summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-forwprop.c
blob: d5db4a8efc69d17ffcb7028e0598c78e24ad32e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/* Forward propagation of expressions for single use variables.
   Copyright (C) 2004, 2005 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "basic-block.h"
#include "timevar.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-dump.h"
#include "langhooks.h"

/* This pass propagates the RHS of assignment statements into use
   sites of the LHS of the assignment.  It's basically a specialized
   form of tree combination.

   Note carefully that after propagation the resulting statement
   must still be a proper gimple statement.  Right now we simply
   only perform propagations we know will result in valid gimple
   code.  One day we'll want to generalize this code.

   One class of common cases we handle is forward propagating a single use
   variable into a COND_EXPR.  

     bb0:
       x = a COND b;
       if (x) goto ... else goto ...

   Will be transformed into:

     bb0:
       if (a COND b) goto ... else goto ...
 
   Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).

   Or (assuming c1 and c2 are constants):

     bb0:
       x = a + c1;  
       if (x EQ/NEQ c2) goto ... else goto ...

   Will be transformed into:

     bb0:
        if (a EQ/NEQ (c2 - c1)) goto ... else goto ...

   Similarly for x = a - c1.
    
   Or

     bb0:
       x = !a
       if (x) goto ... else goto ...

   Will be transformed into:

     bb0:
        if (a == 0) goto ... else goto ...

   Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
   For these cases, we propagate A into all, possibly more than one,
   COND_EXPRs that use X.

   Or

     bb0:
       x = (typecast) a
       if (x) goto ... else goto ...

   Will be transformed into:

     bb0:
        if (a != 0) goto ... else goto ...

   (Assuming a is an integral type and x is a boolean or x is an
    integral and a is a boolean.)

   Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
   For these cases, we propagate A into all, possibly more than one,
   COND_EXPRs that use X.

   In addition to eliminating the variable and the statement which assigns
   a value to the variable, we may be able to later thread the jump without
   adding insane complexity in the dominator optimizer.

   Also note these transformations can cascade.  We handle this by having
   a worklist of COND_EXPR statements to examine.  As we make a change to
   a statement, we put it back on the worklist to examine on the next
   iteration of the main loop.

   A second class of propagation opportunities arises for ADDR_EXPR
   nodes.

     ptr = &x->y->z;
     res = *ptr;

   Will get turned into

     res = x->y->z;

   Or

     ptr = &x[0];
     ptr2 = ptr + <constant>;

   Will get turned into

     ptr2 = &x[constant/elementsize];

  Or

     ptr = &x[0];
     offset = index * element_size;
     offset_p = (pointer) offset;
     ptr2 = ptr + offset_p

  Will get turned into:

     ptr2 = &x[index];


   This will (of course) be extended as other needs arise.  */


/* Set to true if we delete EH edges during the optimization.  */
static bool cfg_changed;


/* Given an SSA_NAME VAR, return true if and only if VAR is defined by
   a comparison.  */

static bool
ssa_name_defined_by_comparison_p (tree var)
{
  tree def = SSA_NAME_DEF_STMT (var);

  if (TREE_CODE (def) == MODIFY_EXPR)
    {
      tree rhs = TREE_OPERAND (def, 1);
      return COMPARISON_CLASS_P (rhs);
    }

  return 0;
}

/* Forward propagate a single-use variable into COND once.  Return a
   new condition if successful.  Return NULL_TREE otherwise.  */

static tree
forward_propagate_into_cond_1 (tree cond, tree *test_var_p)
{
  tree new_cond = NULL_TREE;
  enum tree_code cond_code = TREE_CODE (cond);
  tree test_var = NULL_TREE;
  tree def;
  tree def_rhs;

  /* If the condition is not a lone variable or an equality test of an
     SSA_NAME against an integral constant, then we do not have an
     optimizable case.

     Note these conditions also ensure the COND_EXPR has no
     virtual operands or other side effects.  */
  if (cond_code != SSA_NAME
      && !((cond_code == EQ_EXPR || cond_code == NE_EXPR)
	   && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
	   && CONSTANT_CLASS_P (TREE_OPERAND (cond, 1))
	   && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
    return NULL_TREE;

  /* Extract the single variable used in the test into TEST_VAR.  */
  if (cond_code == SSA_NAME)
    test_var = cond;
  else
    test_var = TREE_OPERAND (cond, 0);

  /* Now get the defining statement for TEST_VAR.  Skip this case if
     it's not defined by some MODIFY_EXPR.  */
  def = SSA_NAME_DEF_STMT (test_var);
  if (TREE_CODE (def) != MODIFY_EXPR)
    return NULL_TREE;

  def_rhs = TREE_OPERAND (def, 1);

  /* If TEST_VAR is set by adding or subtracting a constant
     from an SSA_NAME, then it is interesting to us as we
     can adjust the constant in the conditional and thus
     eliminate the arithmetic operation.  */
  if (TREE_CODE (def_rhs) == PLUS_EXPR
      || TREE_CODE (def_rhs) == MINUS_EXPR)
    {
      tree op0 = TREE_OPERAND (def_rhs, 0);
      tree op1 = TREE_OPERAND (def_rhs, 1);

      /* The first operand must be an SSA_NAME and the second
	 operand must be a constant.  */
      if (TREE_CODE (op0) != SSA_NAME
	  || !CONSTANT_CLASS_P (op1)
	  || !INTEGRAL_TYPE_P (TREE_TYPE (op1)))
	return NULL_TREE;

      /* Don't propagate if the first operand occurs in
	 an abnormal PHI.  */
      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
	return NULL_TREE;

      if (has_single_use (test_var))
	{
	  enum tree_code new_code;
	  tree t;

	  /* If the variable was defined via X + C, then we must
	     subtract C from the constant in the conditional.
	     Otherwise we add C to the constant in the
	     conditional.  The result must fold into a valid
	     gimple operand to be optimizable.  */
	  new_code = (TREE_CODE (def_rhs) == PLUS_EXPR
		      ? MINUS_EXPR : PLUS_EXPR);
	  t = int_const_binop (new_code, TREE_OPERAND (cond, 1), op1, 0);
	  if (!is_gimple_val (t))
	    return NULL_TREE;

	  new_cond = build (cond_code, boolean_type_node, op0, t);
	}
    }

  /* These cases require comparisons of a naked SSA_NAME or
     comparison of an SSA_NAME against zero or one.  */
  else if (TREE_CODE (cond) == SSA_NAME
	   || integer_zerop (TREE_OPERAND (cond, 1))
	   || integer_onep (TREE_OPERAND (cond, 1)))
    {
      /* If TEST_VAR is set from a relational operation
	 between two SSA_NAMEs or a combination of an SSA_NAME
	 and a constant, then it is interesting.  */
      if (COMPARISON_CLASS_P (def_rhs))
	{
	  tree op0 = TREE_OPERAND (def_rhs, 0);
	  tree op1 = TREE_OPERAND (def_rhs, 1);

	  /* Both operands of DEF_RHS must be SSA_NAMEs or
	     constants.  */
	  if ((TREE_CODE (op0) != SSA_NAME
	       && !is_gimple_min_invariant (op0))
	      || (TREE_CODE (op1) != SSA_NAME
		  && !is_gimple_min_invariant (op1)))
	    return NULL_TREE;

	  /* Don't propagate if the first operand occurs in
	     an abnormal PHI.  */
	  if (TREE_CODE (op0) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
	    return NULL_TREE;

	  /* Don't propagate if the second operand occurs in
	     an abnormal PHI.  */
	  if (TREE_CODE (op1) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))
	    return NULL_TREE;

	  if (has_single_use (test_var))
	    {
	      /* TEST_VAR was set from a relational operator.  */
	      new_cond = build (TREE_CODE (def_rhs),
				boolean_type_node, op0, op1);

	      /* Invert the conditional if necessary.  */
	      if ((cond_code == EQ_EXPR
		   && integer_zerop (TREE_OPERAND (cond, 1)))
		  || (cond_code == NE_EXPR
		      && integer_onep (TREE_OPERAND (cond, 1))))
		{
		  new_cond = invert_truthvalue (new_cond);

		  /* If we did not get a simple relational
		     expression or bare SSA_NAME, then we can
		     not optimize this case.  */
		  if (!COMPARISON_CLASS_P (new_cond)
		      && TREE_CODE (new_cond) != SSA_NAME)
		    new_cond = NULL_TREE;
		}
	    }
	}

      /* If TEST_VAR is set from a TRUTH_NOT_EXPR, then it
	 is interesting.  */
      else if (TREE_CODE (def_rhs) == TRUTH_NOT_EXPR)
	{
	  enum tree_code new_code;

	  def_rhs = TREE_OPERAND (def_rhs, 0);

	  /* DEF_RHS must be an SSA_NAME or constant.  */
	  if (TREE_CODE (def_rhs) != SSA_NAME
	      && !is_gimple_min_invariant (def_rhs))
	    return NULL_TREE;

	  /* Don't propagate if the operand occurs in
	     an abnormal PHI.  */
	  if (TREE_CODE (def_rhs) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def_rhs))
	    return NULL_TREE;

	  if (cond_code == SSA_NAME
	      || (cond_code == NE_EXPR
		  && integer_zerop (TREE_OPERAND (cond, 1)))
	      || (cond_code == EQ_EXPR
		  && integer_onep (TREE_OPERAND (cond, 1))))
	    new_code = EQ_EXPR;
	  else
	    new_code = NE_EXPR;

	  new_cond = build2 (new_code, boolean_type_node, def_rhs,
			     fold_convert (TREE_TYPE (def_rhs),
					   integer_zero_node));
	}

      /* If TEST_VAR was set from a cast of an integer type
	 to a boolean type or a cast of a boolean to an
	 integral, then it is interesting.  */
      else if (TREE_CODE (def_rhs) == NOP_EXPR
	       || TREE_CODE (def_rhs) == CONVERT_EXPR)
	{
	  tree outer_type;
	  tree inner_type;

	  outer_type = TREE_TYPE (def_rhs);
	  inner_type = TREE_TYPE (TREE_OPERAND (def_rhs, 0));

	  if ((TREE_CODE (outer_type) == BOOLEAN_TYPE
	       && INTEGRAL_TYPE_P (inner_type))
	      || (TREE_CODE (inner_type) == BOOLEAN_TYPE
		  && INTEGRAL_TYPE_P (outer_type)))
	    ;
	  else if (INTEGRAL_TYPE_P (outer_type)
		   && INTEGRAL_TYPE_P (inner_type)
		   && TREE_CODE (TREE_OPERAND (def_rhs, 0)) == SSA_NAME
		   && ssa_name_defined_by_comparison_p (TREE_OPERAND (def_rhs,
								      0)))
	    ;
	  else
	    return NULL_TREE;

	  /* Don't propagate if the operand occurs in
	     an abnormal PHI.  */
	  if (TREE_CODE (TREE_OPERAND (def_rhs, 0)) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (TREE_OPERAND
						  (def_rhs, 0)))
	    return NULL_TREE;

	  if (has_single_use (test_var))
	    {
	      enum tree_code new_code;
	      tree new_arg;

	      if (cond_code == SSA_NAME
		  || (cond_code == NE_EXPR
		      && integer_zerop (TREE_OPERAND (cond, 1)))
		  || (cond_code == EQ_EXPR
		      && integer_onep (TREE_OPERAND (cond, 1))))
		new_code = NE_EXPR;
	      else
		new_code = EQ_EXPR;

	      new_arg = TREE_OPERAND (def_rhs, 0);
	      new_cond = build2 (new_code, boolean_type_node, new_arg,
				 fold_convert (TREE_TYPE (new_arg),
					       integer_zero_node));
	    }
	}
    }

  *test_var_p = test_var;
  return new_cond;
}

/* Forward propagate a single-use variable into COND_EXPR as many
   times as possible.  */

static void
forward_propagate_into_cond (tree cond_expr)
{
  gcc_assert (TREE_CODE (cond_expr) == COND_EXPR);

  while (1)
    {
      tree test_var = NULL_TREE;
      tree cond = COND_EXPR_COND (cond_expr);
      tree new_cond = forward_propagate_into_cond_1 (cond, &test_var);

      /* Return if unsuccessful.  */
      if (new_cond == NULL_TREE)
	break;

      /* Dump details.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced '");
	  print_generic_expr (dump_file, cond, dump_flags);
	  fprintf (dump_file, "' with '");
	  print_generic_expr (dump_file, new_cond, dump_flags);
	  fprintf (dump_file, "'\n");
	}

      COND_EXPR_COND (cond_expr) = new_cond;
      update_stmt (cond_expr);

      if (has_zero_uses (test_var))
	{
	  tree def = SSA_NAME_DEF_STMT (test_var);
	  block_stmt_iterator bsi = bsi_for_stmt (def);
	  bsi_remove (&bsi);
	}
    }
}

/* We've just substituted an ADDR_EXPR into stmt.  Update all the 
   relevant data structures to match.  */

static void
tidy_after_forward_propagate_addr (tree stmt)
{
  mark_new_vars_to_rename (stmt);

  /* We may have turned a trapping insn into a non-trapping insn.  */
  if (maybe_clean_or_replace_eh_stmt (stmt, stmt)
      && tree_purge_dead_eh_edges (bb_for_stmt (stmt)))
    cfg_changed = true;

  if (TREE_CODE (TREE_OPERAND (stmt, 1)) == ADDR_EXPR)
     recompute_tree_invarant_for_addr_expr (TREE_OPERAND (stmt, 1));

  update_stmt (stmt);
}

/* STMT defines LHS which is contains the address of the 0th element
   in an array.  USE_STMT uses LHS to compute the address of an
   arbitrary element within the array.  The (variable) byte offset
   of the element is contained in OFFSET.

   We walk back through the use-def chains of OFFSET to verify that
   it is indeed computing the offset of an element within the array
   and extract the index corresponding to the given byte offset.

   We then try to fold the entire address expression into a form
   &array[index].

   If we are successful, we replace the right hand side of USE_STMT
   with the new address computation.  */

static bool
forward_propagate_addr_into_variable_array_index (tree offset, tree lhs,
						  tree stmt, tree use_stmt)
{
  tree index;

  /* The offset must be defined by a simple MODIFY_EXPR statement.  */
  if (TREE_CODE (offset) != MODIFY_EXPR)
    return false;

  /* The RHS of the statement which defines OFFSET must be a gimple
     cast of another SSA_NAME.  */
  offset = TREE_OPERAND (offset, 1);
  if (!is_gimple_cast (offset))
    return false;

  offset = TREE_OPERAND (offset, 0);
  if (TREE_CODE (offset) != SSA_NAME)
    return false;

  /* Get the defining statement of the offset before type
     conversion.  */
  offset = SSA_NAME_DEF_STMT (offset);

  /* The statement which defines OFFSET before type conversion
     must be a simple MODIFY_EXPR.  */
  if (TREE_CODE (offset) != MODIFY_EXPR)
    return false;

  /* The RHS of the statement which defines OFFSET must be a
     multiplication of an object by the size of the array elements. 
     This implicitly verifies that the size of the array elements
     is constant.  */
  offset = TREE_OPERAND (offset, 1);
  if (TREE_CODE (offset) != MULT_EXPR
      || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
      || !simple_cst_equal (TREE_OPERAND (offset, 1),
			    TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (lhs)))))
    return false;

  /* The first operand to the MULT_EXPR is the desired index.  */
  index = TREE_OPERAND (offset, 0);

  /* Replace the pointer addition with array indexing.  */
  TREE_OPERAND (use_stmt, 1) = unshare_expr (TREE_OPERAND (stmt, 1));
  TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (use_stmt, 1), 0), 1) = index;

  /* That should have created gimple, so there is no need to
     record information to undo the propagation.  */
  fold_stmt_inplace (use_stmt);
  tidy_after_forward_propagate_addr (use_stmt);
  return true;
}

/* STMT is a statement of the form SSA_NAME = ADDR_EXPR <whatever>.

   Try to forward propagate the ADDR_EXPR into the uses of the SSA_NAME.
   Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
   node or for recovery of array indexing from pointer arithmetic.  */

static bool
forward_propagate_addr_expr (tree stmt)
{
  int stmt_loop_depth = bb_for_stmt (stmt)->loop_depth;
  tree name = TREE_OPERAND (stmt, 0);
  use_operand_p imm_use;
  tree use_stmt, lhs, rhs, array_ref;

  /* We require that the SSA_NAME holding the result of the ADDR_EXPR
     be used only once.  That may be overly conservative in that we
     could propagate into multiple uses.  However, that would effectively
     be un-cseing the ADDR_EXPR, which is probably not what we want.  */
  single_imm_use (name, &imm_use, &use_stmt);
  if (!use_stmt)
    return false;

  /* If the use is not in a simple assignment statement, then
     there is nothing we can do.  */
  if (TREE_CODE (use_stmt) != MODIFY_EXPR)
    return false;

  /* If the use is in a deeper loop nest, then we do not want
     to propagate the ADDR_EXPR into the loop as that is likely
     adding expression evaluations into the loop.  */
  if (bb_for_stmt (use_stmt)->loop_depth > stmt_loop_depth)
    return false;

  /* Strip away any outer COMPONENT_REF/ARRAY_REF nodes from the LHS. 
     ADDR_EXPR will not appear on the LHS.  */
  lhs = TREE_OPERAND (use_stmt, 0);
  while (TREE_CODE (lhs) == COMPONENT_REF || TREE_CODE (lhs) == ARRAY_REF)
    lhs = TREE_OPERAND (lhs, 0);

  /* Now see if the LHS node is an INDIRECT_REF using NAME.  If so, 
     propagate the ADDR_EXPR into the use of NAME and fold the result.  */
  if (TREE_CODE (lhs) == INDIRECT_REF && TREE_OPERAND (lhs, 0) == name)
    {
      /* This should always succeed in creating gimple, so there is
	 no need to save enough state to undo this propagation.  */
      TREE_OPERAND (lhs, 0) = unshare_expr (TREE_OPERAND (stmt, 1));
      fold_stmt_inplace (use_stmt);
      tidy_after_forward_propagate_addr (use_stmt);
      return true;
    }

  /* Trivial case.  The use statement could be a trivial copy.  We
     go ahead and handle that case here since it's trivial and
     removes the need to run copy-prop before this pass to get
     the best results.  Also note that by handling this case here
     we can catch some cascading effects, ie the single use is
     in a copy, and the copy is used later by a single INDIRECT_REF
     for example.  */
  if (TREE_CODE (lhs) == SSA_NAME && TREE_OPERAND (use_stmt, 1) == name)
    {
      TREE_OPERAND (use_stmt, 1) = unshare_expr (TREE_OPERAND (stmt, 1));
      tidy_after_forward_propagate_addr (use_stmt);
      return true;
    }

  /* Strip away any outer COMPONENT_REF, ARRAY_REF or ADDR_EXPR
     nodes from the RHS.  */
  rhs = TREE_OPERAND (use_stmt, 1);
  while (TREE_CODE (rhs) == COMPONENT_REF
	 || TREE_CODE (rhs) == ARRAY_REF
	 || TREE_CODE (rhs) == ADDR_EXPR)
    rhs = TREE_OPERAND (rhs, 0);

  /* Now see if the RHS node is an INDIRECT_REF using NAME.  If so, 
     propagate the ADDR_EXPR into the use of NAME and fold the result.  */
  if (TREE_CODE (rhs) == INDIRECT_REF && TREE_OPERAND (rhs, 0) == name)
    {
      /* This should always succeed in creating gimple, so there is
         no need to save enough state to undo this propagation.  */
      TREE_OPERAND (rhs, 0) = unshare_expr (TREE_OPERAND (stmt, 1));
      fold_stmt_inplace (use_stmt);
      tidy_after_forward_propagate_addr (use_stmt);
      return true;
    }

  /* The remaining cases are all for turning pointer arithmetic into
     array indexing.  They only apply when we have the address of
     element zero in an array.  If that is not the case then there
     is nothing to do.  */
  array_ref = TREE_OPERAND (TREE_OPERAND (stmt, 1), 0);
  if (TREE_CODE (array_ref) != ARRAY_REF
      || TREE_CODE (TREE_TYPE (TREE_OPERAND (array_ref, 0))) != ARRAY_TYPE
      || !integer_zerop (TREE_OPERAND (array_ref, 1)))
    return false;

  /* If the use of the ADDR_EXPR must be a PLUS_EXPR, or else there
     is nothing to do. */
  if (TREE_CODE (rhs) != PLUS_EXPR)
    return false;

  /* Try to optimize &x[0] + C where C is a multiple of the size
     of the elements in X into &x[C/element size].  */
  if (TREE_OPERAND (rhs, 0) == name
      && TREE_CODE (TREE_OPERAND (rhs, 1)) == INTEGER_CST)
    {
      tree orig = unshare_expr (rhs);
      TREE_OPERAND (rhs, 0) = unshare_expr (TREE_OPERAND (stmt, 1));

      /* If folding succeeds, then we have just exposed new variables
	 in USE_STMT which will need to be renamed.  If folding fails,
	 then we need to put everything back the way it was.  */
      if (fold_stmt_inplace (use_stmt))
	{
	  tidy_after_forward_propagate_addr (use_stmt);
	  return true;
	}
      else
	{
	  TREE_OPERAND (use_stmt, 1) = orig;
	  update_stmt (use_stmt);
	  return false;
	}
    }

  /* Try to optimize &x[0] + OFFSET where OFFSET is defined by
     converting a multiplication of an index by the size of the
     array elements, then the result is converted into the proper
     type for the arithmetic.  */
  if (TREE_OPERAND (rhs, 0) == name
      && TREE_CODE (TREE_OPERAND (rhs, 1)) == SSA_NAME
      /* Avoid problems with IVopts creating PLUS_EXPRs with a
	 different type than their operands.  */
      && lang_hooks.types_compatible_p (TREE_TYPE (name), TREE_TYPE (rhs)))
    {
      tree offset_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 1));
      return forward_propagate_addr_into_variable_array_index (offset_stmt, lhs,
							       stmt, use_stmt);
    }
	      
  /* Same as the previous case, except the operands of the PLUS_EXPR
     were reversed.  */
  if (TREE_OPERAND (rhs, 1) == name
      && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
      /* Avoid problems with IVopts creating PLUS_EXPRs with a
	 different type than their operands.  */
      && lang_hooks.types_compatible_p (TREE_TYPE (name), TREE_TYPE (rhs)))
    {
      tree offset_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
      return forward_propagate_addr_into_variable_array_index (offset_stmt, lhs,
							       stmt, use_stmt);
    }
  return false;
}

/* Main entry point for the forward propagation optimizer.  */

static void
tree_ssa_forward_propagate_single_use_vars (void)
{
  basic_block bb;

  cfg_changed = false;

  FOR_EACH_BB (bb)
    {
      block_stmt_iterator bsi;

      /* Note we update BSI within the loop as necessary.  */
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
	{
	  tree stmt = bsi_stmt (bsi);

	  /* If this statement sets an SSA_NAME to an address,
	     try to propagate the address into the uses of the SSA_NAME.  */
	  if (TREE_CODE (stmt) == MODIFY_EXPR
	      && TREE_CODE (TREE_OPERAND (stmt, 1)) == ADDR_EXPR
	      && TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
	    {
	      if (forward_propagate_addr_expr (stmt))
		bsi_remove (&bsi);
	      else
		bsi_next (&bsi);
	    }
	  else if (TREE_CODE (stmt) == COND_EXPR)
	    {
	      forward_propagate_into_cond (stmt);
	      bsi_next (&bsi);
	    }
	  else
	    bsi_next (&bsi);
	}
    }

  if (cfg_changed)
    cleanup_tree_cfg ();
}


static bool
gate_forwprop (void)
{
  return 1;
}

struct tree_opt_pass pass_forwprop = {
  "forwprop",			/* name */
  gate_forwprop,		/* gate */
  tree_ssa_forward_propagate_single_use_vars,	/* execute */
  NULL,				/* sub */
  NULL,				/* next */
  0,				/* static_pass_number */
  TV_TREE_FORWPROP,		/* tv_id */
  PROP_cfg | PROP_ssa
    | PROP_alias,		/* properties_required */
  0,				/* properties_provided */
  0,				/* properties_destroyed */
  0,				/* todo_flags_start */
  TODO_dump_func | TODO_ggc_collect	/* todo_flags_finish */
  | TODO_update_ssa | TODO_verify_ssa,
  0					/* letter */
};