (type1));
if (integer_zerop (assumption))
return false;
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
}
if (integer_nonzerop (iv0->step))
iv1->base = fold_build2 (PLUS_EXPR, type1,
iv1->base, build_int_cst (type1, 1));
else
iv0->base = fold_build2 (MINUS_EXPR, type1,
iv0->base, build_int_cst (type1, 1));
bounds_add (bnds, double_int_one, type1);
return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite, bnds);
}
/* Dumps description of affine induction variable IV to FILE. */
static void
dump_affine_iv (FILE *file, affine_iv *iv)
{
if (!integer_zerop (iv->step))
fprintf (file, "[");
print_generic_expr (dump_file, iv->base, TDF_SLIM);
if (!integer_zerop (iv->step))
{
fprintf (file, ", + , ");
print_generic_expr (dump_file, iv->step, TDF_SLIM);
fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
}
}
/* Determine the number of iterations according to condition (for staying
inside loop) which compares two induction variables using comparison
operator CODE. The induction variable on left side of the comparison
is IV0, the right-hand side is IV1. Both induction variables must have
type TYPE, which must be an integer or pointer type. The steps of the
ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
LOOP is the loop whose number of iterations we are determining.
ONLY_EXIT is true if we are sure this is the only way the loop could be
exited (including possibly non-returning function calls, exceptions, etc.)
-- in this case we can use the information whether the control induction
variables can overflow or not in a more efficient way.
The results (number of iterations and assumptions as described in
comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
Returns false if it fails to determine number of iterations, true if it
was determined (possibly with some assumptions). */
static bool
number_of_iterations_cond (struct loop *loop,
tree type, affine_iv *iv0, enum tree_code code,
affine_iv *iv1, struct tree_niter_desc *niter,
bool only_exit)
{
bool never_infinite, ret;
bounds bnds;
/* The meaning of these assumptions is this:
if !assumptions
then the rest of information does not have to be valid
if may_be_zero then the loop does not roll, even if
niter != 0. */
niter->assumptions = boolean_true_node;
niter->may_be_zero = boolean_false_node;
niter->niter = NULL_TREE;
niter->max = double_int_zero;
niter->bound = NULL_TREE;
niter->cmp = ERROR_MARK;
/* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
the control variable is on lhs. */
if (code == GE_EXPR || code == GT_EXPR
|| (code == NE_EXPR && integer_zerop (iv0->step)))
{
SWAP (iv0, iv1);
code = swap_tree_comparison (code);
}
if (!only_exit)
{
/* If this is not the only possible exit from the loop, the information
that the induction variables cannot overflow as derived from
signedness analysis cannot be relied upon. We use them e.g. in the
following way: given loop for (i = 0; i <= n; i++), if i is
signed, it cannot overflow, thus this loop is equivalent to
for (i = 0; i < n + 1; i++); however, if n == MAX, but the loop
is exited in some other way before i overflows, this transformation
is incorrect (the new loop exits immediately). */
iv0->no_overflow = false;
iv1->no_overflow = false;
}
if (POINTER_TYPE_P (type))
{
/* Comparison of pointers is undefined unless both iv0 and iv1 point
to the same object. If they do, the control variable cannot wrap
(as wrap around the bounds of memory will never return a pointer
that would be guaranteed to point to the same object, even if we
avoid undefined behavior by casting to size_t and back). The
restrictions on pointer arithmetics and comparisons of pointers
ensure that using the no-overflow assumptions is correct in this
case even if ONLY_EXIT is false. */
iv0->no_overflow = true;
iv1->no_overflow = true;
}
/* If the control induction variable does not overflow, the loop obviously
cannot be infinite. */
if (!integer_zerop (iv0->step) && iv0->no_overflow)
never_infinite = true;
else if (!integer_zerop (iv1->step) && iv1->no_overflow)
never_infinite = true;
else
never_infinite = false;
/* We can handle the case when neither of the sides of the comparison is
invariant, provided that the test is NE_EXPR. This rarely occurs in
practice, but it is simple enough to manage. */
if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
{
if (code != NE_EXPR)
return false;
iv0->step = fold_binary_to_constant (MINUS_EXPR, type,
iv0->step, iv1->step);
iv0->no_overflow = false;
iv1->step = build_int_cst (type, 0);
iv1->no_overflow = true;
}
/* If the result of the comparison is a constant, the loop is weird. More
precise handling would be possible, but the situation is not common enough
to waste time on it. */
if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
return false;
/* Ignore loops of while (i-- < 10) type. */
if (code != NE_EXPR)
{
if (iv0->step && tree_int_cst_sign_bit (iv0->step))
return false;
if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
return false;
}
/* If the loop exits immediately, there is nothing to do. */
if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
{
niter->niter = build_int_cst (unsigned_type_for (type), 0);
niter->max = double_int_zero;
return true;
}
/* OK, now we know we have a senseful loop. Handle several cases, depending
on what comparison operator is used. */
bound_difference (loop, iv1->base, iv0->base, &bnds);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"Analyzing # of iterations of loop %d\n", loop->num);
fprintf (dump_file, " exit condition ");
dump_affine_iv (dump_file, iv0);
fprintf (dump_file, " %s ",
code == NE_EXPR ? "!="
: code == LT_EXPR ? "<"
: "<=");
dump_affine_iv (dump_file, iv1);
fprintf (dump_file, "\n");
fprintf (dump_file, " bounds on difference of bases: ");
mpz_out_str (dump_file, 10, bnds.below);
fprintf (dump_file, " ... ");
mpz_out_str (dump_file, 10, bnds.up);
fprintf (dump_file, "\n");
}
switch (code)
{
case NE_EXPR:
gcc_assert (integer_zerop (iv1->step));
ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
never_infinite, &bnds);
break;
case LT_EXPR:
ret = number_of_iterations_lt (type, iv0, iv1, niter, never_infinite,
&bnds);
break;
case LE_EXPR:
ret = number_of_iterations_le (type, iv0, iv1, niter, never_infinite,
&bnds);
break;
default:
gcc_unreachable ();
}
mpz_clear (bnds.up);
mpz_clear (bnds.below);
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (ret)
{
fprintf (dump_file, " result:\n");
if (!integer_nonzerop (niter->assumptions))
{
fprintf (dump_file, " under assumptions ");
print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
fprintf (dump_file, "\n");
}
if (!integer_zerop (niter->may_be_zero))
{
fprintf (dump_file, " zero if ");
print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
fprintf (dump_file, "\n");
}
fprintf (dump_file, " # of iterations ");
print_generic_expr (dump_file, niter->niter, TDF_SLIM);
fprintf (dump_file, ", bounded by ");
dump_double_int (dump_file, niter->max, true);
fprintf (dump_file, "\n");
}
else
fprintf (dump_file, " failed\n\n");
}
return ret;
}
/* Substitute NEW for OLD in EXPR and fold the result. */
static tree
simplify_replace_tree (tree expr, tree old, tree new_tree)
{
unsigned i, n;
tree ret = NULL_TREE, e, se;
if (!expr)
return NULL_TREE;
if (expr == old
|| operand_equal_p (expr, old, 0))
return unshare_expr (new_tree);
if (!EXPR_P (expr) && !GIMPLE_STMT_P (expr))
return expr;
n = TREE_OPERAND_LENGTH (expr);
for (i = 0; i < n; i++)
{
e = TREE_OPERAND (expr, i);
se = simplify_replace_tree (e, old, new_tree);
if (e == se)
continue;
if (!ret)
ret = copy_node (expr);
TREE_OPERAND (ret, i) = se;
}
return (ret ? fold (ret) : expr);
}
/* Expand definitions of ssa names in EXPR as long as they are simple
enough, and return the new expression. */
tree
expand_simple_operations (tree expr)
{
unsigned i, n;
tree ret = NULL_TREE, e, ee, stmt;
enum tree_code code;
if (expr == NULL_TREE)
return expr;
if (is_gimple_min_invariant (expr))
return expr;
code = TREE_CODE (expr);
if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
{
n = TREE_OPERAND_LENGTH (expr);
for (i = 0; i < n; i++)
{
e = TREE_OPERAND (expr, i);
ee = expand_simple_operations (e);
if (e == ee)
continue;
if (!ret)
ret = copy_node (expr);
TREE_OPERAND (ret, i) = ee;
}
if (!ret)
return expr;
fold_defer_overflow_warnings ();
ret = fold (ret);
fold_undefer_and_ignore_overflow_warnings ();
return ret;
}
if (TREE_CODE (expr) != SSA_NAME)
return expr;
stmt = SSA_NAME_DEF_STMT (expr);
if (TREE_CODE (stmt) == PHI_NODE)
{
basic_block src, dest;
if (PHI_NUM_ARGS (stmt) != 1)
return expr;
e = PHI_ARG_DEF (stmt, 0);
/* Avoid propagating through loop exit phi nodes, which
could break loop-closed SSA form restrictions. */
dest = bb_for_stmt (stmt);
src = single_pred (dest);
if (TREE_CODE (e) == SSA_NAME
&& src->loop_father != dest->loop_father)
return expr;
return expand_simple_operations (e);
}
if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
return expr;
e = GIMPLE_STMT_OPERAND (stmt, 1);
/* Do not expand random invariants. */
if (TREE_INVARIANT (e)
&& !is_gimple_min_invariant (e))
return expr;
if (/* Casts are simple. */
TREE_CODE (e) != NOP_EXPR
&& TREE_CODE (e) != CONVERT_EXPR
/* Copies are simple. */
&& TREE_CODE (e) != SSA_NAME
/* Assignments of invariants are simple. */
&& !is_gimple_min_invariant (e)
/* And increments and decrements by a constant are simple. */
&& !((TREE_CODE (e) == PLUS_EXPR
|| TREE_CODE (e) == MINUS_EXPR
|| TREE_CODE (e) == POINTER_PLUS_EXPR)
&& is_gimple_min_invariant (TREE_OPERAND (e, 1))))
return expr;
return expand_simple_operations (e);
}
/* Tries to simplify EXPR using the condition COND. Returns the simplified
expression (or EXPR unchanged, if no simplification was possible). */
static tree
tree_simplify_using_condition_1 (tree cond, tree expr)
{
bool changed;
tree e, te, e0, e1, e2, notcond;
enum tree_code code = TREE_CODE (expr);
if (code == INTEGER_CST)
return expr;
if (code == TRUTH_OR_EXPR
|| code == TRUTH_AND_EXPR
|| code == COND_EXPR)
{
changed = false;
e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
if (TREE_OPERAND (expr, 0) != e0)
changed = true;
e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
if (TREE_OPERAND (expr, 1) != e1)
changed = true;
if (code == COND_EXPR)
{
e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
if (TREE_OPERAND (expr, 2) != e2)
changed = true;
}
else
e2 = NULL_TREE;
if (changed)
{
if (code == COND_EXPR)
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
else
expr = fold_build2 (code, boolean_type_node, e0, e1);
}
return expr;
}
/* In case COND is equality, we may be able to simplify EXPR by copy/constant
propagation, and vice versa. Fold does not handle this, since it is
considered too expensive. */
if (TREE_CODE (cond) == EQ_EXPR)
{
e0 = TREE_OPERAND (cond, 0);
e1 = TREE_OPERAND (cond, 1);
/* We know that e0 == e1. Check whether we cannot simplify expr
using this fact. */
e = simplify_replace_tree (expr, e0, e1);
if (integer_zerop (e) || integer_nonzerop (e))
return e;
e = simplify_replace_tree (expr, e1, e0);
if (integer_zerop (e) || integer_nonzerop (e))
return e;
}
if (TREE_CODE (expr) == EQ_EXPR)
{
e0 = TREE_OPERAND (expr, 0);
e1 = TREE_OPERAND (expr, 1);
/* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
e = simplify_replace_tree (cond, e0, e1);
if (integer_zerop (e))
return e;
e = simplify_replace_tree (cond, e1, e0);
if (integer_zerop (e))
return e;
}
if (TREE_CODE (expr) == NE_EXPR)
{
e0 = TREE_OPERAND (expr, 0);
e1 = TREE_OPERAND (expr, 1);
/* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
e = simplify_replace_tree (cond, e0, e1);
if (integer_zerop (e))
return boolean_true_node;
e = simplify_replace_tree (cond, e1, e0);
if (integer_zerop (e))
return boolean_true_node;
}
te = expand_simple_operations (expr);
/* Check whether COND ==> EXPR. */
notcond = invert_truthvalue (cond);
e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
if (e && integer_nonzerop (e))
return e;
/* Check whether COND ==> not EXPR. */
e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
if (e && integer_zerop (e))
return e;
return expr;
}
/* Tries to simplify EXPR using the condition COND. Returns the simplified
expression (or EXPR unchanged, if no simplification was possible).
Wrapper around tree_simplify_using_condition_1 that ensures that chains
of simple operations in definitions of ssa names in COND are expanded,
so that things like casts or incrementing the value of the bound before
the loop do not cause us to fail. */
static tree
tree_simplify_using_condition (tree cond, tree expr)
{
cond = expand_simple_operations (cond);
return tree_simplify_using_condition_1 (cond, expr);
}
/* Tries to simplify EXPR using the conditions on entry to LOOP.
Returns the simplified expression (or EXPR unchanged, if no
simplification was possible).*/
static tree
simplify_using_initial_conditions (struct loop *loop, tree expr)
{
edge e;
basic_block bb;
tree cond;
int cnt = 0;
if (TREE_CODE (expr) == INTEGER_CST)
return expr;
/* Limit walking the dominators to avoid quadraticness in
the number of BBs times the number of loops in degenerate
cases. */
for (bb = loop->header;
bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
if (!single_pred_p (bb))
continue;
e = single_pred_edge (bb);
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
continue;
cond = COND_EXPR_COND (last_stmt (e->src));
if (e->flags & EDGE_FALSE_VALUE)
cond = invert_truthvalue (cond);
expr = tree_simplify_using_condition (cond, expr);
++cnt;
}
return expr;
}
/* Tries to simplify EXPR using the evolutions of the loop invariants
in the superloops of LOOP. Returns the simplified expression
(or EXPR unchanged, if no simplification was possible). */
static tree
simplify_using_outer_evolutions (struct loop *loop, tree expr)
{
enum tree_code code = TREE_CODE (expr);
bool changed;
tree e, e0, e1, e2;
if (is_gimple_min_invariant (expr))
return expr;
if (code == TRUTH_OR_EXPR
|| code == TRUTH_AND_EXPR
|| code == COND_EXPR)
{
changed = false;
e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
if (TREE_OPERAND (expr, 0) != e0)
changed = true;
e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
if (TREE_OPERAND (expr, 1) != e1)
changed = true;
if (code == COND_EXPR)
{
e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
if (TREE_OPERAND (expr, 2) != e2)
changed = true;
}
else
e2 = NULL_TREE;
if (changed)
{
if (code == COND_EXPR)
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
else
expr = fold_build2 (code, boolean_type_node, e0, e1);
}
return expr;
}
e = instantiate_parameters (loop, expr);
if (is_gimple_min_invariant (e))
return e;
return expr;
}
/* Returns true if EXIT is the only possible exit from LOOP. */
static bool
loop_only_exit_p (const struct loop *loop, const_edge exit)
{
basic_block *body;
block_stmt_iterator bsi;
unsigned i;
tree call;
if (exit != single_exit (loop))
return false;
body = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
for (bsi = bsi_start (body[0]); !bsi_end_p (bsi); bsi_next (&bsi))
{
call = get_call_expr_in (bsi_stmt (bsi));
if (call && TREE_SIDE_EFFECTS (call))
{
free (body);
return false;
}
}
}
free (body);
return true;
}
/* Stores description of number of iterations of LOOP derived from
EXIT (an exit edge of the LOOP) in NITER. Returns true if some
useful information could be derived (and fields of NITER has
meaning described in comments at struct tree_niter_desc
declaration), false otherwise. If WARN is true and
-Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
potentially unsafe assumptions. */
bool
number_of_iterations_exit (struct loop *loop, edge exit,
struct tree_niter_desc *niter,
bool warn)
{
tree stmt, cond, type;
tree op0, op1;
enum tree_code code;
affine_iv iv0, iv1;
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
return false;
niter->assumptions = boolean_false_node;
stmt = last_stmt (exit->src);
if (!stmt || TREE_CODE (stmt) != COND_EXPR)
return false;
/* We want the condition for staying inside loop. */
cond = COND_EXPR_COND (stmt);
if (exit->flags & EDGE_TRUE_VALUE)
cond = invert_truthvalue (cond);
code = TREE_CODE (cond);
switch (code)
{
case GT_EXPR:
case GE_EXPR:
case NE_EXPR:
case LT_EXPR:
case LE_EXPR:
break;
default:
return false;
}
op0 = TREE_OPERAND (cond, 0);
op1 = TREE_OPERAND (cond, 1);
type = TREE_TYPE (op0);
if (TREE_CODE (type) != INTEGER_TYPE
&& !POINTER_TYPE_P (type))
return false;
if (!simple_iv (loop, stmt, op0, &iv0, false))
return false;
if (!simple_iv (loop, stmt, op1, &iv1, false))
return false;
/* We don't want to see undefined signed overflow warnings while
computing the number of iterations. */
fold_defer_overflow_warnings ();
iv0.base = expand_simple_operations (iv0.base);
iv1.base = expand_simple_operations (iv1.base);
if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
loop_only_exit_p (loop, exit)))
{
fold_undefer_and_ignore_overflow_warnings ();
return false;
}
if (optimize >= 3)
{
niter->assumptions = simplify_using_outer_evolutions (loop,
niter->assumptions);
niter->may_be_zero = simplify_using_outer_evolutions (loop,
niter->may_be_zero);
niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
}
niter->assumptions
= simplify_using_initial_conditions (loop,
niter->assumptions);
niter->may_be_zero
= simplify_using_initial_conditions (loop,
niter->may_be_zero);
fold_undefer_and_ignore_overflow_warnings ();
if (integer_onep (niter->assumptions))
return true;
/* With -funsafe-loop-optimizations we assume that nothing bad can happen.
But if we can prove that there is overflow or some other source of weird
behavior, ignore the loop even with -funsafe-loop-optimizations. */
if (integer_zerop (niter->assumptions))
return false;
if (flag_unsafe_loop_optimizations)
niter->assumptions = boolean_true_node;
if (warn)
{
const char *wording;
location_t loc = EXPR_LOCATION (stmt);
/* We can provide a more specific warning if one of the operator is
constant and the other advances by +1 or -1. */
if (!integer_zerop (iv1.step)
? (integer_zerop (iv0.step)
&& (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
: (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
wording =
flag_unsafe_loop_optimizations
? N_("assuming that the loop is not infinite")
: N_("cannot optimize possibly infinite loops");
else
wording =
flag_unsafe_loop_optimizations
? N_("assuming that the loop counter does not overflow")
: N_("cannot optimize loop, the loop counter may overflow");
if (LOCATION_LINE (loc) > 0)
warning (OPT_Wunsafe_loop_optimizations, "%H%s", &loc, gettext (wording));
else
warning (OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
}
return flag_unsafe_loop_optimizations;
}
/* Try to determine the number of iterations of LOOP. If we succeed,
expression giving number of iterations is returned and *EXIT is
set to the edge from that the information is obtained. Otherwise
chrec_dont_know is returned. */
tree
find_loop_niter (struct loop *loop, edge *exit)
{
unsigned i;
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
edge ex;
tree niter = NULL_TREE, aniter;
struct tree_niter_desc desc;
*exit = NULL;
for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
{
if (!just_once_each_iteration_p (loop, ex->src))
continue;
if (!number_of_iterations_exit (loop, ex, &desc, false))
continue;
if (integer_nonzerop (desc.may_be_zero))
{
/* We exit in the first iteration through this exit.
We won't find anything better. */
niter = build_int_cst (unsigned_type_node, 0);
*exit = ex;
break;
}
if (!integer_zerop (desc.may_be_zero))
continue;
aniter = desc.niter;
if (!niter)
{
/* Nothing recorded yet. */
niter = aniter;
*exit = ex;
continue;
}
/* Prefer constants, the lower the better. */
if (TREE_CODE (aniter) != INTEGER_CST)
continue;
if (TREE_CODE (niter) != INTEGER_CST)
{
niter = aniter;
*exit = ex;
continue;
}
if (tree_int_cst_lt (aniter, niter))
{
niter = aniter;
*exit = ex;
continue;
}
}
VEC_free (edge, heap, exits);
return niter ? niter : chrec_dont_know;
}
/*
Analysis of a number of iterations of a loop by a brute-force evaluation.
*/
/* Bound on the number of iterations we try to evaluate. */
#define MAX_ITERATIONS_TO_TRACK \
((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
/* Returns the loop phi node of LOOP such that ssa name X is derived from its
result by a chain of operations such that all but exactly one of their
operands are constants. */
static tree
chain_of_csts_start (struct loop *loop, tree x)
{
tree stmt = SSA_NAME_DEF_STMT (x);
tree use;
basic_block bb = bb_for_stmt (stmt);
if (!bb
|| !flow_bb_inside_loop_p (loop, bb))
return NULL_TREE;
if (TREE_CODE (stmt) == PHI_NODE)
{
if (bb == loop->header)
return stmt;
return NULL_TREE;
}
if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
return NULL_TREE;
if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
return NULL_TREE;
if (SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF) == NULL_DEF_OPERAND_P)
return NULL_TREE;
use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
if (use == NULL_USE_OPERAND_P)
return NULL_TREE;
return chain_of_csts_start (loop, use);
}
/* Determines whether the expression X is derived from a result of a phi node
in header of LOOP such that
* the derivation of X consists only from operations with constants
* the initial value of the phi node is constant
* the value of the phi node in the next iteration can be derived from the
value in the current iteration by a chain of operations with constants.
If such phi node exists, it is returned. If X is a constant, X is returned
unchanged. Otherwise NULL_TREE is returned. */
static tree
get_base_for (struct loop *loop, tree x)
{
tree phi, init, next;
if (is_gimple_min_invariant (x))
return x;
phi = chain_of_csts_start (loop, x);
if (!phi)
return NULL_TREE;
init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
if (TREE_CODE (next) != SSA_NAME)
return NULL_TREE;
if (!is_gimple_min_invariant (init))
return NULL_TREE;
if (chain_of_csts_start (loop, next) != phi)
return NULL_TREE;
return phi;
}
/* Given an expression X, then
* if X is NULL_TREE, we return the constant BASE.
* otherwise X is a SSA name, whose value in the considered loop is derived
by a chain of operations with constant from a result of a phi node in
the header of the loop. Then we return value of X when the value of the
result of this phi node is given by the constant BASE. */
static tree
get_val_for (tree x, tree base)
{
tree stmt, nx, val;
use_operand_p op;
ssa_op_iter iter;
gcc_assert (is_gimple_min_invariant (base));
if (!x)
return base;
stmt = SSA_NAME_DEF_STMT (x);
if (TREE_CODE (stmt) == PHI_NODE)
return base;
FOR_EACH_SSA_USE_OPERAND (op, stmt, iter, SSA_OP_USE)
{
nx = USE_FROM_PTR (op);
val = get_val_for (nx, base);
SET_USE (op, val);
val = fold (GIMPLE_STMT_OPERAND (stmt, 1));
SET_USE (op, nx);
/* only iterate loop once. */
return val;
}
/* Should never reach here. */
gcc_unreachable ();
}
/* Tries to count the number of iterations of LOOP till it exits by EXIT
by brute force -- i.e. by determining the value of the operands of the
condition at EXIT in first few iterations of the loop (assuming that
these values are constant) and determining the first one in that the
condition is not satisfied. Returns the constant giving the number
of the iterations of LOOP if successful, chrec_dont_know otherwise. */
tree
loop_niter_by_eval (struct loop *loop, edge exit)
{
tree cond, cnd, acnd;
tree op[2], val[2], next[2], aval[2], phi[2];
unsigned i, j;
enum tree_code cmp;
cond = last_stmt (exit->src);
if (!cond || TREE_CODE (cond) != COND_EXPR)
return chrec_dont_know;
cnd = COND_EXPR_COND (cond);
if (exit->flags & EDGE_TRUE_VALUE)
cnd = invert_truthvalue (cnd);
cmp = TREE_CODE (cnd);
switch (cmp)
{
case EQ_EXPR:
case NE_EXPR:
case GT_EXPR:
case GE_EXPR:
case LT_EXPR:
case LE_EXPR:
for (j = 0; j < 2; j++)
op[j] = TREE_OPERAND (cnd, j);
break;
default:
return chrec_dont_know;
}
for (j = 0; j < 2; j++)
{
phi[j] = get_base_for (loop, op[j]);
if (!phi[j])
return chrec_dont_know;
}
for (j = 0; j < 2; j++)
{
if (TREE_CODE (phi[j]) == PHI_NODE)
{
val[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_preheader_edge (loop));
next[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_latch_edge (loop));
}
else
{
val[j] = phi[j];
next[j] = NULL_TREE;
op[j] = NULL_TREE;
}
}
/* Don't issue signed overflow warnings. */
fold_defer_overflow_warnings ();
for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
{
for (j = 0; j < 2; j++)
aval[j] = get_val_for (op[j], val[j]);
acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
if (acnd && integer_zerop (acnd))
{
fold_undefer_and_ignore_overflow_warnings ();
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Proved that loop %d iterates %d times using brute force.\n",
loop->num, i);
return build_int_cst (unsigned_type_node, i);
}
for (j = 0; j < 2; j++)
{
val[j] = get_val_for (next[j], val[j]);
if (!is_gimple_min_invariant (val[j]))
{
fold_undefer_and_ignore_overflow_warnings ();
return chrec_dont_know;
}
}
}
fold_undefer_and_ignore_overflow_warnings ();
return chrec_dont_know;
}
/* Finds the exit of the LOOP by that the loop exits after a constant
number of iterations and stores the exit edge to *EXIT. The constant
giving the number of iterations of LOOP is returned. The number of
iterations is determined using loop_niter_by_eval (i.e. by brute force
evaluation). If we are unable to find the exit for that loop_niter_by_eval
determines the number of iterations, chrec_dont_know is returned. */
tree
find_loop_niter_by_eval (struct loop *loop, edge *exit)
{
unsigned i;
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
edge ex;
tree niter = NULL_TREE, aniter;
*exit = NULL;
for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
{
if (!just_once_each_iteration_p (loop, ex->src))
continue;
aniter = loop_niter_by_eval (loop, ex);
if (chrec_contains_undetermined (aniter))
continue;
if (niter
&& !tree_int_cst_lt (aniter, niter))
continue;
niter = aniter;
*exit = ex;
}
VEC_free (edge, heap, exits);
return niter ? niter : chrec_dont_know;
}
/*
Analysis of upper bounds on number of iterations of a loop.
*/
/* Returns a constant upper bound on the value of expression VAL. VAL
is considered to be unsigned. If its type is signed, its value must
be nonnegative. */
static double_int
derive_constant_upper_bound (const_tree val)
{
tree type = TREE_TYPE (val);
tree op0, op1, subtype, maxt;
double_int bnd, max, mmax, cst;
tree stmt;
if (INTEGRAL_TYPE_P (type))
maxt = TYPE_MAX_VALUE (type);
else
maxt = upper_bound_in_type (type, type);
max = tree_to_double_int (maxt);
switch (TREE_CODE (val))
{
case INTEGER_CST:
return tree_to_double_int (val);
case NOP_EXPR:
case CONVERT_EXPR:
op0 = TREE_OPERAND (val, 0);
subtype = TREE_TYPE (op0);
if (!TYPE_UNSIGNED (subtype)
/* If TYPE is also signed, the fact that VAL is nonnegative implies
that OP0 is nonnegative. */
&& TYPE_UNSIGNED (type)
&& !tree_expr_nonnegative_p (op0))
{
/* If we cannot prove that the casted expression is nonnegative,
we cannot establish more useful upper bound than the precision
of the type gives us. */
return max;
}
/* We now know that op0 is an nonnegative value. Try deriving an upper
bound for it. */
bnd = derive_constant_upper_bound (op0);
/* If the bound does not fit in TYPE, max. value of TYPE could be
attained. */
if (double_int_ucmp (max, bnd) < 0)
return max;
return bnd;
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
case MINUS_EXPR:
op0 = TREE_OPERAND (val, 0);
op1 = TREE_OPERAND (val, 1);
if (TREE_CODE (op1) != INTEGER_CST
|| !tree_expr_nonnegative_p (op0))
return max;
/* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
choose the most logical way how to treat this constant regardless
of the signedness of the type. */
cst = tree_to_double_int (op1);
cst = double_int_sext (cst, TYPE_PRECISION (type));
if (TREE_CODE (val) == PLUS_EXPR)
cst = double_int_neg (cst);
bnd = derive_constant_upper_bound (op0);
if (double_int_negative_p (cst))
{
cst = double_int_neg (cst);
/* Avoid CST == 0x80000... */
if (double_int_negative_p (cst))
return max;;
/* OP0 + CST. We need to check that
BND <= MAX (type) - CST. */
mmax = double_int_add (max, double_int_neg (cst));
if (double_int_ucmp (bnd, mmax) > 0)
return max;
return double_int_add (bnd, cst);
}
else
{
/* OP0 - CST, where CST >= 0.
If TYPE is signed, we have already verified that OP0 >= 0, and we
know that the result is nonnegative. This implies that
VAL <= BND - CST.
If TYPE is unsigned, we must additionally know that OP0 >= CST,
otherwise the operation underflows.
*/
/* This should only happen if the type is unsigned; however, for
buggy programs that use overflowing signed arithmetics even with
-fno-wrapv, this condition may also be true for signed values. */
if (double_int_ucmp (bnd, cst) < 0)
return max;
if (TYPE_UNSIGNED (type))
{
tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
double_int_to_tree (type, cst));
if (!tem || integer_nonzerop (tem))
return max;
}
bnd = double_int_add (bnd, double_int_neg (cst));
}
return bnd;
case FLOOR_DIV_EXPR:
case EXACT_DIV_EXPR:
op0 = TREE_OPERAND (val, 0);
op1 = TREE_OPERAND (val, 1);
if (TREE_CODE (op1) != INTEGER_CST
|| tree_int_cst_sign_bit (op1))
return max;
bnd = derive_constant_upper_bound (op0);
return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
case BIT_AND_EXPR:
op1 = TREE_OPERAND (val, 1);
if (TREE_CODE (op1) != INTEGER_CST
|| tree_int_cst_sign_bit (op1))
return max;
return tree_to_double_int (op1);
case SSA_NAME:
stmt = SSA_NAME_DEF_STMT (val);
if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT
|| GIMPLE_STMT_OPERAND (stmt, 0) != val)
return max;
return derive_constant_upper_bound (GIMPLE_STMT_OPERAND (stmt, 1));
default:
return max;
}
}
/* Records that every statement in LOOP is executed I_BOUND times.
REALISTIC is true if I_BOUND is expected to be close the the real number
of iterations. UPPER is true if we are sure the loop iterates at most
I_BOUND times. */
static void
record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
bool upper)
{
/* Update the bounds only when there is no previous estimation, or when the current
estimation is smaller. */
if (upper
&& (!loop->any_upper_bound
|| double_int_ucmp (i_bound, loop->nb_iterations_upper_bound) < 0))
{
loop->any_upper_bound = true;
loop->nb_iterations_upper_bound = i_bound;
}
if (realistic
&& (!loop->any_estimate
|| double_int_ucmp (i_bound, loop->nb_iterations_estimate) < 0))
{
loop->any_estimate = true;
loop->nb_iterations_estimate = i_bound;
}
}
/* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
is true if the loop is exited immediately after STMT, and this exit
is taken at last when the STMT is executed BOUND + 1 times.
REALISTIC is true if BOUND is expected to be close the the real number
of iterations. UPPER is true if we are sure the loop iterates at most
BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
static void
record_estimate (struct loop *loop, tree bound, double_int i_bound,
tree at_stmt, bool is_exit, bool realistic, bool upper)
{
double_int delta;
edge exit;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
print_generic_expr (dump_file, at_stmt, TDF_SLIM);
fprintf (dump_file, " is %sexecuted at most ",
upper ? "" : "probably ");
print_generic_expr (dump_file, bound, TDF_SLIM);
fprintf (dump_file, " (bounded by ");
dump_double_int (dump_file, i_bound, true);
fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
}
/* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
real number of iterations. */
if (TREE_CODE (bound) != INTEGER_CST)
realistic = false;
if (!upper && !realistic)
return;
/* If we have a guaranteed upper bound, record it in the appropriate
list. */
if (upper)
{
struct nb_iter_bound *elt = GGC_NEW (struct nb_iter_bound);
elt->bound = i_bound;
elt->stmt = at_stmt;
elt->is_exit = is_exit;
elt->next = loop->bounds;
loop->bounds = elt;
}
/* Update the number of iteration estimates according to the bound.
If at_stmt is an exit, then every statement in the loop is
executed at most BOUND + 1 times. If it is not an exit, then
some of the statements before it could be executed BOUND + 2
times, if an exit of LOOP is before stmt. */
exit = single_exit (loop);
if (is_exit
|| (exit != NULL
&& dominated_by_p (CDI_DOMINATORS,
exit->src, bb_for_stmt (at_stmt))))
delta = double_int_one;
else
delta = double_int_two;
i_bound = double_int_add (i_bound, delta);
/* If an overflow occurred, ignore the result. */
if (double_int_ucmp (i_bound, delta) < 0)
return;
record_niter_bound (loop, i_bound, realistic, upper);
}
/* Record the estimate on number of iterations of LOOP based on the fact that
the induction variable BASE + STEP * i evaluated in STMT does not wrap and
its values belong to the range <LOW, HIGH>. REALISTIC is true if the
estimated number of iterations is expected to be close to the real one.
UPPER is true if we are sure the induction variable does not wrap. */
static void
record_nonwrapping_iv (struct loop *loop, tree base, tree step, tree stmt,
tree low, tree high, bool realistic, bool upper)
{
tree niter_bound, extreme, delta;
tree type = TREE_TYPE (base), unsigned_type;
double_int max;
if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Induction variable (");
print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
fprintf (dump_file, ") ");
print_generic_expr (dump_file, base, TDF_SLIM);
fprintf (dump_file, " + ");
print_generic_expr (dump_file, step, TDF_SLIM);
fprintf (dump_file, " * iteration does not wrap in statement ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
fprintf (dump_file, " in loop %d.\n", loop->num);
}
unsigned_type = unsigned_type_for (type);
base = fold_convert (unsigned_type, base);
step = fold_convert (unsigned_type, step);
if (tree_int_cst_sign_bit (step))
{
extreme = fold_convert (unsigned_type, low);
if (TREE_CODE (base) != INTEGER_CST)
base = fold_convert (unsigned_type, high);
delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
}
else
{
extreme = fold_convert (unsigned_type, high);
if (TREE_CODE (base) != INTEGER_CST)
base = fold_convert (unsigned_type, low);
delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
}
/* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
would get out of the range. */
niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
max = derive_constant_upper_bound (niter_bound);
record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
}
/* Returns true if REF is a reference to an array at the end of a dynamically
allocated structure. If this is the case, the array may be allocated larger
than its upper bound implies. */
static bool
array_at_struct_end_p (tree ref)
{
tree base = get_base_address (ref);
tree parent, field;
/* Unless the reference is through a pointer, the size of the array matches
its declaration. */
if (!base || !INDIRECT_REF_P (base))
return false;
for (;handled_component_p (ref); ref = parent)
{
parent = TREE_OPERAND (ref, 0);
if (TREE_CODE (ref) == COMPONENT_REF)
{
/* All fields of a union are at its end. */
if (TREE_CODE (TREE_TYPE (parent)) == UNION_TYPE)
continue;
/* Unless the field is at the end of the struct, we are done. */
field = TREE_OPERAND (ref, 1);
if (TREE_CHAIN (field))
return false;
}
/* The other options are ARRAY_REF, ARRAY_RANGE_REF, VIEW_CONVERT_EXPR.
In all these cases, we might be accessing the last element, and
although in practice this will probably never happen, it is legal for
the indices of this last element to exceed the bounds of the array.
Therefore, continue checking. */
}
gcc_assert (INDIRECT_REF_P (ref));
return true;
}
/* Determine information about number of iterations a LOOP from the index
IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
guaranteed to be executed in every iteration of LOOP. Callback for
for_each_index. */
struct ilb_data
{
struct loop *loop;
tree stmt;
bool reliable;
};
static bool
idx_infer_loop_bounds (tree base, tree *idx, void *dta)
{
struct ilb_data *data = (struct ilb_data *) dta;
tree ev, init, step;
tree low, high, type, next;
bool sign, upper = data->reliable, at_end = false;
struct loop *loop = data->loop;
if (TREE_CODE (base) != ARRAY_REF)
return true;
/* For arrays at the end of the structure, we are not guaranteed that they
do not really extend over their declared size. However, for arrays of
size greater than one, this is unlikely to be intended. */
if (array_at_struct_end_p (base))
{
at_end = true;
upper = false;
}
ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
init = initial_condition (ev);
step = evolution_part_in_loop_num (ev, loop->num);
if (!init
|| !step
|| TREE_CODE (step) != INTEGER_CST
|| integer_zerop (step)
|| tree_contains_chrecs (init, NULL)
|| chrec_contains_symbols_defined_in_loop (init, loop->num))
return true;
low = array_ref_low_bound (base);
high = array_ref_up_bound (base);
/* The case of nonconstant bounds could be handled, but it would be
complicated. */
if (TREE_CODE (low) != INTEGER_CST
|| !high
|| TREE_CODE (high) != INTEGER_CST)
return true;
sign = tree_int_cst_sign_bit (step);
type = TREE_TYPE (step);
/* The array of length 1 at the end of a structure most likely extends
beyond its bounds. */
if (at_end
&& operand_equal_p (low, high, 0))
return true;
/* In case the relevant bound of the array does not fit in type, or
it does, but bound + step (in type) still belongs into the range of the
array, the index may wrap and still stay within the range of the array
(consider e.g. if the array is indexed by the full range of
unsigned char).
To make things simpler, we require both bounds to fit into type, although
there are cases where this would not be strictly necessary. */
if (!int_fits_type_p (high, type)
|| !int_fits_type_p (low, type))
return true;
low = fold_convert (type, low);
high = fold_convert (type, high);
if (sign)
next = fold_binary (PLUS_EXPR, type, low, step);
else
next = fold_binary (PLUS_EXPR, type, high, step);
if (tree_int_cst_compare (low, next) <= 0
&& tree_int_cst_compare (next, high) <= 0)
return true;
record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
return true;
}
/* Determine information about number of iterations a LOOP from the bounds
of arrays in the data reference REF accessed in STMT. RELIABLE is true if
STMT is guaranteed to be executed in every iteration of LOOP.*/
static void
infer_loop_bounds_from_ref (struct loop *loop, tree stmt, tree ref,
bool reliable)
{
struct ilb_data data;
data.loop = loop;
data.stmt = stmt;
data.reliable = reliable;
for_each_index (&ref, idx_infer_loop_bounds, &data);
}
/* Determine information about number of iterations of a LOOP from the way
arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
executed in every iteration of LOOP. */
static void
infer_loop_bounds_from_array (struct loop *loop, tree stmt, bool reliable)
{
tree call;
if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
{
tree op0 = GIMPLE_STMT_OPERAND (stmt, 0);
tree op1 = GIMPLE_STMT_OPERAND (stmt, 1);
/* For each memory access, analyze its access function
and record a bound on the loop iteration domain. */
if (REFERENCE_CLASS_P (op0))
infer_loop_bounds_from_ref (loop, stmt, op0, reliable);
if (REFERENCE_CLASS_P (op1))
infer_loop_bounds_from_ref (loop, stmt, op1, reliable);
}
call = get_call_expr_in (stmt);
if (call)
{
tree arg;
call_expr_arg_iterator iter;
FOR_EACH_CALL_EXPR_ARG (arg, iter, call)
if (REFERENCE_CLASS_P (arg))
infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
}
}
/* Determine information about number of iterations of a LOOP from the fact
that signed arithmetics in STMT does not overflow. */
static void
infer_loop_bounds_from_signedness (struct loop *loop, tree stmt)
{
tree def, base, step, scev, type, low, high;
if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
return;
def = GIMPLE_STMT_OPERAND (stmt, 0);
if (TREE_CODE (def) != SSA_NAME)
return;
type = TREE_TYPE (def);
if (!INTEGRAL_TYPE_P (type)
|| !TYPE_OVERFLOW_UNDEFINED (type))
return;
scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
if (chrec_contains_undetermined (scev))
return;
base = initial_condition_in_loop_num (scev, loop->num);
step = evolution_part_in_loop_num (scev, loop->num);
if (!base || !step
|| TREE_CODE (step) != INTEGER_CST
|| tree_contains_chrecs (base, NULL)
|| chrec_contains_symbols_defined_in_loop (base, loop->num))
return;
low = lower_bound_in_type (type, type);
high = upper_bound_in_type (type, type);
record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
}
/* The following analyzers are extracting informations on the bounds
of LOOP from the following undefined behaviors:
- data references should not access elements over the statically
allocated size,
- signed variables should not overflow when flag_wrapv is not set.
*/
static void
infer_loop_bounds_from_undefined (struct loop *loop)
{
unsigned i;
basic_block *bbs;
block_stmt_iterator bsi;
basic_block bb;
bool reliable;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
bb = bbs[i];
/* If BB is not executed in each iteration of the loop, we cannot
use the operations in it to infer reliable upper bound on the
# of iterations of the loop. However, we can use it as a guess. */
reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
tree stmt = bsi_stmt (bsi);
infer_loop_bounds_from_array (loop, stmt, reliable);
if (reliable)
infer_loop_bounds_from_signedness (loop, stmt);
}
}
free (bbs);
}
/* Converts VAL to double_int. */
static double_int
gcov_type_to_double_int (gcov_type val)
{
double_int ret;
ret.low = (unsigned HOST_WIDE_INT) val;
/* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
the size of type. */
val >>= HOST_BITS_PER_WIDE_INT - 1;
val >>= 1;
ret.high = (unsigned HOST_WIDE_INT) val;
return ret;
}
/* Records estimates on numbers of iterations of LOOP. */
void
estimate_numbers_of_iterations_loop (struct loop *loop)
{
VEC (edge, heap) *exits;
tree niter, type;
unsigned i;
struct tree_niter_desc niter_desc;
edge ex;
double_int bound;
/* Give up if we already have tried to compute an estimation. */
if (loop->estimate_state != EST_NOT_COMPUTED)
return;
loop->estimate_state = EST_AVAILABLE;
loop->any_upper_bound = false;
loop->any_estimate = false;
exits = get_loop_exit_edges (loop);
for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
{
if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
continue;
niter = niter_desc.niter;
type = TREE_TYPE (niter);
if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
build_int_cst (type, 0),
niter);
record_estimate (loop, niter, niter_desc.max,
last_stmt (ex->src),
true, true, true);
}
VEC_free (edge, heap, exits);
infer_loop_bounds_from_undefined (loop);
/* If we have a measured profile, use it to estimate the number of
iterations. */
if (loop->header->count != 0)
{
gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
bound = gcov_type_to_double_int (nit);
record_niter_bound (loop, bound, true, false);
}
/* If an upper bound is smaller than the realistic estimate of the
number of iterations, use the upper bound instead. */
if (loop->any_upper_bound
&& loop->any_estimate
&& double_int_ucmp (loop->nb_iterations_upper_bound,
loop->nb_iterations_estimate) < 0)
loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
}
/* Records estimates on numbers of iterations of loops. */
void
estimate_numbers_of_iterations (void)
{
loop_iterator li;
struct loop *loop;
/* We don't want to issue signed overflow warnings while getting
loop iteration estimates. */
fold_defer_overflow_warnings ();
FOR_EACH_LOOP (li, loop, 0)
{
estimate_numbers_of_iterations_loop (loop);
}
fold_undefer_and_ignore_overflow_warnings ();
}
/* Returns true if statement S1 dominates statement S2. */
bool
stmt_dominates_stmt_p (tree s1, tree s2)
{
basic_block bb1 = bb_for_stmt (s1), bb2 = bb_for_stmt (s2);
if (!bb1
|| s1 == s2)
return true;
if (bb1 == bb2)
{
block_stmt_iterator bsi;
for (bsi = bsi_start (bb1); bsi_stmt (bsi) != s2; bsi_next (&bsi))
if (bsi_stmt (bsi) == s1)
return true;
return false;
}
return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
}
/* Returns true when we can prove that the number of executions of
STMT in the loop is at most NITER, according to the bound on
the number of executions of the statement NITER_BOUND->stmt recorded in
NITER_BOUND. If STMT is NULL, we must prove this bound for all
statements in the loop. */
static bool
n_of_executions_at_most (tree stmt,
struct nb_iter_bound *niter_bound,
tree niter)
{
double_int bound = niter_bound->bound;
tree nit_type = TREE_TYPE (niter), e;
enum tree_code cmp;
gcc_assert (TYPE_UNSIGNED (nit_type));
/* If the bound does not even fit into NIT_TYPE, it cannot tell us that
the number of iterations is small. */
if (!double_int_fits_to_tree_p (nit_type, bound))
return false;
/* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
times. This means that:
-- if NITER_BOUND->is_exit is true, then everything before
NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
times, and everything after it at most NITER_BOUND->bound times.
-- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
is executed, then NITER_BOUND->stmt is executed as well in the same
iteration (we conclude that if both statements belong to the same
basic block, or if STMT is after NITER_BOUND->stmt), then STMT
is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
executed at most NITER_BOUND->bound + 2 times. */
if (niter_bound->is_exit)
{
if (stmt
&& stmt != niter_bound->stmt
&& stmt_dominates_stmt_p (niter_bound->stmt, stmt))
cmp = GE_EXPR;
else
cmp = GT_EXPR;
}
else
{
if (!stmt
|| (bb_for_stmt (stmt) != bb_for_stmt (niter_bound->stmt)
&& !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
{
bound = double_int_add (bound, double_int_one);
if (double_int_zero_p (bound)
|| !double_int_fits_to_tree_p (nit_type, bound))
return false;
}
cmp = GT_EXPR;
}
e = fold_binary (cmp, boolean_type_node,
niter, double_int_to_tree (nit_type, bound));
return e && integer_nonzerop (e);
}
/* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
bool
nowrap_type_p (tree type)
{
if (INTEGRAL_TYPE_P (type)
&& TYPE_OVERFLOW_UNDEFINED (type))
return true;
if (POINTER_TYPE_P (type))
return true;
return false;
}
/* Return false only when the induction variable BASE + STEP * I is
known to not overflow: i.e. when the number of iterations is small
enough with respect to the step and initial condition in order to
keep the evolution confined in TYPEs bounds. Return true when the
iv is known to overflow or when the property is not computable.
USE_OVERFLOW_SEMANTICS is true if this function should assume that
the rules for overflow of the given language apply (e.g., that signed
arithmetics in C does not overflow). */
bool
scev_probably_wraps_p (tree base, tree step,
tree at_stmt, struct loop *loop,
bool use_overflow_semantics)
{
struct nb_iter_bound *bound;
tree delta, step_abs;
tree unsigned_type, valid_niter;
tree type = TREE_TYPE (step);
/* FIXME: We really need something like
http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
We used to test for the following situation that frequently appears
during address arithmetics:
D.1621_13 = (long unsigned intD.4) D.1620_12;
D.1622_14 = D.1621_13 * 8;
D.1623_15 = (doubleD.29 *) D.1622_14;
And derived that the sequence corresponding to D_14
can be proved to not wrap because it is used for computing a
memory access; however, this is not really the case -- for example,
if D_12 = (unsigned char) [254,+,1], then D_14 has values
2032, 2040, 0, 8, ..., but the code is still legal. */
if (chrec_contains_undetermined (base)
|| chrec_contains_undetermined (step))
return true;
if (integer_zerop (step))
return false;
/* If we can use the fact that signed and pointer arithmetics does not
wrap, we are done. */
if (use_overflow_semantics && nowrap_type_p (type))
return false;
/* To be able to use estimates on number of iterations of the loop,
we must have an upper bound on the absolute value of the step. */
if (TREE_CODE (step) != INTEGER_CST)
return true;
/* Don't issue signed overflow warnings. */
fold_defer_overflow_warnings ();
/* Otherwise, compute the number of iterations before we reach the
bound of the type, and verify that the loop is exited before this
occurs. */
unsigned_type = unsigned_type_for (type);
base = fold_convert (unsigned_type, base);
if (tree_int_cst_sign_bit (step))
{
tree extreme = fold_convert (unsigned_type,
lower_bound_in_type (type, type));
delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
fold_convert (unsigned_type, step));
}
else
{
tree extreme = fold_convert (unsigned_type,
upper_bound_in_type (type, type));
delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
step_abs = fold_convert (unsigned_type, step);
}
valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
estimate_numbers_of_iterations_loop (loop);
for (bound = loop->bounds; bound; bound = bound->next)
{
if (n_of_executions_at_most (at_stmt, bound, valid_niter))
{
fold_undefer_and_ignore_overflow_warnings ();
return false;
}
}
fold_undefer_and_ignore_overflow_warnings ();
/* At this point we still don't have a proof that the iv does not
overflow: give up. */
return true;
}
/* Frees the information on upper bounds on numbers of iterations of LOOP. */
void
free_numbers_of_iterations_estimates_loop (struct loop *loop)
{
struct nb_iter_bound *bound, *next;
loop->nb_iterations = NULL;
loop->estimate_state = EST_NOT_COMPUTED;
for (bound = loop->bounds; bound; bound = next)
{
next = bound->next;
ggc_free (bound);
}
loop->bounds = NULL;
}
/* Frees the information on upper bounds on numbers of iterations of loops. */
void
free_numbers_of_iterations_estimates (void)
{
loop_iterator li;
struct loop *loop;
FOR_EACH_LOOP (li, loop, 0)
{
free_numbers_of_iterations_estimates_loop (loop);
}
}
/* Substitute value VAL for ssa name NAME inside expressions held
at LOOP. */
void
substitute_in_loop_info (struct loop *loop, tree name, tree val)
{
loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
}
|