1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
|
/* High-level loop manipulation functions.
Copyright (C) 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-pass.h"
#include "cfglayout.h"
#include "tree-scalar-evolution.h"
/* Creates an induction variable with value BASE + STEP * iteration in LOOP.
It is expected that neither BASE nor STEP are shared with other expressions
(unless the sharing rules allow this). Use VAR as a base var_decl for it
(if NULL, a new temporary will be created). The increment will occur at
INCR_POS (after it if AFTER is true, before it otherwise). The ssa versions
of the variable before and after increment will be stored in VAR_BEFORE and
VAR_AFTER (unless they are NULL). */
void
create_iv (tree base, tree step, tree var, struct loop *loop,
block_stmt_iterator *incr_pos, bool after,
tree *var_before, tree *var_after)
{
tree stmt, initial, step1, stmts;
tree vb, va;
enum tree_code incr_op = PLUS_EXPR;
if (!var)
{
var = create_tmp_var (TREE_TYPE (base), "ivtmp");
add_referenced_tmp_var (var);
}
vb = make_ssa_name (var, NULL_TREE);
if (var_before)
*var_before = vb;
va = make_ssa_name (var, NULL_TREE);
if (var_after)
*var_after = va;
/* For easier readability of the created code, produce MINUS_EXPRs
when suitable. */
if (TREE_CODE (step) == INTEGER_CST)
{
if (TYPE_UNSIGNED (TREE_TYPE (step)))
{
step1 = fold (build1 (NEGATE_EXPR, TREE_TYPE (step), step));
if (tree_int_cst_lt (step1, step))
{
incr_op = MINUS_EXPR;
step = step1;
}
}
else
{
if (!tree_expr_nonnegative_p (step)
&& may_negate_without_overflow_p (step))
{
incr_op = MINUS_EXPR;
step = fold (build1 (NEGATE_EXPR, TREE_TYPE (step), step));
}
}
}
stmt = build2 (MODIFY_EXPR, void_type_node, va,
build2 (incr_op, TREE_TYPE (base),
vb, step));
SSA_NAME_DEF_STMT (va) = stmt;
if (after)
bsi_insert_after (incr_pos, stmt, BSI_NEW_STMT);
else
bsi_insert_before (incr_pos, stmt, BSI_NEW_STMT);
initial = force_gimple_operand (base, &stmts, true, var);
if (stmts)
{
edge pe = loop_preheader_edge (loop);
bsi_insert_on_edge_immediate_loop (pe, stmts);
}
stmt = create_phi_node (vb, loop->header);
SSA_NAME_DEF_STMT (vb) = stmt;
add_phi_arg (&stmt, initial, loop_preheader_edge (loop));
add_phi_arg (&stmt, va, loop_latch_edge (loop));
}
/* Add exit phis for the USE on EXIT. */
static void
add_exit_phis_edge (basic_block exit, tree use)
{
tree phi, def_stmt = SSA_NAME_DEF_STMT (use);
basic_block def_bb = bb_for_stmt (def_stmt);
struct loop *def_loop;
edge e;
edge_iterator ei;
/* Check that some of the edges entering the EXIT block exits a loop in
that USE is defined. */
FOR_EACH_EDGE (e, ei, exit->preds)
{
def_loop = find_common_loop (def_bb->loop_father, e->src->loop_father);
if (!flow_bb_inside_loop_p (def_loop, e->dest))
break;
}
if (!e)
return;
phi = create_phi_node (use, exit);
FOR_EACH_EDGE (e, ei, exit->preds)
add_phi_arg (&phi, use, e);
SSA_NAME_DEF_STMT (use) = def_stmt;
}
/* Add exit phis for VAR that is used in LIVEIN.
Exits of the loops are stored in EXITS. */
static void
add_exit_phis_var (tree var, bitmap livein, bitmap exits)
{
bitmap def;
unsigned index;
basic_block def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
bitmap_iterator bi;
bitmap_clear_bit (livein, def_bb->index);
def = BITMAP_XMALLOC ();
bitmap_set_bit (def, def_bb->index);
compute_global_livein (livein, def);
BITMAP_XFREE (def);
EXECUTE_IF_AND_IN_BITMAP (exits, livein, 0, index, bi)
{
add_exit_phis_edge (BASIC_BLOCK (index), var);
}
}
/* Add exit phis for the names marked in NAMES_TO_RENAME.
Exits of the loops are stored in EXITS. Sets of blocks where the ssa
names are used are stored in USE_BLOCKS. */
static void
add_exit_phis (bitmap names_to_rename, bitmap *use_blocks, bitmap loop_exits)
{
unsigned i;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi)
{
add_exit_phis_var (ssa_name (i), use_blocks[i], loop_exits);
}
}
/* Returns a bitmap of all loop exit edge targets. */
static bitmap
get_loops_exits (void)
{
bitmap exits = BITMAP_XMALLOC ();
basic_block bb;
edge e;
edge_iterator ei;
FOR_EACH_BB (bb)
{
FOR_EACH_EDGE (e, ei, bb->preds)
if (e->src != ENTRY_BLOCK_PTR
&& !flow_bb_inside_loop_p (e->src->loop_father, bb))
{
bitmap_set_bit (exits, bb->index);
break;
}
}
return exits;
}
/* For USE in BB, if it is used outside of the loop it is defined in,
mark it for rewrite. Record basic block BB where it is used
to USE_BLOCKS. */
static void
find_uses_to_rename_use (basic_block bb, tree use, bitmap *use_blocks)
{
unsigned ver;
basic_block def_bb;
struct loop *def_loop;
if (TREE_CODE (use) != SSA_NAME)
return;
ver = SSA_NAME_VERSION (use);
def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (use));
if (!def_bb)
return;
def_loop = def_bb->loop_father;
/* If the definition is not inside loop, it is not interesting. */
if (!def_loop->outer)
return;
if (!use_blocks[ver])
use_blocks[ver] = BITMAP_XMALLOC ();
bitmap_set_bit (use_blocks[ver], bb->index);
if (!flow_bb_inside_loop_p (def_loop, bb))
mark_for_rewrite (use);
}
/* For uses in STMT, mark names that are used outside of the loop they are
defined to rewrite. Record the set of blocks in that the ssa
names are defined to USE_BLOCKS. */
static void
find_uses_to_rename_stmt (tree stmt, bitmap *use_blocks)
{
ssa_op_iter iter;
tree var;
basic_block bb = bb_for_stmt (stmt);
get_stmt_operands (stmt);
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_USES | SSA_OP_ALL_KILLS)
find_uses_to_rename_use (bb, var, use_blocks);
}
/* Marks names that are used outside of the loop they are defined in
for rewrite. Records the set of blocks in that the ssa
names are defined to USE_BLOCKS. */
static void
find_uses_to_rename (bitmap *use_blocks)
{
basic_block bb;
block_stmt_iterator bsi;
tree phi;
unsigned i;
FOR_EACH_BB (bb)
{
for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
for (i = 0; i < (unsigned) PHI_NUM_ARGS (phi); i++)
find_uses_to_rename_use (PHI_ARG_EDGE (phi, i)->src,
PHI_ARG_DEF (phi, i), use_blocks);
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
find_uses_to_rename_stmt (bsi_stmt (bsi), use_blocks);
}
}
/* Rewrites the program into a loop closed ssa form -- i.e. inserts extra
phi nodes to ensure that no variable is used outside the loop it is
defined in.
This strengthening of the basic ssa form has several advantages:
1) Updating it during unrolling/peeling/versioning is trivial, since
we do not need to care about the uses outside of the loop.
2) The behavior of all uses of an induction variable is the same.
Without this, you need to distinguish the case when the variable
is used outside of the loop it is defined in, for example
for (i = 0; i < 100; i++)
{
for (j = 0; j < 100; j++)
{
k = i + j;
use1 (k);
}
use2 (k);
}
Looking from the outer loop with the normal SSA form, the first use of k
is not well-behaved, while the second one is an induction variable with
base 99 and step 1. */
void
rewrite_into_loop_closed_ssa (void)
{
bitmap loop_exits = get_loops_exits ();
bitmap *use_blocks;
unsigned i;
bitmap names_to_rename;
gcc_assert (!any_marked_for_rewrite_p ());
use_blocks = xcalloc (num_ssa_names, sizeof (bitmap));
/* Find the uses outside loops. */
find_uses_to_rename (use_blocks);
/* Add the phi nodes on exits of the loops for the names we need to
rewrite. */
names_to_rename = marked_ssa_names ();
add_exit_phis (names_to_rename, use_blocks, loop_exits);
for (i = 0; i < num_ssa_names; i++)
BITMAP_XFREE (use_blocks[i]);
free (use_blocks);
BITMAP_XFREE (loop_exits);
BITMAP_XFREE (names_to_rename);
/* Do the rewriting. */
rewrite_ssa_into_ssa ();
}
/* Check invariants of the loop closed ssa form for the USE in BB. */
static void
check_loop_closed_ssa_use (basic_block bb, tree use)
{
tree def;
basic_block def_bb;
if (TREE_CODE (use) != SSA_NAME)
return;
def = SSA_NAME_DEF_STMT (use);
def_bb = bb_for_stmt (def);
gcc_assert (!def_bb
|| flow_bb_inside_loop_p (def_bb->loop_father, bb));
}
/* Checks invariants of loop closed ssa form in statement STMT in BB. */
static void
check_loop_closed_ssa_stmt (basic_block bb, tree stmt)
{
ssa_op_iter iter;
tree var;
get_stmt_operands (stmt);
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_USES)
check_loop_closed_ssa_use (bb, var);
}
/* Checks that invariants of the loop closed ssa form are preserved. */
void
verify_loop_closed_ssa (void)
{
basic_block bb;
block_stmt_iterator bsi;
tree phi;
unsigned i;
verify_ssa ();
FOR_EACH_BB (bb)
{
for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
for (i = 0; i < (unsigned) PHI_NUM_ARGS (phi); i++)
check_loop_closed_ssa_use (PHI_ARG_EDGE (phi, i)->src,
PHI_ARG_DEF (phi, i));
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
check_loop_closed_ssa_stmt (bb, bsi_stmt (bsi));
}
}
/* Split loop exit edge EXIT. The things are a bit complicated by a need to
preserve the loop closed ssa form. */
void
split_loop_exit_edge (edge exit)
{
basic_block dest = exit->dest;
basic_block bb = loop_split_edge_with (exit, NULL);
tree phi, new_phi, new_name, name;
use_operand_p op_p;
for (phi = phi_nodes (dest); phi; phi = TREE_CHAIN (phi))
{
op_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, EDGE_SUCC (bb, 0));
name = USE_FROM_PTR (op_p);
/* If the argument of the phi node is a constant, we do not need
to keep it inside loop. */
if (TREE_CODE (name) != SSA_NAME)
continue;
/* Otherwise create an auxiliary phi node that will copy the value
of the ssa name out of the loop. */
new_name = duplicate_ssa_name (name, NULL);
new_phi = create_phi_node (new_name, bb);
SSA_NAME_DEF_STMT (new_name) = new_phi;
add_phi_arg (&new_phi, name, exit);
SET_USE (op_p, new_name);
}
}
/* Insert statement STMT to the edge E and update the loop structures.
Returns the newly created block (if any). */
basic_block
bsi_insert_on_edge_immediate_loop (edge e, tree stmt)
{
basic_block src, dest, new_bb;
struct loop *loop_c;
src = e->src;
dest = e->dest;
loop_c = find_common_loop (src->loop_father, dest->loop_father);
new_bb = bsi_insert_on_edge_immediate (e, stmt);
if (!new_bb)
return NULL;
add_bb_to_loop (new_bb, loop_c);
if (dest->loop_father->latch == src)
dest->loop_father->latch = new_bb;
return new_bb;
}
/* Returns the basic block in that statements should be emitted for induction
variables incremented at the end of the LOOP. */
basic_block
ip_end_pos (struct loop *loop)
{
return loop->latch;
}
/* Returns the basic block in that statements should be emitted for induction
variables incremented just before exit condition of a LOOP. */
basic_block
ip_normal_pos (struct loop *loop)
{
tree last;
basic_block bb;
edge exit;
if (EDGE_COUNT (loop->latch->preds) > 1)
return NULL;
bb = EDGE_PRED (loop->latch, 0)->src;
last = last_stmt (bb);
if (TREE_CODE (last) != COND_EXPR)
return NULL;
exit = EDGE_SUCC (bb, 0);
if (exit->dest == loop->latch)
exit = EDGE_SUCC (bb, 1);
if (flow_bb_inside_loop_p (loop, exit->dest))
return NULL;
return bb;
}
/* Stores the standard position for induction variable increment in LOOP
(just before the exit condition if it is available and latch block is empty,
end of the latch block otherwise) to BSI. INSERT_AFTER is set to true if
the increment should be inserted after *BSI. */
void
standard_iv_increment_position (struct loop *loop, block_stmt_iterator *bsi,
bool *insert_after)
{
basic_block bb = ip_normal_pos (loop), latch = ip_end_pos (loop);
tree last = last_stmt (latch);
if (!bb
|| (last && TREE_CODE (last) != LABEL_EXPR))
{
*bsi = bsi_last (latch);
*insert_after = true;
}
else
{
*bsi = bsi_last (bb);
*insert_after = false;
}
}
/* Copies phi node arguments for duplicated blocks. The index of the first
duplicated block is FIRST_NEW_BLOCK. */
static void
copy_phi_node_args (unsigned first_new_block)
{
unsigned i;
for (i = first_new_block; i < (unsigned) last_basic_block; i++)
BASIC_BLOCK (i)->rbi->duplicated = 1;
for (i = first_new_block; i < (unsigned) last_basic_block; i++)
add_phi_args_after_copy_bb (BASIC_BLOCK (i));
for (i = first_new_block; i < (unsigned) last_basic_block; i++)
BASIC_BLOCK (i)->rbi->duplicated = 0;
}
/* Renames variables in the area copied by tree_duplicate_loop_to_header_edge.
FIRST_NEW_BLOCK is the first block in the copied area. DEFINITIONS is
a bitmap of all ssa names defined inside the loop. */
static void
rename_variables (unsigned first_new_block, bitmap definitions)
{
unsigned i, copy_number = 0;
basic_block bb;
htab_t ssa_name_map = NULL;
for (i = first_new_block; i < (unsigned) last_basic_block; i++)
{
bb = BASIC_BLOCK (i);
/* We assume that first come all blocks from the first copy, then all
blocks from the second copy, etc. */
if (copy_number != (unsigned) bb->rbi->copy_number)
{
allocate_ssa_names (definitions, &ssa_name_map);
copy_number = bb->rbi->copy_number;
}
rewrite_to_new_ssa_names_bb (bb, ssa_name_map);
}
htab_delete (ssa_name_map);
}
/* Sets SSA_NAME_DEF_STMT for results of all phi nodes in BB. */
static void
set_phi_def_stmts (basic_block bb)
{
tree phi;
for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
SSA_NAME_DEF_STMT (PHI_RESULT (phi)) = phi;
}
/* The same ad cfgloopmanip.c:duplicate_loop_to_header_edge, but also updates
ssa. In order to achieve this, only loops whose exits all lead to the same
location are handled.
FIXME: we create some degenerate phi nodes that could be avoided by copy
propagating them instead. Unfortunately this is not completely
straightforward due to problems with constant folding. */
bool
tree_duplicate_loop_to_header_edge (struct loop *loop, edge e,
struct loops *loops,
unsigned int ndupl, sbitmap wont_exit,
edge orig, edge *to_remove,
unsigned int *n_to_remove, int flags)
{
unsigned first_new_block;
basic_block bb;
unsigned i;
bitmap definitions;
if (!(loops->state & LOOPS_HAVE_SIMPLE_LATCHES))
return false;
if (!(loops->state & LOOPS_HAVE_PREHEADERS))
return false;
#ifdef ENABLE_CHECKING
verify_loop_closed_ssa ();
#endif
gcc_assert (!any_marked_for_rewrite_p ());
first_new_block = last_basic_block;
if (!duplicate_loop_to_header_edge (loop, e, loops, ndupl, wont_exit,
orig, to_remove, n_to_remove, flags))
return false;
/* Readd the removed phi args for e. */
flush_pending_stmts (e);
/* Copy the phi node arguments. */
copy_phi_node_args (first_new_block);
/* Rename the variables. */
definitions = marked_ssa_names ();
rename_variables (first_new_block, definitions);
unmark_all_for_rewrite ();
BITMAP_XFREE (definitions);
/* For some time we have the identical ssa names as results in multiple phi
nodes. When phi node is resized, it sets SSA_NAME_DEF_STMT of its result
to the new copy. This means that we cannot easily ensure that the ssa
names defined in those phis are pointing to the right one -- so just
recompute SSA_NAME_DEF_STMT for them. */
for (i = first_new_block; i < (unsigned) last_basic_block; i++)
{
bb = BASIC_BLOCK (i);
set_phi_def_stmts (bb);
if (bb->rbi->copy_number == 1)
set_phi_def_stmts (bb->rbi->original);
}
scev_reset ();
#ifdef ENABLE_CHECKING
verify_loop_closed_ssa ();
#endif
return true;
}
/*---------------------------------------------------------------------------
Loop versioning
---------------------------------------------------------------------------*/
/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
of 'first'. Both of them are dominated by 'new_head' basic block. When
'new_head' was created by 'second's incoming edge it received phi arguments
on the edge by split_edge(). Later, additional edge 'e' was created to
connect 'new_head' and 'first'. Now this routine adds phi args on this
additional edge 'e' that new_head to second edge received as part of edge
splitting.
*/
static void
lv_adjust_loop_header_phi (basic_block first, basic_block second,
basic_block new_head, edge e)
{
tree phi1, phi2;
/* Browse all 'second' basic block phi nodes and add phi args to
edge 'e' for 'first' head. PHI args are always in correct order. */
for (phi2 = phi_nodes (second), phi1 = phi_nodes (first);
phi2 && phi1;
phi2 = TREE_CHAIN (phi2), phi1 = TREE_CHAIN (phi1))
{
int i;
for (i = 0; i < PHI_NUM_ARGS (phi2); i++)
{
if (PHI_ARG_EDGE (phi2, i)->src == new_head)
{
tree def = PHI_ARG_DEF (phi2, i);
add_phi_arg (&phi1, def, e);
}
}
}
}
/* Adjust entry edge for lv.
e is a incoming edge.
--- edge e ---- > [second_head]
Split it and insert new conditional expression and adjust edges.
--- edge e ---> [cond expr] ---> [first_head]
|
+---------> [second_head]
*/
static basic_block
lv_adjust_loop_entry_edge (basic_block first_head,
basic_block second_head,
edge e,
tree cond_expr)
{
block_stmt_iterator bsi;
basic_block new_head = NULL;
tree goto1 = NULL_TREE;
tree goto2 = NULL_TREE;
tree new_cond_expr = NULL_TREE;
edge e0, e1;
gcc_assert (e->dest == second_head);
/* Split edge 'e'. This will create a new basic block, where we can
insert conditional expr. */
new_head = split_edge (e);
/* Build new conditional expr */
goto1 = build1 (GOTO_EXPR, void_type_node, tree_block_label (first_head));
goto2 = build1 (GOTO_EXPR, void_type_node, tree_block_label (second_head));
new_cond_expr = build3 (COND_EXPR, void_type_node, cond_expr, goto1, goto2);
/* Add new cond. in new head. */
bsi = bsi_start (new_head);
bsi_insert_after (&bsi, new_cond_expr, BSI_NEW_STMT);
/* Adjust edges appropriately to connect new head with first head
as well as second head. */
e0 = EDGE_SUCC (new_head, 0);
e0->flags &= ~EDGE_FALLTHRU;
e0->flags |= EDGE_FALSE_VALUE;
e1 = make_edge (new_head, first_head, EDGE_TRUE_VALUE);
set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
/* Adjust loop header phi nodes. */
lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
return new_head;
}
/* Main entry point for Loop Versioning transformation.
This transformation given a condition and a loop, creates
-if (condition) { loop_copy1 } else { loop_copy2 },
where loop_copy1 is the loop transformed in one way, and loop_copy2
is the loop transformed in another way (or unchanged). 'condition'
may be a run time test for things that were not resolved by static
analysis (overlapping ranges (anti-aliasing), alignment, etc.). */
struct loop *
tree_ssa_loop_version (struct loops *loops, struct loop * loop,
tree cond_expr, basic_block *condition_bb)
{
edge entry, latch_edge, exit, true_edge, false_edge;
basic_block first_head, second_head;
int irred_flag;
struct loop *nloop;
/* CHECKME: Loop versioning does not handle nested loop at this point. */
if (loop->inner)
return NULL;
/* Record entry and latch edges for the loop */
entry = loop_preheader_edge (loop);
/* Note down head of loop as first_head. */
first_head = entry->dest;
/* Duplicate loop. */
irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
if (!tree_duplicate_loop_to_header_edge (loop, entry, loops, 1,
NULL, NULL, NULL, NULL, 0))
{
entry->flags |= irred_flag;
return NULL;
}
/* After duplication entry edge now points to new loop head block.
Note down new head as second_head. */
second_head = entry->dest;
/* Split loop entry edge and insert new block with cond expr. */
*condition_bb = lv_adjust_loop_entry_edge (first_head, second_head, entry,
cond_expr);
latch_edge = EDGE_SUCC (loop->latch->rbi->copy, 0);
extract_true_false_edges_from_block (*condition_bb, &true_edge, &false_edge);
nloop = loopify (loops,
latch_edge,
EDGE_PRED (loop->header->rbi->copy, 0),
*condition_bb, true_edge, false_edge,
false /* Do not redirect all edges. */);
exit = loop->single_exit;
if (exit)
nloop->single_exit = find_edge (exit->src->rbi->copy, exit->dest);
/* loopify redirected latch_edge. Update its PENDING_STMTS. */
flush_pending_stmts (latch_edge);
/* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
extract_true_false_edges_from_block (*condition_bb, &true_edge, &false_edge);
flush_pending_stmts (false_edge);
/* Adjust irreducible flag. */
if (irred_flag)
{
(*condition_bb)->flags |= BB_IRREDUCIBLE_LOOP;
loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
EDGE_PRED ((*condition_bb), 0)->flags |= EDGE_IRREDUCIBLE_LOOP;
}
/* At this point condition_bb is loop predheader with two successors,
first_head and second_head. Make sure that loop predheader has only
one successor. */
loop_split_edge_with (loop_preheader_edge (loop), NULL);
loop_split_edge_with (loop_preheader_edge (nloop), NULL);
return nloop;
}
|