summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-dom.c
blob: 761593b4271ab24dbceff846b8d29fddccd758d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
/* SSA Dominator optimizations for trees
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "tm_p.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "output.h"
#include "expr.h"
#include "function.h"
#include "diagnostic.h"
#include "tree-pretty-print.h"
#include "gimple-pretty-print.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-flow.h"
#include "domwalk.h"
#include "tree-pass.h"
#include "tree-ssa-propagate.h"
#include "langhooks.h"
#include "params.h"

/* This file implements optimizations on the dominator tree.  */

/* Representation of a "naked" right-hand-side expression, to be used
   in recording available expressions in the expression hash table.  */

enum expr_kind
{
  EXPR_SINGLE,
  EXPR_UNARY,
  EXPR_BINARY,
  EXPR_CALL
};

struct hashable_expr
{
  tree type;
  enum expr_kind kind;
  union {
    struct { tree rhs; } single;
    struct { enum tree_code op;  tree opnd; } unary;
    struct { enum tree_code op;  tree opnd0; tree opnd1; } binary;
    struct { tree fn; bool pure; size_t nargs; tree *args; } call;
  } ops;
};

/* Structure for recording known values of a conditional expression
   at the exits from its block.  */

struct cond_equivalence
{
  struct hashable_expr cond;
  tree value;
};

/* Structure for recording edge equivalences as well as any pending
   edge redirections during the dominator optimizer.

   Computing and storing the edge equivalences instead of creating
   them on-demand can save significant amounts of time, particularly
   for pathological cases involving switch statements.

   These structures live for a single iteration of the dominator
   optimizer in the edge's AUX field.  At the end of an iteration we
   free each of these structures and update the AUX field to point
   to any requested redirection target (the code for updating the
   CFG and SSA graph for edge redirection expects redirection edge
   targets to be in the AUX field for each edge.  */

struct edge_info
{
  /* If this edge creates a simple equivalence, the LHS and RHS of
     the equivalence will be stored here.  */
  tree lhs;
  tree rhs;

  /* Traversing an edge may also indicate one or more particular conditions
     are true or false.  The number of recorded conditions can vary, but
     can be determined by the condition's code.  So we have an array
     and its maximum index rather than use a varray.  */
  struct cond_equivalence *cond_equivalences;
  unsigned int max_cond_equivalences;
};

/* Hash table with expressions made available during the renaming process.
   When an assignment of the form X_i = EXPR is found, the statement is
   stored in this table.  If the same expression EXPR is later found on the
   RHS of another statement, it is replaced with X_i (thus performing
   global redundancy elimination).  Similarly as we pass through conditionals
   we record the conditional itself as having either a true or false value
   in this table.  */
static htab_t avail_exprs;

/* Stack of available expressions in AVAIL_EXPRs.  Each block pushes any
   expressions it enters into the hash table along with a marker entry
   (null).  When we finish processing the block, we pop off entries and
   remove the expressions from the global hash table until we hit the
   marker.  */
typedef struct expr_hash_elt * expr_hash_elt_t;
DEF_VEC_P(expr_hash_elt_t);
DEF_VEC_ALLOC_P(expr_hash_elt_t,heap);

static VEC(expr_hash_elt_t,heap) *avail_exprs_stack;

/* Structure for entries in the expression hash table.  */

struct expr_hash_elt
{
  /* The value (lhs) of this expression.  */
  tree lhs;

  /* The expression (rhs) we want to record.  */
  struct hashable_expr expr;

  /* The stmt pointer if this element corresponds to a statement.  */
  gimple stmt;

  /* The hash value for RHS.  */
  hashval_t hash;

  /* A unique stamp, typically the address of the hash
     element itself, used in removing entries from the table.  */
  struct expr_hash_elt *stamp;
};

/* Stack of dest,src pairs that need to be restored during finalization.

   A NULL entry is used to mark the end of pairs which need to be
   restored during finalization of this block.  */
static VEC(tree,heap) *const_and_copies_stack;

/* Track whether or not we have changed the control flow graph.  */
static bool cfg_altered;

/* Bitmap of blocks that have had EH statements cleaned.  We should
   remove their dead edges eventually.  */
static bitmap need_eh_cleanup;

/* Statistics for dominator optimizations.  */
struct opt_stats_d
{
  long num_stmts;
  long num_exprs_considered;
  long num_re;
  long num_const_prop;
  long num_copy_prop;
};

static struct opt_stats_d opt_stats;

/* Local functions.  */
static void optimize_stmt (basic_block, gimple_stmt_iterator);
static tree lookup_avail_expr (gimple, bool);
static hashval_t avail_expr_hash (const void *);
static hashval_t real_avail_expr_hash (const void *);
static int avail_expr_eq (const void *, const void *);
static void htab_statistics (FILE *, htab_t);
static void record_cond (struct cond_equivalence *);
static void record_const_or_copy (tree, tree);
static void record_equality (tree, tree);
static void record_equivalences_from_phis (basic_block);
static void record_equivalences_from_incoming_edge (basic_block);
static void eliminate_redundant_computations (gimple_stmt_iterator *);
static void record_equivalences_from_stmt (gimple, int);
static void dom_thread_across_edge (struct dom_walk_data *, edge);
static void dom_opt_leave_block (struct dom_walk_data *, basic_block);
static void dom_opt_enter_block (struct dom_walk_data *, basic_block);
static void remove_local_expressions_from_table (void);
static void restore_vars_to_original_value (void);
static edge single_incoming_edge_ignoring_loop_edges (basic_block);


/* Given a statement STMT, initialize the hash table element pointed to
   by ELEMENT.  */

static void
initialize_hash_element (gimple stmt, tree lhs,
                         struct expr_hash_elt *element)
{
  enum gimple_code code = gimple_code (stmt);
  struct hashable_expr *expr = &element->expr;

  if (code == GIMPLE_ASSIGN)
    {
      enum tree_code subcode = gimple_assign_rhs_code (stmt);

      expr->type = NULL_TREE;

      switch (get_gimple_rhs_class (subcode))
        {
        case GIMPLE_SINGLE_RHS:
          expr->kind = EXPR_SINGLE;
          expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
          break;
        case GIMPLE_UNARY_RHS:
          expr->kind = EXPR_UNARY;
	  expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
          expr->ops.unary.op = subcode;
          expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
          break;
        case GIMPLE_BINARY_RHS:
          expr->kind = EXPR_BINARY;
	  expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
          expr->ops.binary.op = subcode;
          expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
          expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
          break;
        default:
          gcc_unreachable ();
        }
    }
  else if (code == GIMPLE_COND)
    {
      expr->type = boolean_type_node;
      expr->kind = EXPR_BINARY;
      expr->ops.binary.op = gimple_cond_code (stmt);
      expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
      expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
    }
  else if (code == GIMPLE_CALL)
    {
      size_t nargs = gimple_call_num_args (stmt);
      size_t i;

      gcc_assert (gimple_call_lhs (stmt));

      expr->type = TREE_TYPE (gimple_call_lhs (stmt));
      expr->kind = EXPR_CALL;
      expr->ops.call.fn = gimple_call_fn (stmt);

      if (gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE))
        expr->ops.call.pure = true;
      else
        expr->ops.call.pure = false;

      expr->ops.call.nargs = nargs;
      expr->ops.call.args = (tree *) xcalloc (nargs, sizeof (tree));
      for (i = 0; i < nargs; i++)
        expr->ops.call.args[i] = gimple_call_arg (stmt, i);
    }
  else if (code == GIMPLE_SWITCH)
    {
      expr->type = TREE_TYPE (gimple_switch_index (stmt));
      expr->kind = EXPR_SINGLE;
      expr->ops.single.rhs = gimple_switch_index (stmt);
    }
  else if (code == GIMPLE_GOTO)
    {
      expr->type = TREE_TYPE (gimple_goto_dest (stmt));
      expr->kind = EXPR_SINGLE;
      expr->ops.single.rhs = gimple_goto_dest (stmt);
    }
  else
    gcc_unreachable ();

  element->lhs = lhs;
  element->stmt = stmt;
  element->hash = avail_expr_hash (element);
  element->stamp = element;
}

/* Given a conditional expression COND as a tree, initialize
   a hashable_expr expression EXPR.  The conditional must be a
   comparison or logical negation.  A constant or a variable is
   not permitted.  */

static void
initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
{
  expr->type = boolean_type_node;

  if (COMPARISON_CLASS_P (cond))
    {
      expr->kind = EXPR_BINARY;
      expr->ops.binary.op = TREE_CODE (cond);
      expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
      expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
    }
  else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
    {
      expr->kind = EXPR_UNARY;
      expr->ops.unary.op = TRUTH_NOT_EXPR;
      expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
    }
  else
    gcc_unreachable ();
}

/* Given a hashable_expr expression EXPR and an LHS,
   initialize the hash table element pointed to by ELEMENT.  */

static void
initialize_hash_element_from_expr (struct hashable_expr *expr,
                                   tree lhs,
                                   struct expr_hash_elt *element)
{
  element->expr = *expr;
  element->lhs = lhs;
  element->stmt = NULL;
  element->hash = avail_expr_hash (element);
  element->stamp = element;
}

/* Compare two hashable_expr structures for equivalence.
   They are considered equivalent when the the expressions
   they denote must necessarily be equal.  The logic is intended
   to follow that of operand_equal_p in fold-const.c  */

static bool
hashable_expr_equal_p (const struct hashable_expr *expr0,
                        const struct hashable_expr *expr1)
{
  tree type0 = expr0->type;
  tree type1 = expr1->type;

  /* If either type is NULL, there is nothing to check.  */
  if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
    return false;

  /* If both types don't have the same signedness, precision, and mode,
     then we can't consider  them equal.  */
  if (type0 != type1
      && (TREE_CODE (type0) == ERROR_MARK
	  || TREE_CODE (type1) == ERROR_MARK
	  || TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
	  || TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
	  || TYPE_MODE (type0) != TYPE_MODE (type1)))
    return false;

  if (expr0->kind != expr1->kind)
    return false;

  switch (expr0->kind)
    {
    case EXPR_SINGLE:
      return operand_equal_p (expr0->ops.single.rhs,
                              expr1->ops.single.rhs, 0);

    case EXPR_UNARY:
      if (expr0->ops.unary.op != expr1->ops.unary.op)
        return false;

      if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
           || expr0->ops.unary.op == NON_LVALUE_EXPR)
          && TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
        return false;

      return operand_equal_p (expr0->ops.unary.opnd,
                              expr1->ops.unary.opnd, 0);

    case EXPR_BINARY:
      {
        if (expr0->ops.binary.op != expr1->ops.binary.op)
          return false;

        if (operand_equal_p (expr0->ops.binary.opnd0,
                             expr1->ops.binary.opnd0, 0)
            && operand_equal_p (expr0->ops.binary.opnd1,
                                expr1->ops.binary.opnd1, 0))
          return true;

        /* For commutative ops, allow the other order.  */
        return (commutative_tree_code (expr0->ops.binary.op)
                && operand_equal_p (expr0->ops.binary.opnd0,
                                    expr1->ops.binary.opnd1, 0)
                && operand_equal_p (expr0->ops.binary.opnd1,
                                    expr1->ops.binary.opnd0, 0));
      }

    case EXPR_CALL:
      {
        size_t i;

        /* If the calls are to different functions, then they
           clearly cannot be equal.  */
        if (! operand_equal_p (expr0->ops.call.fn,
                               expr1->ops.call.fn, 0))
          return false;

        if (! expr0->ops.call.pure)
          return false;

        if (expr0->ops.call.nargs !=  expr1->ops.call.nargs)
          return false;

        for (i = 0; i < expr0->ops.call.nargs; i++)
          if (! operand_equal_p (expr0->ops.call.args[i],
                                 expr1->ops.call.args[i], 0))
            return false;

        return true;
      }

    default:
      gcc_unreachable ();
    }
}

/* Compute a hash value for a hashable_expr value EXPR and a
   previously accumulated hash value VAL.  If two hashable_expr
   values compare equal with hashable_expr_equal_p, they must
   hash to the same value, given an identical value of VAL.
   The logic is intended to follow iterative_hash_expr in tree.c.  */

static hashval_t
iterative_hash_hashable_expr (const struct hashable_expr *expr, hashval_t val)
{
  switch (expr->kind)
    {
    case EXPR_SINGLE:
      val = iterative_hash_expr (expr->ops.single.rhs, val);
      break;

    case EXPR_UNARY:
      val = iterative_hash_object (expr->ops.unary.op, val);

      /* Make sure to include signedness in the hash computation.
         Don't hash the type, that can lead to having nodes which
         compare equal according to operand_equal_p, but which
         have different hash codes.  */
      if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
          || expr->ops.unary.op == NON_LVALUE_EXPR)
        val += TYPE_UNSIGNED (expr->type);

      val = iterative_hash_expr (expr->ops.unary.opnd, val);
      break;

    case EXPR_BINARY:
      val = iterative_hash_object (expr->ops.binary.op, val);
      if (commutative_tree_code (expr->ops.binary.op))
          val = iterative_hash_exprs_commutative (expr->ops.binary.opnd0,
                                                  expr->ops.binary.opnd1, val);
      else
        {
          val = iterative_hash_expr (expr->ops.binary.opnd0, val);
          val = iterative_hash_expr (expr->ops.binary.opnd1, val);
        }
      break;

    case EXPR_CALL:
      {
        size_t i;
        enum tree_code code = CALL_EXPR;

        val = iterative_hash_object (code, val);
        val = iterative_hash_expr (expr->ops.call.fn, val);
        for (i = 0; i < expr->ops.call.nargs; i++)
          val = iterative_hash_expr (expr->ops.call.args[i], val);
      }
      break;

    default:
      gcc_unreachable ();
    }

  return val;
}

/* Print a diagnostic dump of an expression hash table entry.  */

static void
print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element)
{
  if (element->stmt)
    fprintf (stream, "STMT ");
  else
    fprintf (stream, "COND ");

  if (element->lhs)
    {
      print_generic_expr (stream, element->lhs, 0);
      fprintf (stream, " = ");
    }

  switch (element->expr.kind)
    {
      case EXPR_SINGLE:
        print_generic_expr (stream, element->expr.ops.single.rhs, 0);
        break;

      case EXPR_UNARY:
        fprintf (stream, "%s ", tree_code_name[element->expr.ops.unary.op]);
        print_generic_expr (stream, element->expr.ops.unary.opnd, 0);
        break;

      case EXPR_BINARY:
        print_generic_expr (stream, element->expr.ops.binary.opnd0, 0);
        fprintf (stream, " %s ", tree_code_name[element->expr.ops.binary.op]);
        print_generic_expr (stream, element->expr.ops.binary.opnd1, 0);
        break;

      case EXPR_CALL:
        {
          size_t i;
          size_t nargs = element->expr.ops.call.nargs;

          print_generic_expr (stream, element->expr.ops.call.fn, 0);
          fprintf (stream, " (");
          for (i = 0; i < nargs; i++)
            {
              print_generic_expr (stream, element->expr.ops.call.args[i], 0);
              if (i + 1 < nargs)
                fprintf (stream, ", ");
            }
          fprintf (stream, ")");
        }
        break;
    }
  fprintf (stream, "\n");

  if (element->stmt)
    {
      fprintf (stream, "          ");
      print_gimple_stmt (stream, element->stmt, 0, 0);
    }
}

/* Delete an expr_hash_elt and reclaim its storage.  */

static void
free_expr_hash_elt (void *elt)
{
  struct expr_hash_elt *element = ((struct expr_hash_elt *)elt);

  if (element->expr.kind == EXPR_CALL)
    free (element->expr.ops.call.args);

  free (element);
}

/* Allocate an EDGE_INFO for edge E and attach it to E.
   Return the new EDGE_INFO structure.  */

static struct edge_info *
allocate_edge_info (edge e)
{
  struct edge_info *edge_info;

  edge_info = XCNEW (struct edge_info);

  e->aux = edge_info;
  return edge_info;
}

/* Free all EDGE_INFO structures associated with edges in the CFG.
   If a particular edge can be threaded, copy the redirection
   target from the EDGE_INFO structure into the edge's AUX field
   as required by code to update the CFG and SSA graph for
   jump threading.  */

static void
free_all_edge_infos (void)
{
  basic_block bb;
  edge_iterator ei;
  edge e;

  FOR_EACH_BB (bb)
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
        {
	 struct edge_info *edge_info = (struct edge_info *) e->aux;

	  if (edge_info)
	    {
	      if (edge_info->cond_equivalences)
		free (edge_info->cond_equivalences);
	      free (edge_info);
	      e->aux = NULL;
	    }
	}
    }
}

/* Jump threading, redundancy elimination and const/copy propagation.

   This pass may expose new symbols that need to be renamed into SSA.  For
   every new symbol exposed, its corresponding bit will be set in
   VARS_TO_RENAME.  */

static unsigned int
tree_ssa_dominator_optimize (void)
{
  struct dom_walk_data walk_data;

  memset (&opt_stats, 0, sizeof (opt_stats));

  /* Create our hash tables.  */
  avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free_expr_hash_elt);
  avail_exprs_stack = VEC_alloc (expr_hash_elt_t, heap, 20);
  const_and_copies_stack = VEC_alloc (tree, heap, 20);
  need_eh_cleanup = BITMAP_ALLOC (NULL);

  /* Setup callbacks for the generic dominator tree walker.  */
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.initialize_block_local_data = NULL;
  walk_data.before_dom_children = dom_opt_enter_block;
  walk_data.after_dom_children = dom_opt_leave_block;
  /* Right now we only attach a dummy COND_EXPR to the global data pointer.
     When we attach more stuff we'll need to fill this out with a real
     structure.  */
  walk_data.global_data = NULL;
  walk_data.block_local_data_size = 0;

  /* Now initialize the dominator walker.  */
  init_walk_dominator_tree (&walk_data);

  calculate_dominance_info (CDI_DOMINATORS);
  cfg_altered = false;

  /* We need to know loop structures in order to avoid destroying them
     in jump threading.  Note that we still can e.g. thread through loop
     headers to an exit edge, or through loop header to the loop body, assuming
     that we update the loop info.  */
  loop_optimizer_init (LOOPS_HAVE_SIMPLE_LATCHES);

  /* Initialize the value-handle array.  */
  threadedge_initialize_values ();

  /* We need accurate information regarding back edges in the CFG
     for jump threading; this may include back edges that are not part of
     a single loop.  */
  mark_dfs_back_edges ();

  /* Recursively walk the dominator tree optimizing statements.  */
  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);

  {
    gimple_stmt_iterator gsi;
    basic_block bb;
    FOR_EACH_BB (bb)
      {for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	  update_stmt_if_modified (gsi_stmt (gsi));
      }
  }

  /* If we exposed any new variables, go ahead and put them into
     SSA form now, before we handle jump threading.  This simplifies
     interactions between rewriting of _DECL nodes into SSA form
     and rewriting SSA_NAME nodes into SSA form after block
     duplication and CFG manipulation.  */
  update_ssa (TODO_update_ssa);

  free_all_edge_infos ();

  /* Thread jumps, creating duplicate blocks as needed.  */
  cfg_altered |= thread_through_all_blocks (first_pass_instance);

  if (cfg_altered)
    free_dominance_info (CDI_DOMINATORS);

  /* Removal of statements may make some EH edges dead.  Purge
     such edges from the CFG as needed.  */
  if (!bitmap_empty_p (need_eh_cleanup))
    {
      unsigned i;
      bitmap_iterator bi;

      /* Jump threading may have created forwarder blocks from blocks
	 needing EH cleanup; the new successor of these blocks, which
	 has inherited from the original block, needs the cleanup.  */
      EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
	{
	  basic_block bb = BASIC_BLOCK (i);
	  if (single_succ_p (bb) == 1
	      && (single_succ_edge (bb)->flags & EDGE_EH) == 0)
	    {
	      bitmap_clear_bit (need_eh_cleanup, i);
	      bitmap_set_bit (need_eh_cleanup, single_succ (bb)->index);
	    }
	}

      gimple_purge_all_dead_eh_edges (need_eh_cleanup);
      bitmap_zero (need_eh_cleanup);
    }

  statistics_counter_event (cfun, "Redundant expressions eliminated",
			    opt_stats.num_re);
  statistics_counter_event (cfun, "Constants propagated",
			    opt_stats.num_const_prop);
  statistics_counter_event (cfun, "Copies propagated",
			    opt_stats.num_copy_prop);

  /* Debugging dumps.  */
  if (dump_file && (dump_flags & TDF_STATS))
    dump_dominator_optimization_stats (dump_file);

  loop_optimizer_finalize ();

  /* Delete our main hashtable.  */
  htab_delete (avail_exprs);

  /* And finalize the dominator walker.  */
  fini_walk_dominator_tree (&walk_data);

  /* Free asserted bitmaps and stacks.  */
  BITMAP_FREE (need_eh_cleanup);

  VEC_free (expr_hash_elt_t, heap, avail_exprs_stack);
  VEC_free (tree, heap, const_and_copies_stack);

  /* Free the value-handle array.  */
  threadedge_finalize_values ();
  ssa_name_values = NULL;

  return 0;
}

static bool
gate_dominator (void)
{
  return flag_tree_dom != 0;
}

struct gimple_opt_pass pass_dominator =
{
 {
  GIMPLE_PASS,
  "dom",				/* name */
  gate_dominator,			/* gate */
  tree_ssa_dominator_optimize,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_SSA_DOMINATOR_OPTS,		/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func
    | TODO_update_ssa
    | TODO_cleanup_cfg
    | TODO_verify_ssa			/* todo_flags_finish */
 }
};


/* Given a conditional statement CONDSTMT, convert the
   condition to a canonical form.  */

static void
canonicalize_comparison (gimple condstmt)
{
  tree op0;
  tree op1;
  enum tree_code code;

  gcc_assert (gimple_code (condstmt) == GIMPLE_COND);

  op0 = gimple_cond_lhs (condstmt);
  op1 = gimple_cond_rhs (condstmt);

  code = gimple_cond_code (condstmt);

  /* If it would be profitable to swap the operands, then do so to
     canonicalize the statement, enabling better optimization.

     By placing canonicalization of such expressions here we
     transparently keep statements in canonical form, even
     when the statement is modified.  */
  if (tree_swap_operands_p (op0, op1, false))
    {
      /* For relationals we need to swap the operands
	 and change the code.  */
      if (code == LT_EXPR
	  || code == GT_EXPR
	  || code == LE_EXPR
	  || code == GE_EXPR)
	{
          code = swap_tree_comparison (code);

          gimple_cond_set_code (condstmt, code);
          gimple_cond_set_lhs (condstmt, op1);
          gimple_cond_set_rhs (condstmt, op0);

          update_stmt (condstmt);
	}
    }
}

/* Initialize local stacks for this optimizer and record equivalences
   upon entry to BB.  Equivalences can come from the edge traversed to
   reach BB or they may come from PHI nodes at the start of BB.  */

/* Remove all the expressions in LOCALS from TABLE, stopping when there are
   LIMIT entries left in LOCALs.  */

static void
remove_local_expressions_from_table (void)
{
  /* Remove all the expressions made available in this block.  */
  while (VEC_length (expr_hash_elt_t, avail_exprs_stack) > 0)
    {
      expr_hash_elt_t victim = VEC_pop (expr_hash_elt_t, avail_exprs_stack);
      void **slot;

      if (victim == NULL)
	break;

      /* This must precede the actual removal from the hash table,
         as ELEMENT and the table entry may share a call argument
         vector which will be freed during removal.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "<<<< ");
          print_expr_hash_elt (dump_file, victim);
        }

      slot = htab_find_slot_with_hash (avail_exprs,
				       victim, victim->hash, NO_INSERT);
      gcc_assert (slot && *slot == (void *) victim);
      htab_clear_slot (avail_exprs, slot);
    }
}

/* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
   CONST_AND_COPIES to its original state, stopping when we hit a
   NULL marker.  */

static void
restore_vars_to_original_value (void)
{
  while (VEC_length (tree, const_and_copies_stack) > 0)
    {
      tree prev_value, dest;

      dest = VEC_pop (tree, const_and_copies_stack);

      if (dest == NULL)
	break;

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "<<<< COPY ");
	  print_generic_expr (dump_file, dest, 0);
	  fprintf (dump_file, " = ");
	  print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0);
	  fprintf (dump_file, "\n");
	}

      prev_value = VEC_pop (tree, const_and_copies_stack);
      set_ssa_name_value (dest, prev_value);
    }
}

/* A trivial wrapper so that we can present the generic jump
   threading code with a simple API for simplifying statements.  */
static tree
simplify_stmt_for_jump_threading (gimple stmt,
				  gimple within_stmt ATTRIBUTE_UNUSED)
{
  return lookup_avail_expr (stmt, false);
}

/* Wrapper for common code to attempt to thread an edge.  For example,
   it handles lazily building the dummy condition and the bookkeeping
   when jump threading is successful.  */

static void
dom_thread_across_edge (struct dom_walk_data *walk_data, edge e)
{
  if (! walk_data->global_data)
  {
    gimple dummy_cond =
        gimple_build_cond (NE_EXPR,
                           integer_zero_node, integer_zero_node,
                           NULL, NULL);
    walk_data->global_data = dummy_cond;
  }

  thread_across_edge ((gimple) walk_data->global_data, e, false,
		      &const_and_copies_stack,
		      simplify_stmt_for_jump_threading);
}

/* PHI nodes can create equivalences too.

   Ignoring any alternatives which are the same as the result, if
   all the alternatives are equal, then the PHI node creates an
   equivalence.  */

static void
record_equivalences_from_phis (basic_block bb)
{
  gimple_stmt_iterator gsi;

  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi = gsi_stmt (gsi);

      tree lhs = gimple_phi_result (phi);
      tree rhs = NULL;
      size_t i;

      for (i = 0; i < gimple_phi_num_args (phi); i++)
	{
	  tree t = gimple_phi_arg_def (phi, i);

	  /* Ignore alternatives which are the same as our LHS.  Since
	     LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
	     can simply compare pointers.  */
	  if (lhs == t)
	    continue;

	  /* If we have not processed an alternative yet, then set
	     RHS to this alternative.  */
	  if (rhs == NULL)
	    rhs = t;
	  /* If we have processed an alternative (stored in RHS), then
	     see if it is equal to this one.  If it isn't, then stop
	     the search.  */
	  else if (! operand_equal_for_phi_arg_p (rhs, t))
	    break;
	}

      /* If we had no interesting alternatives, then all the RHS alternatives
	 must have been the same as LHS.  */
      if (!rhs)
	rhs = lhs;

      /* If we managed to iterate through each PHI alternative without
	 breaking out of the loop, then we have a PHI which may create
	 a useful equivalence.  We do not need to record unwind data for
	 this, since this is a true assignment and not an equivalence
	 inferred from a comparison.  All uses of this ssa name are dominated
	 by this assignment, so unwinding just costs time and space.  */
      if (i == gimple_phi_num_args (phi) && may_propagate_copy (lhs, rhs))
	set_ssa_name_value (lhs, rhs);
    }
}

/* Ignoring loop backedges, if BB has precisely one incoming edge then
   return that edge.  Otherwise return NULL.  */
static edge
single_incoming_edge_ignoring_loop_edges (basic_block bb)
{
  edge retval = NULL;
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      /* A loop back edge can be identified by the destination of
	 the edge dominating the source of the edge.  */
      if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
	continue;

      /* If we have already seen a non-loop edge, then we must have
	 multiple incoming non-loop edges and thus we return NULL.  */
      if (retval)
	return NULL;

      /* This is the first non-loop incoming edge we have found.  Record
	 it.  */
      retval = e;
    }

  return retval;
}

/* Record any equivalences created by the incoming edge to BB.  If BB
   has more than one incoming edge, then no equivalence is created.  */

static void
record_equivalences_from_incoming_edge (basic_block bb)
{
  edge e;
  basic_block parent;
  struct edge_info *edge_info;

  /* If our parent block ended with a control statement, then we may be
     able to record some equivalences based on which outgoing edge from
     the parent was followed.  */
  parent = get_immediate_dominator (CDI_DOMINATORS, bb);

  e = single_incoming_edge_ignoring_loop_edges (bb);

  /* If we had a single incoming edge from our parent block, then enter
     any data associated with the edge into our tables.  */
  if (e && e->src == parent)
    {
      unsigned int i;

      edge_info = (struct edge_info *) e->aux;

      if (edge_info)
	{
	  tree lhs = edge_info->lhs;
	  tree rhs = edge_info->rhs;
	  struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences;

	  if (lhs)
	    record_equality (lhs, rhs);

	  if (cond_equivalences)
            for (i = 0; i < edge_info->max_cond_equivalences; i++)
              record_cond (&cond_equivalences[i]);
	}
    }
}

/* Dump SSA statistics on FILE.  */

void
dump_dominator_optimization_stats (FILE *file)
{
  fprintf (file, "Total number of statements:                   %6ld\n\n",
	   opt_stats.num_stmts);
  fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
           opt_stats.num_exprs_considered);

  fprintf (file, "\nHash table statistics:\n");

  fprintf (file, "    avail_exprs: ");
  htab_statistics (file, avail_exprs);
}


/* Dump SSA statistics on stderr.  */

DEBUG_FUNCTION void
debug_dominator_optimization_stats (void)
{
  dump_dominator_optimization_stats (stderr);
}


/* Dump statistics for the hash table HTAB.  */

static void
htab_statistics (FILE *file, htab_t htab)
{
  fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
	   (long) htab_size (htab),
	   (long) htab_elements (htab),
	   htab_collisions (htab));
}


/* Enter condition equivalence into the expression hash table.
   This indicates that a conditional expression has a known
   boolean value.  */

static void
record_cond (struct cond_equivalence *p)
{
  struct expr_hash_elt *element = XCNEW (struct expr_hash_elt);
  void **slot;

  initialize_hash_element_from_expr (&p->cond, p->value, element);

  slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
				   element->hash, INSERT);
  if (*slot == NULL)
    {
      *slot = (void *) element;

      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "1>>> ");
          print_expr_hash_elt (dump_file, element);
        }

      VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element);
    }
  else
    free (element);
}

/* Build a cond_equivalence record indicating that the comparison
   CODE holds between operands OP0 and OP1.  */

static void
build_and_record_new_cond (enum tree_code code,
                           tree op0, tree op1,
                           struct cond_equivalence *p)
{
  struct hashable_expr *cond = &p->cond;

  gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);

  cond->type = boolean_type_node;
  cond->kind = EXPR_BINARY;
  cond->ops.binary.op = code;
  cond->ops.binary.opnd0 = op0;
  cond->ops.binary.opnd1 = op1;

  p->value = boolean_true_node;
}

/* Record that COND is true and INVERTED is false into the edge information
   structure.  Also record that any conditions dominated by COND are true
   as well.

   For example, if a < b is true, then a <= b must also be true.  */

static void
record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
{
  tree op0, op1;

  if (!COMPARISON_CLASS_P (cond))
    return;

  op0 = TREE_OPERAND (cond, 0);
  op1 = TREE_OPERAND (cond, 1);

  switch (TREE_CODE (cond))
    {
    case LT_EXPR:
    case GT_EXPR:
      if (FLOAT_TYPE_P (TREE_TYPE (op0)))
	{
	  edge_info->max_cond_equivalences = 6;
	  edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 6);
	  build_and_record_new_cond (ORDERED_EXPR, op0, op1,
				     &edge_info->cond_equivalences[4]);
	  build_and_record_new_cond (LTGT_EXPR, op0, op1,
				     &edge_info->cond_equivalences[5]);
	}
      else
        {
          edge_info->max_cond_equivalences = 4;
	  edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
	}

      build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
				  ? LE_EXPR : GE_EXPR),
				 op0, op1, &edge_info->cond_equivalences[2]);
      build_and_record_new_cond (NE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[3]);
      break;

    case GE_EXPR:
    case LE_EXPR:
      if (FLOAT_TYPE_P (TREE_TYPE (op0)))
	{
	  edge_info->max_cond_equivalences = 3;
	  edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 3);
	  build_and_record_new_cond (ORDERED_EXPR, op0, op1,
				     &edge_info->cond_equivalences[2]);
	}
      else
	{
	  edge_info->max_cond_equivalences = 2;
	  edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 2);
	}
      break;

    case EQ_EXPR:
      if (FLOAT_TYPE_P (TREE_TYPE (op0)))
	{
	  edge_info->max_cond_equivalences = 5;
	  edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 5);
	  build_and_record_new_cond (ORDERED_EXPR, op0, op1,
				     &edge_info->cond_equivalences[4]);
	}
      else
	{
	  edge_info->max_cond_equivalences = 4;
	  edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
	}
      build_and_record_new_cond (LE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[2]);
      build_and_record_new_cond (GE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[3]);
      break;

    case UNORDERED_EXPR:
      edge_info->max_cond_equivalences = 8;
      edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 8);
      build_and_record_new_cond (NE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[2]);
      build_and_record_new_cond (UNLE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[3]);
      build_and_record_new_cond (UNGE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[4]);
      build_and_record_new_cond (UNEQ_EXPR, op0, op1,
				 &edge_info->cond_equivalences[5]);
      build_and_record_new_cond (UNLT_EXPR, op0, op1,
				 &edge_info->cond_equivalences[6]);
      build_and_record_new_cond (UNGT_EXPR, op0, op1,
				 &edge_info->cond_equivalences[7]);
      break;

    case UNLT_EXPR:
    case UNGT_EXPR:
      edge_info->max_cond_equivalences = 4;
      edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
      build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
				  ? UNLE_EXPR : UNGE_EXPR),
				 op0, op1, &edge_info->cond_equivalences[2]);
      build_and_record_new_cond (NE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[3]);
      break;

    case UNEQ_EXPR:
      edge_info->max_cond_equivalences = 4;
      edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
      build_and_record_new_cond (UNLE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[2]);
      build_and_record_new_cond (UNGE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[3]);
      break;

    case LTGT_EXPR:
      edge_info->max_cond_equivalences = 4;
      edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
      build_and_record_new_cond (NE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[2]);
      build_and_record_new_cond (ORDERED_EXPR, op0, op1,
				 &edge_info->cond_equivalences[3]);
      break;

    default:
      edge_info->max_cond_equivalences = 2;
      edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 2);
      break;
    }

  /* Now store the original true and false conditions into the first
     two slots.  */
  initialize_expr_from_cond (cond, &edge_info->cond_equivalences[0].cond);
  edge_info->cond_equivalences[0].value = boolean_true_node;

  /* It is possible for INVERTED to be the negation of a comparison,
     and not a valid RHS or GIMPLE_COND condition.  This happens because
     invert_truthvalue may return such an expression when asked to invert
     a floating-point comparison.  These comparisons are not assumed to
     obey the trichotomy law.  */
  initialize_expr_from_cond (inverted, &edge_info->cond_equivalences[1].cond);
  edge_info->cond_equivalences[1].value = boolean_false_node;
}

/* A helper function for record_const_or_copy and record_equality.
   Do the work of recording the value and undo info.  */

static void
record_const_or_copy_1 (tree x, tree y, tree prev_x)
{
  set_ssa_name_value (x, y);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "0>>> COPY ");
      print_generic_expr (dump_file, x, 0);
      fprintf (dump_file, " = ");
      print_generic_expr (dump_file, y, 0);
      fprintf (dump_file, "\n");
    }

  VEC_reserve (tree, heap, const_and_copies_stack, 2);
  VEC_quick_push (tree, const_and_copies_stack, prev_x);
  VEC_quick_push (tree, const_and_copies_stack, x);
}

/* Return the loop depth of the basic block of the defining statement of X.
   This number should not be treated as absolutely correct because the loop
   information may not be completely up-to-date when dom runs.  However, it
   will be relatively correct, and as more passes are taught to keep loop info
   up to date, the result will become more and more accurate.  */

int
loop_depth_of_name (tree x)
{
  gimple defstmt;
  basic_block defbb;

  /* If it's not an SSA_NAME, we have no clue where the definition is.  */
  if (TREE_CODE (x) != SSA_NAME)
    return 0;

  /* Otherwise return the loop depth of the defining statement's bb.
     Note that there may not actually be a bb for this statement, if the
     ssa_name is live on entry.  */
  defstmt = SSA_NAME_DEF_STMT (x);
  defbb = gimple_bb (defstmt);
  if (!defbb)
    return 0;

  return defbb->loop_depth;
}

/* Record that X is equal to Y in const_and_copies.  Record undo
   information in the block-local vector.  */

static void
record_const_or_copy (tree x, tree y)
{
  tree prev_x = SSA_NAME_VALUE (x);

  gcc_assert (TREE_CODE (x) == SSA_NAME);

  if (TREE_CODE (y) == SSA_NAME)
    {
      tree tmp = SSA_NAME_VALUE (y);
      if (tmp)
	y = tmp;
    }

  record_const_or_copy_1 (x, y, prev_x);
}

/* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
   This constrains the cases in which we may treat this as assignment.  */

static void
record_equality (tree x, tree y)
{
  tree prev_x = NULL, prev_y = NULL;

  if (TREE_CODE (x) == SSA_NAME)
    prev_x = SSA_NAME_VALUE (x);
  if (TREE_CODE (y) == SSA_NAME)
    prev_y = SSA_NAME_VALUE (y);

  /* If one of the previous values is invariant, or invariant in more loops
     (by depth), then use that.
     Otherwise it doesn't matter which value we choose, just so
     long as we canonicalize on one value.  */
  if (is_gimple_min_invariant (y))
    ;
  else if (is_gimple_min_invariant (x)
	   || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
    prev_x = x, x = y, y = prev_x, prev_x = prev_y;
  else if (prev_x && is_gimple_min_invariant (prev_x))
    x = y, y = prev_x, prev_x = prev_y;
  else if (prev_y)
    y = prev_y;

  /* After the swapping, we must have one SSA_NAME.  */
  if (TREE_CODE (x) != SSA_NAME)
    return;

  /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
     variable compared against zero.  If we're honoring signed zeros,
     then we cannot record this value unless we know that the value is
     nonzero.  */
  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
      && (TREE_CODE (y) != REAL_CST
	  || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
    return;

  record_const_or_copy_1 (x, y, prev_x);
}

/* Returns true when STMT is a simple iv increment.  It detects the
   following situation:

   i_1 = phi (..., i_2)
   i_2 = i_1 +/- ...  */

static bool
simple_iv_increment_p (gimple stmt)
{
  tree lhs, preinc;
  gimple phi;
  size_t i;

  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return false;

  lhs = gimple_assign_lhs (stmt);
  if (TREE_CODE (lhs) != SSA_NAME)
    return false;

  if (gimple_assign_rhs_code (stmt) != PLUS_EXPR
      && gimple_assign_rhs_code (stmt) != MINUS_EXPR)
    return false;

  preinc = gimple_assign_rhs1 (stmt);

  if (TREE_CODE (preinc) != SSA_NAME)
    return false;

  phi = SSA_NAME_DEF_STMT (preinc);
  if (gimple_code (phi) != GIMPLE_PHI)
    return false;

  for (i = 0; i < gimple_phi_num_args (phi); i++)
    if (gimple_phi_arg_def (phi, i) == lhs)
      return true;

  return false;
}

/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
   known value for that SSA_NAME (or NULL if no value is known).

   Propagate values from CONST_AND_COPIES into the PHI nodes of the
   successors of BB.  */

static void
cprop_into_successor_phis (basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      int indx;
      gimple_stmt_iterator gsi;

      /* If this is an abnormal edge, then we do not want to copy propagate
	 into the PHI alternative associated with this edge.  */
      if (e->flags & EDGE_ABNORMAL)
	continue;

      gsi = gsi_start_phis (e->dest);
      if (gsi_end_p (gsi))
	continue;

      indx = e->dest_idx;
      for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  tree new_val;
	  use_operand_p orig_p;
	  tree orig_val;
          gimple phi = gsi_stmt (gsi);

	  /* The alternative may be associated with a constant, so verify
	     it is an SSA_NAME before doing anything with it.  */
	  orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
	  orig_val = get_use_from_ptr (orig_p);
	  if (TREE_CODE (orig_val) != SSA_NAME)
	    continue;

	  /* If we have *ORIG_P in our constant/copy table, then replace
	     ORIG_P with its value in our constant/copy table.  */
	  new_val = SSA_NAME_VALUE (orig_val);
	  if (new_val
	      && new_val != orig_val
	      && (TREE_CODE (new_val) == SSA_NAME
		  || is_gimple_min_invariant (new_val))
	      && may_propagate_copy (orig_val, new_val))
	    propagate_value (orig_p, new_val);
	}
    }
}

/* We have finished optimizing BB, record any information implied by
   taking a specific outgoing edge from BB.  */

static void
record_edge_info (basic_block bb)
{
  gimple_stmt_iterator gsi = gsi_last_bb (bb);
  struct edge_info *edge_info;

  if (! gsi_end_p (gsi))
    {
      gimple stmt = gsi_stmt (gsi);
      location_t loc = gimple_location (stmt);

      if (gimple_code (stmt) == GIMPLE_SWITCH)
	{
	  tree index = gimple_switch_index (stmt);

	  if (TREE_CODE (index) == SSA_NAME)
	    {
	      int i;
              int n_labels = gimple_switch_num_labels (stmt);
	      tree *info = XCNEWVEC (tree, last_basic_block);
	      edge e;
	      edge_iterator ei;

	      for (i = 0; i < n_labels; i++)
		{
		  tree label = gimple_switch_label (stmt, i);
		  basic_block target_bb = label_to_block (CASE_LABEL (label));
		  if (CASE_HIGH (label)
		      || !CASE_LOW (label)
		      || info[target_bb->index])
		    info[target_bb->index] = error_mark_node;
		  else
		    info[target_bb->index] = label;
		}

	      FOR_EACH_EDGE (e, ei, bb->succs)
		{
		  basic_block target_bb = e->dest;
		  tree label = info[target_bb->index];

		  if (label != NULL && label != error_mark_node)
		    {
		      tree x = fold_convert_loc (loc, TREE_TYPE (index),
						 CASE_LOW (label));
		      edge_info = allocate_edge_info (e);
		      edge_info->lhs = index;
		      edge_info->rhs = x;
		    }
		}
	      free (info);
	    }
	}

      /* A COND_EXPR may create equivalences too.  */
      if (gimple_code (stmt) == GIMPLE_COND)
	{
	  edge true_edge;
	  edge false_edge;

          tree op0 = gimple_cond_lhs (stmt);
          tree op1 = gimple_cond_rhs (stmt);
          enum tree_code code = gimple_cond_code (stmt);

	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

          /* Special case comparing booleans against a constant as we
             know the value of OP0 on both arms of the branch.  i.e., we
             can record an equivalence for OP0 rather than COND.  */
          if ((code == EQ_EXPR || code == NE_EXPR)
              && TREE_CODE (op0) == SSA_NAME
              && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
              && is_gimple_min_invariant (op1))
            {
              if (code == EQ_EXPR)
                {
                  edge_info = allocate_edge_info (true_edge);
                  edge_info->lhs = op0;
                  edge_info->rhs = (integer_zerop (op1)
                                    ? boolean_false_node
                                    : boolean_true_node);

                  edge_info = allocate_edge_info (false_edge);
                  edge_info->lhs = op0;
                  edge_info->rhs = (integer_zerop (op1)
                                    ? boolean_true_node
                                    : boolean_false_node);
                }
              else
                {
                  edge_info = allocate_edge_info (true_edge);
                  edge_info->lhs = op0;
                  edge_info->rhs = (integer_zerop (op1)
                                    ? boolean_true_node
                                    : boolean_false_node);

                  edge_info = allocate_edge_info (false_edge);
                  edge_info->lhs = op0;
                  edge_info->rhs = (integer_zerop (op1)
                                    ? boolean_false_node
                                    : boolean_true_node);
                }
            }
          else if (is_gimple_min_invariant (op0)
                   && (TREE_CODE (op1) == SSA_NAME
                       || is_gimple_min_invariant (op1)))
            {
              tree cond = build2 (code, boolean_type_node, op0, op1);
              tree inverted = invert_truthvalue_loc (loc, cond);
              struct edge_info *edge_info;

              edge_info = allocate_edge_info (true_edge);
              record_conditions (edge_info, cond, inverted);

              if (code == EQ_EXPR)
                {
                  edge_info->lhs = op1;
                  edge_info->rhs = op0;
                }

              edge_info = allocate_edge_info (false_edge);
              record_conditions (edge_info, inverted, cond);

              if (code == NE_EXPR)
                {
                  edge_info->lhs = op1;
                  edge_info->rhs = op0;
                }
            }

          else if (TREE_CODE (op0) == SSA_NAME
                   && (is_gimple_min_invariant (op1)
                       || TREE_CODE (op1) == SSA_NAME))
            {
              tree cond = build2 (code, boolean_type_node, op0, op1);
              tree inverted = invert_truthvalue_loc (loc, cond);
              struct edge_info *edge_info;

              edge_info = allocate_edge_info (true_edge);
              record_conditions (edge_info, cond, inverted);

              if (code == EQ_EXPR)
                {
                  edge_info->lhs = op0;
                  edge_info->rhs = op1;
                }

              edge_info = allocate_edge_info (false_edge);
              record_conditions (edge_info, inverted, cond);

              if (TREE_CODE (cond) == NE_EXPR)
                {
                  edge_info->lhs = op0;
                  edge_info->rhs = op1;
                }
            }
        }

      /* ??? TRUTH_NOT_EXPR can create an equivalence too.  */
    }
}

static void
dom_opt_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
		     basic_block bb)
{
  gimple_stmt_iterator gsi;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);

  /* Push a marker on the stacks of local information so that we know how
     far to unwind when we finalize this block.  */
  VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
  VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);

  record_equivalences_from_incoming_edge (bb);

  /* PHI nodes can create equivalences too.  */
  record_equivalences_from_phis (bb);

  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    optimize_stmt (bb, gsi);

  /* Now prepare to process dominated blocks.  */
  record_edge_info (bb);
  cprop_into_successor_phis (bb);
}

/* We have finished processing the dominator children of BB, perform
   any finalization actions in preparation for leaving this node in
   the dominator tree.  */

static void
dom_opt_leave_block (struct dom_walk_data *walk_data, basic_block bb)
{
  gimple last;

  /* If we have an outgoing edge to a block with multiple incoming and
     outgoing edges, then we may be able to thread the edge, i.e., we
     may be able to statically determine which of the outgoing edges
     will be traversed when the incoming edge from BB is traversed.  */
  if (single_succ_p (bb)
      && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
      && potentially_threadable_block (single_succ (bb)))
    {
      dom_thread_across_edge (walk_data, single_succ_edge (bb));
    }
  else if ((last = last_stmt (bb))
	   && gimple_code (last) == GIMPLE_COND
	   && EDGE_COUNT (bb->succs) == 2
	   && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
	   && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
    {
      edge true_edge, false_edge;

      extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

      /* Only try to thread the edge if it reaches a target block with
	 more than one predecessor and more than one successor.  */
      if (potentially_threadable_block (true_edge->dest))
	{
	  struct edge_info *edge_info;
	  unsigned int i;

	  /* Push a marker onto the available expression stack so that we
	     unwind any expressions related to the TRUE arm before processing
	     the false arm below.  */
          VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
	  VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);

	  edge_info = (struct edge_info *) true_edge->aux;

	  /* If we have info associated with this edge, record it into
	     our equivalence tables.  */
	  if (edge_info)
	    {
	      struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences;
	      tree lhs = edge_info->lhs;
	      tree rhs = edge_info->rhs;

	      /* If we have a simple NAME = VALUE equivalence, record it.  */
	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
		record_const_or_copy (lhs, rhs);

	      /* If we have 0 = COND or 1 = COND equivalences, record them
		 into our expression hash tables.  */
	      if (cond_equivalences)
		for (i = 0; i < edge_info->max_cond_equivalences; i++)
                  record_cond (&cond_equivalences[i]);
	    }

	  dom_thread_across_edge (walk_data, true_edge);

	  /* And restore the various tables to their state before
	     we threaded this edge.  */
	  remove_local_expressions_from_table ();
	}

      /* Similarly for the ELSE arm.  */
      if (potentially_threadable_block (false_edge->dest))
	{
	  struct edge_info *edge_info;
	  unsigned int i;

	  VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
	  edge_info = (struct edge_info *) false_edge->aux;

	  /* If we have info associated with this edge, record it into
	     our equivalence tables.  */
	  if (edge_info)
	    {
	      struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences;
	      tree lhs = edge_info->lhs;
	      tree rhs = edge_info->rhs;

	      /* If we have a simple NAME = VALUE equivalence, record it.  */
	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
		record_const_or_copy (lhs, rhs);

	      /* If we have 0 = COND or 1 = COND equivalences, record them
		 into our expression hash tables.  */
	      if (cond_equivalences)
		for (i = 0; i < edge_info->max_cond_equivalences; i++)
                  record_cond (&cond_equivalences[i]);
	    }

	  /* Now thread the edge.  */
	  dom_thread_across_edge (walk_data, false_edge);

	  /* No need to remove local expressions from our tables
	     or restore vars to their original value as that will
	     be done immediately below.  */
	}
    }

  remove_local_expressions_from_table ();
  restore_vars_to_original_value ();
}

/* Search for redundant computations in STMT.  If any are found, then
   replace them with the variable holding the result of the computation.

   If safe, record this expression into the available expression hash
   table.  */

static void
eliminate_redundant_computations (gimple_stmt_iterator* gsi)
{
  tree expr_type;
  tree cached_lhs;
  bool insert = true;
  bool assigns_var_p = false;

  gimple stmt = gsi_stmt (*gsi);

  tree def = gimple_get_lhs (stmt);

  /* Certain expressions on the RHS can be optimized away, but can not
     themselves be entered into the hash tables.  */
  if (! def
      || TREE_CODE (def) != SSA_NAME
      || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
      || gimple_vdef (stmt)
      /* Do not record equivalences for increments of ivs.  This would create
	 overlapping live ranges for a very questionable gain.  */
      || simple_iv_increment_p (stmt))
    insert = false;

  /* Check if the expression has been computed before.  */
  cached_lhs = lookup_avail_expr (stmt, insert);

  opt_stats.num_exprs_considered++;

  /* Get the type of the expression we are trying to optimize.  */
  if (is_gimple_assign (stmt))
    {
      expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
      assigns_var_p = true;
    }
  else if (gimple_code (stmt) == GIMPLE_COND)
    expr_type = boolean_type_node;
  else if (is_gimple_call (stmt))
    {
      gcc_assert (gimple_call_lhs (stmt));
      expr_type = TREE_TYPE (gimple_call_lhs (stmt));
      assigns_var_p = true;
    }
  else if (gimple_code (stmt) == GIMPLE_SWITCH)
    expr_type = TREE_TYPE (gimple_switch_index (stmt));
  else
    gcc_unreachable ();

  if (!cached_lhs)
    return;

  /* It is safe to ignore types here since we have already done
     type checking in the hashing and equality routines.  In fact
     type checking here merely gets in the way of constant
     propagation.  Also, make sure that it is safe to propagate
     CACHED_LHS into the expression in STMT.  */
  if ((TREE_CODE (cached_lhs) != SSA_NAME
       && (assigns_var_p
           || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
      || may_propagate_copy_into_stmt (stmt, cached_lhs))
  {
#if defined ENABLE_CHECKING
      gcc_assert (TREE_CODE (cached_lhs) == SSA_NAME
		  || is_gimple_min_invariant (cached_lhs));
#endif

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced redundant expr '");
	  print_gimple_expr (dump_file, stmt, 0, dump_flags);
	  fprintf (dump_file, "' with '");
	  print_generic_expr (dump_file, cached_lhs, dump_flags);
          fprintf (dump_file, "'\n");
	}

      opt_stats.num_re++;

      if (assigns_var_p
	  && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
	cached_lhs = fold_convert (expr_type, cached_lhs);

      propagate_tree_value_into_stmt (gsi, cached_lhs);

      /* Since it is always necessary to mark the result as modified,
         perhaps we should move this into propagate_tree_value_into_stmt
         itself.  */
      gimple_set_modified (gsi_stmt (*gsi), true);
  }
}

/* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
   the available expressions table or the const_and_copies table.
   Detect and record those equivalences.  */
/* We handle only very simple copy equivalences here.  The heavy
   lifing is done by eliminate_redundant_computations.  */

static void
record_equivalences_from_stmt (gimple stmt, int may_optimize_p)
{
  tree lhs;
  enum tree_code lhs_code;

  gcc_assert (is_gimple_assign (stmt));

  lhs = gimple_assign_lhs (stmt);
  lhs_code = TREE_CODE (lhs);

  if (lhs_code == SSA_NAME
      && gimple_assign_single_p (stmt))
    {
      tree rhs = gimple_assign_rhs1 (stmt);

      /* If the RHS of the assignment is a constant or another variable that
	 may be propagated, register it in the CONST_AND_COPIES table.  We
	 do not need to record unwind data for this, since this is a true
	 assignment and not an equivalence inferred from a comparison.  All
	 uses of this ssa name are dominated by this assignment, so unwinding
	 just costs time and space.  */
      if (may_optimize_p
	  && (TREE_CODE (rhs) == SSA_NAME
	      || is_gimple_min_invariant (rhs)))
      {
	if (dump_file && (dump_flags & TDF_DETAILS))
	  {
	    fprintf (dump_file, "==== ASGN ");
	    print_generic_expr (dump_file, lhs, 0);
	    fprintf (dump_file, " = ");
	    print_generic_expr (dump_file, rhs, 0);
	    fprintf (dump_file, "\n");
	  }

	set_ssa_name_value (lhs, rhs);
      }
    }

  /* A memory store, even an aliased store, creates a useful
     equivalence.  By exchanging the LHS and RHS, creating suitable
     vops and recording the result in the available expression table,
     we may be able to expose more redundant loads.  */
  if (!gimple_has_volatile_ops (stmt)
      && gimple_references_memory_p (stmt)
      && gimple_assign_single_p (stmt)
      && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
	  || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
      && !is_gimple_reg (lhs))
    {
      tree rhs = gimple_assign_rhs1 (stmt);
      gimple new_stmt;

      /* Build a new statement with the RHS and LHS exchanged.  */
      if (TREE_CODE (rhs) == SSA_NAME)
        {
          /* NOTE tuples.  The call to gimple_build_assign below replaced
             a call to build_gimple_modify_stmt, which did not set the
             SSA_NAME_DEF_STMT on the LHS of the assignment.  Doing so
             may cause an SSA validation failure, as the LHS may be a
             default-initialized name and should have no definition.  I'm
             a bit dubious of this, as the artificial statement that we
             generate here may in fact be ill-formed, but it is simply
             used as an internal device in this pass, and never becomes
             part of the CFG.  */
          gimple defstmt = SSA_NAME_DEF_STMT (rhs);
          new_stmt = gimple_build_assign (rhs, lhs);
          SSA_NAME_DEF_STMT (rhs) = defstmt;
        }
      else
        new_stmt = gimple_build_assign (rhs, lhs);

      gimple_set_vuse (new_stmt, gimple_vdef (stmt));

      /* Finally enter the statement into the available expression
	 table.  */
      lookup_avail_expr (new_stmt, true);
    }
}

/* Replace *OP_P in STMT with any known equivalent value for *OP_P from
   CONST_AND_COPIES.  */

static void
cprop_operand (gimple stmt, use_operand_p op_p)
{
  tree val;
  tree op = USE_FROM_PTR (op_p);

  /* If the operand has a known constant value or it is known to be a
     copy of some other variable, use the value or copy stored in
     CONST_AND_COPIES.  */
  val = SSA_NAME_VALUE (op);
  if (val && val != op)
    {
      /* Do not change the base variable in the virtual operand
	 tables.  That would make it impossible to reconstruct
	 the renamed virtual operand if we later modify this
	 statement.  Also only allow the new value to be an SSA_NAME
	 for propagation into virtual operands.  */
      if (!is_gimple_reg (op)
	  && (TREE_CODE (val) != SSA_NAME
	      || is_gimple_reg (val)
	      || get_virtual_var (val) != get_virtual_var (op)))
	return;

      /* Do not replace hard register operands in asm statements.  */
      if (gimple_code (stmt) == GIMPLE_ASM
	  && !may_propagate_copy_into_asm (op))
	return;

      /* Certain operands are not allowed to be copy propagated due
	 to their interaction with exception handling and some GCC
	 extensions.  */
      if (!may_propagate_copy (op, val))
	return;

      /* Do not propagate addresses that point to volatiles into memory
	 stmts without volatile operands.  */
      if (POINTER_TYPE_P (TREE_TYPE (val))
	  && TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (val)))
	  && gimple_has_mem_ops (stmt)
	  && !gimple_has_volatile_ops (stmt))
	return;

      /* Do not propagate copies if the propagated value is at a deeper loop
	 depth than the propagatee.  Otherwise, this may move loop variant
	 variables outside of their loops and prevent coalescing
	 opportunities.  If the value was loop invariant, it will be hoisted
	 by LICM and exposed for copy propagation.  */
      if (loop_depth_of_name (val) > loop_depth_of_name (op))
	return;

      /* Do not propagate copies into simple IV increment statements.
         See PR23821 for how this can disturb IV analysis.  */
      if (TREE_CODE (val) != INTEGER_CST
	  && simple_iv_increment_p (stmt))
	return;

      /* Dump details.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced '");
	  print_generic_expr (dump_file, op, dump_flags);
	  fprintf (dump_file, "' with %s '",
		   (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
	  print_generic_expr (dump_file, val, dump_flags);
	  fprintf (dump_file, "'\n");
	}

      if (TREE_CODE (val) != SSA_NAME)
	opt_stats.num_const_prop++;
      else
	opt_stats.num_copy_prop++;

      propagate_value (op_p, val);

      /* And note that we modified this statement.  This is now
	 safe, even if we changed virtual operands since we will
	 rescan the statement and rewrite its operands again.  */
      gimple_set_modified (stmt, true);
    }
}

/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
   known value for that SSA_NAME (or NULL if no value is known).

   Propagate values from CONST_AND_COPIES into the uses, vuses and
   vdef_ops of STMT.  */

static void
cprop_into_stmt (gimple stmt)
{
  use_operand_p op_p;
  ssa_op_iter iter;

  FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_ALL_USES)
    {
      if (TREE_CODE (USE_FROM_PTR (op_p)) == SSA_NAME)
	cprop_operand (stmt, op_p);
    }
}

/* Optimize the statement pointed to by iterator SI.

   We try to perform some simplistic global redundancy elimination and
   constant propagation:

   1- To detect global redundancy, we keep track of expressions that have
      been computed in this block and its dominators.  If we find that the
      same expression is computed more than once, we eliminate repeated
      computations by using the target of the first one.

   2- Constant values and copy assignments.  This is used to do very
      simplistic constant and copy propagation.  When a constant or copy
      assignment is found, we map the value on the RHS of the assignment to
      the variable in the LHS in the CONST_AND_COPIES table.  */

static void
optimize_stmt (basic_block bb, gimple_stmt_iterator si)
{
  gimple stmt, old_stmt;
  bool may_optimize_p;
  bool modified_p = false;

  old_stmt = stmt = gsi_stmt (si);

  if (gimple_code (stmt) == GIMPLE_COND)
    canonicalize_comparison (stmt);

  update_stmt_if_modified (stmt);
  opt_stats.num_stmts++;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Optimizing statement ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
    }

  /* Const/copy propagate into USES, VUSES and the RHS of VDEFs.  */
  cprop_into_stmt (stmt);

  /* If the statement has been modified with constant replacements,
     fold its RHS before checking for redundant computations.  */
  if (gimple_modified_p (stmt))
    {
      tree rhs = NULL;

      /* Try to fold the statement making sure that STMT is kept
	 up to date.  */
      if (fold_stmt (&si))
	{
	  stmt = gsi_stmt (si);
	  gimple_set_modified (stmt, true);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "  Folded to: ");
	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	    }
	}

      /* We only need to consider cases that can yield a gimple operand.  */
      if (gimple_assign_single_p (stmt))
        rhs = gimple_assign_rhs1 (stmt);
      else if (gimple_code (stmt) == GIMPLE_GOTO)
        rhs = gimple_goto_dest (stmt);
      else if (gimple_code (stmt) == GIMPLE_SWITCH)
        /* This should never be an ADDR_EXPR.  */
        rhs = gimple_switch_index (stmt);

      if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
        recompute_tree_invariant_for_addr_expr (rhs);

      /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
	 even if fold_stmt updated the stmt already and thus cleared
	 gimple_modified_p flag on it.  */
      modified_p = true;
    }

  /* Check for redundant computations.  Do this optimization only
     for assignments that have no volatile ops and conditionals.  */
  may_optimize_p = (!gimple_has_volatile_ops (stmt)
                    && ((is_gimple_assign (stmt)
                         && !gimple_rhs_has_side_effects (stmt))
                        || (is_gimple_call (stmt)
                            && gimple_call_lhs (stmt) != NULL_TREE
                            && !gimple_rhs_has_side_effects (stmt))
                        || gimple_code (stmt) == GIMPLE_COND
                        || gimple_code (stmt) == GIMPLE_SWITCH));

  if (may_optimize_p)
    {
      if (gimple_code (stmt) == GIMPLE_CALL)
	{
	  /* Resolve __builtin_constant_p.  If it hasn't been
	     folded to integer_one_node by now, it's fairly
	     certain that the value simply isn't constant.  */
	  tree callee = gimple_call_fndecl (stmt);
	  if (callee
	      && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
	      && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
	    {
	      propagate_tree_value_into_stmt (&si, integer_zero_node);
	      stmt = gsi_stmt (si);
	    }
	}

      update_stmt_if_modified (stmt);
      eliminate_redundant_computations (&si);
      stmt = gsi_stmt (si);
    }

  /* Record any additional equivalences created by this statement.  */
  if (is_gimple_assign (stmt))
    record_equivalences_from_stmt (stmt, may_optimize_p);

  /* If STMT is a COND_EXPR and it was modified, then we may know
     where it goes.  If that is the case, then mark the CFG as altered.

     This will cause us to later call remove_unreachable_blocks and
     cleanup_tree_cfg when it is safe to do so.  It is not safe to
     clean things up here since removal of edges and such can trigger
     the removal of PHI nodes, which in turn can release SSA_NAMEs to
     the manager.

     That's all fine and good, except that once SSA_NAMEs are released
     to the manager, we must not call create_ssa_name until all references
     to released SSA_NAMEs have been eliminated.

     All references to the deleted SSA_NAMEs can not be eliminated until
     we remove unreachable blocks.

     We can not remove unreachable blocks until after we have completed
     any queued jump threading.

     We can not complete any queued jump threads until we have taken
     appropriate variables out of SSA form.  Taking variables out of
     SSA form can call create_ssa_name and thus we lose.

     Ultimately I suspect we're going to need to change the interface
     into the SSA_NAME manager.  */
  if (gimple_modified_p (stmt) || modified_p)
    {
      tree val = NULL;

      update_stmt_if_modified (stmt);

      if (gimple_code (stmt) == GIMPLE_COND)
        val = fold_binary_loc (gimple_location (stmt),
			   gimple_cond_code (stmt), boolean_type_node,
                           gimple_cond_lhs (stmt),  gimple_cond_rhs (stmt));
      else if (gimple_code (stmt) == GIMPLE_SWITCH)
	val = gimple_switch_index (stmt);

      if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
	cfg_altered = true;

      /* If we simplified a statement in such a way as to be shown that it
	 cannot trap, update the eh information and the cfg to match.  */
      if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
	{
	  bitmap_set_bit (need_eh_cleanup, bb->index);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "  Flagged to clear EH edges.\n");
	}
    }
}

/* Search for an existing instance of STMT in the AVAIL_EXPRS table.
   If found, return its LHS. Otherwise insert STMT in the table and
   return NULL_TREE.

   Also, when an expression is first inserted in the  table, it is also
   is also added to AVAIL_EXPRS_STACK, so that it can be removed when
   we finish processing this block and its children.  */

static tree
lookup_avail_expr (gimple stmt, bool insert)
{
  void **slot;
  tree lhs;
  tree temp;
  struct expr_hash_elt element;

  /* Get LHS of assignment or call, else NULL_TREE.  */
  lhs = gimple_get_lhs (stmt);

  initialize_hash_element (stmt, lhs, &element);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "LKUP ");
      print_expr_hash_elt (dump_file, &element);
    }

  /* Don't bother remembering constant assignments and copy operations.
     Constants and copy operations are handled by the constant/copy propagator
     in optimize_stmt.  */
  if (element.expr.kind == EXPR_SINGLE
      && (TREE_CODE (element.expr.ops.single.rhs) == SSA_NAME
          || is_gimple_min_invariant (element.expr.ops.single.rhs)))
    return NULL_TREE;

  /* Finally try to find the expression in the main expression hash table.  */
  slot = htab_find_slot_with_hash (avail_exprs, &element, element.hash,
				   (insert ? INSERT : NO_INSERT));
  if (slot == NULL)
    return NULL_TREE;

  if (*slot == NULL)
    {
      struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
      *element2 = element;
      element2->stamp = element2;
      *slot = (void *) element2;

      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "2>>> ");
          print_expr_hash_elt (dump_file, element2);
        }

      VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element2);
      return NULL_TREE;
    }

  /* Extract the LHS of the assignment so that it can be used as the current
     definition of another variable.  */
  lhs = ((struct expr_hash_elt *)*slot)->lhs;

  /* See if the LHS appears in the CONST_AND_COPIES table.  If it does, then
     use the value from the const_and_copies table.  */
  if (TREE_CODE (lhs) == SSA_NAME)
    {
      temp = SSA_NAME_VALUE (lhs);
      if (temp)
	lhs = temp;
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "FIND: ");
      print_generic_expr (dump_file, lhs, 0);
      fprintf (dump_file, "\n");
    }

  return lhs;
}

/* Hashing and equality functions for AVAIL_EXPRS.  We compute a value number
   for expressions using the code of the expression and the SSA numbers of
   its operands.  */

static hashval_t
avail_expr_hash (const void *p)
{
  gimple stmt = ((const struct expr_hash_elt *)p)->stmt;
  const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr;
  tree vuse;
  hashval_t val = 0;

  val = iterative_hash_hashable_expr (expr, val);

  /* If the hash table entry is not associated with a statement, then we
     can just hash the expression and not worry about virtual operands
     and such.  */
  if (!stmt)
    return val;

  /* Add the SSA version numbers of the vuse operand.  This is important
     because compound variables like arrays are not renamed in the
     operands.  Rather, the rename is done on the virtual variable
     representing all the elements of the array.  */
  if ((vuse = gimple_vuse (stmt)))
    val = iterative_hash_expr (vuse, val);

  return val;
}

static hashval_t
real_avail_expr_hash (const void *p)
{
  return ((const struct expr_hash_elt *)p)->hash;
}

static int
avail_expr_eq (const void *p1, const void *p2)
{
  gimple stmt1 = ((const struct expr_hash_elt *)p1)->stmt;
  const struct hashable_expr *expr1 = &((const struct expr_hash_elt *)p1)->expr;
  const struct expr_hash_elt *stamp1 = ((const struct expr_hash_elt *)p1)->stamp;
  gimple stmt2 = ((const struct expr_hash_elt *)p2)->stmt;
  const struct hashable_expr *expr2 = &((const struct expr_hash_elt *)p2)->expr;
  const struct expr_hash_elt *stamp2 = ((const struct expr_hash_elt *)p2)->stamp;

  /* This case should apply only when removing entries from the table.  */
  if (stamp1 == stamp2)
    return true;

  /* FIXME tuples:
     We add stmts to a hash table and them modify them. To detect the case
     that we modify a stmt and then search for it, we assume that the hash
     is always modified by that change.
     We have to fully check why this doesn't happen on trunk or rewrite
     this in a more  reliable (and easier to understand) way. */
  if (((const struct expr_hash_elt *)p1)->hash
      != ((const struct expr_hash_elt *)p2)->hash)
    return false;

  /* In case of a collision, both RHS have to be identical and have the
     same VUSE operands.  */
  if (hashable_expr_equal_p (expr1, expr2)
      && types_compatible_p (expr1->type, expr2->type))
    {
      /* Note that STMT1 and/or STMT2 may be NULL.  */
      return ((stmt1 ? gimple_vuse (stmt1) : NULL_TREE)
	      == (stmt2 ? gimple_vuse (stmt2) : NULL_TREE));
    }

  return false;
}

/* PHI-ONLY copy and constant propagation.  This pass is meant to clean
   up degenerate PHIs created by or exposed by jump threading.  */

/* Given PHI, return its RHS if the PHI is a degenerate, otherwise return
   NULL.  */

tree
degenerate_phi_result (gimple phi)
{
  tree lhs = gimple_phi_result (phi);
  tree val = NULL;
  size_t i;

  /* Ignoring arguments which are the same as LHS, if all the remaining
     arguments are the same, then the PHI is a degenerate and has the
     value of that common argument.  */
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
      tree arg = gimple_phi_arg_def (phi, i);

      if (arg == lhs)
	continue;
      else if (!arg)
	break;
      else if (!val)
	val = arg;
      else if (arg == val)
	continue;
      /* We bring in some of operand_equal_p not only to speed things
	 up, but also to avoid crashing when dereferencing the type of
	 a released SSA name.  */
      else if (TREE_CODE (val) != TREE_CODE (arg)
	       || TREE_CODE (val) == SSA_NAME
	       || !operand_equal_p (arg, val, 0))
	break;
    }
  return (i == gimple_phi_num_args (phi) ? val : NULL);
}

/* Given a statement STMT, which is either a PHI node or an assignment,
   remove it from the IL.  */

static void
remove_stmt_or_phi (gimple stmt)
{
  gimple_stmt_iterator gsi = gsi_for_stmt (stmt);

  if (gimple_code (stmt) == GIMPLE_PHI)
    remove_phi_node (&gsi, true);
  else
    {
      gsi_remove (&gsi, true);
      release_defs (stmt);
    }
}

/* Given a statement STMT, which is either a PHI node or an assignment,
   return the "rhs" of the node, in the case of a non-degenerate
   phi, NULL is returned.  */

static tree
get_rhs_or_phi_arg (gimple stmt)
{
  if (gimple_code (stmt) == GIMPLE_PHI)
    return degenerate_phi_result (stmt);
  else if (gimple_assign_single_p (stmt))
    return gimple_assign_rhs1 (stmt);
  else
    gcc_unreachable ();
}


/* Given a statement STMT, which is either a PHI node or an assignment,
   return the "lhs" of the node.  */

static tree
get_lhs_or_phi_result (gimple stmt)
{
  if (gimple_code (stmt) == GIMPLE_PHI)
    return gimple_phi_result (stmt);
  else if (is_gimple_assign (stmt))
    return gimple_assign_lhs (stmt);
  else
    gcc_unreachable ();
}

/* Propagate RHS into all uses of LHS (when possible).

   RHS and LHS are derived from STMT, which is passed in solely so
   that we can remove it if propagation is successful.

   When propagating into a PHI node or into a statement which turns
   into a trivial copy or constant initialization, set the
   appropriate bit in INTERESTING_NAMEs so that we will visit those
   nodes as well in an effort to pick up secondary optimization
   opportunities.  */

static void
propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names)
{
  /* First verify that propagation is valid and isn't going to move a
     loop variant variable outside its loop.  */
  if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
      && (TREE_CODE (rhs) != SSA_NAME
	  || ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs))
      && may_propagate_copy (lhs, rhs)
      && loop_depth_of_name (lhs) >= loop_depth_of_name (rhs))
    {
      use_operand_p use_p;
      imm_use_iterator iter;
      gimple use_stmt;
      bool all = true;

      /* Dump details.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replacing '");
	  print_generic_expr (dump_file, lhs, dump_flags);
	  fprintf (dump_file, "' with %s '",
	           (TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable"));
		   print_generic_expr (dump_file, rhs, dump_flags);
	  fprintf (dump_file, "'\n");
	}

      /* Walk over every use of LHS and try to replace the use with RHS.
	 At this point the only reason why such a propagation would not
	 be successful would be if the use occurs in an ASM_EXPR.  */
      FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
	{
	  /* Leave debug stmts alone.  If we succeed in propagating
	     all non-debug uses, we'll drop the DEF, and propagation
	     into debug stmts will occur then.  */
	  if (gimple_debug_bind_p (use_stmt))
	    continue;

	  /* It's not always safe to propagate into an ASM_EXPR.  */
	  if (gimple_code (use_stmt) == GIMPLE_ASM
              && ! may_propagate_copy_into_asm (lhs))
	    {
	      all = false;
	      continue;
	    }

	  /* Dump details.  */
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "    Original statement:");
	      print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
	    }

	  /* Propagate the RHS into this use of the LHS.  */
	  FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
	    propagate_value (use_p, rhs);

	  /* Special cases to avoid useless calls into the folding
	     routines, operand scanning, etc.

	     First, propagation into a PHI may cause the PHI to become
	     a degenerate, so mark the PHI as interesting.  No other
	     actions are necessary.

	     Second, if we're propagating a virtual operand and the
	     propagation does not change the underlying _DECL node for
	     the virtual operand, then no further actions are necessary.  */
	  if (gimple_code (use_stmt) == GIMPLE_PHI
	      || (! is_gimple_reg (lhs)
		  && TREE_CODE (rhs) == SSA_NAME
		  && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs)))
	    {
	      /* Dump details.  */
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "    Updated statement:");
		  print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
		}

	      /* Propagation into a PHI may expose new degenerate PHIs,
		 so mark the result of the PHI as interesting.  */
	      if (gimple_code (use_stmt) == GIMPLE_PHI)
		{
		  tree result = get_lhs_or_phi_result (use_stmt);
		  bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
		}

	      continue;
	    }

	  /* From this point onward we are propagating into a
	     real statement.  Folding may (or may not) be possible,
	     we may expose new operands, expose dead EH edges,
	     etc.  */
          /* NOTE tuples. In the tuples world, fold_stmt_inplace
             cannot fold a call that simplifies to a constant,
             because the GIMPLE_CALL must be replaced by a
             GIMPLE_ASSIGN, and there is no way to effect such a
             transformation in-place.  We might want to consider
             using the more general fold_stmt here.  */
	  fold_stmt_inplace (use_stmt);

	  /* Sometimes propagation can expose new operands to the
	     renamer.  */
	  update_stmt (use_stmt);

	  /* Dump details.  */
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "    Updated statement:");
	      print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
	    }

	  /* If we replaced a variable index with a constant, then
	     we would need to update the invariant flag for ADDR_EXPRs.  */
          if (gimple_assign_single_p (use_stmt)
              && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR)
	    recompute_tree_invariant_for_addr_expr
                (gimple_assign_rhs1 (use_stmt));

	  /* If we cleaned up EH information from the statement,
	     mark its containing block as needing EH cleanups.  */
	  if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt))
	    {
	      bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index);
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "  Flagged to clear EH edges.\n");
	    }

	  /* Propagation may expose new trivial copy/constant propagation
	     opportunities.  */
          if (gimple_assign_single_p (use_stmt)
              && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
              && (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
                  || is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt))))
            {
	      tree result = get_lhs_or_phi_result (use_stmt);
	      bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
	    }

	  /* Propagation into these nodes may make certain edges in
	     the CFG unexecutable.  We want to identify them as PHI nodes
	     at the destination of those unexecutable edges may become
	     degenerates.  */
	  else if (gimple_code (use_stmt) == GIMPLE_COND
		   || gimple_code (use_stmt) == GIMPLE_SWITCH
		   || gimple_code (use_stmt) == GIMPLE_GOTO)
            {
	      tree val;

	      if (gimple_code (use_stmt) == GIMPLE_COND)
                val = fold_binary_loc (gimple_location (use_stmt),
				   gimple_cond_code (use_stmt),
                                   boolean_type_node,
                                   gimple_cond_lhs (use_stmt),
                                   gimple_cond_rhs (use_stmt));
              else if (gimple_code (use_stmt) == GIMPLE_SWITCH)
		val = gimple_switch_index (use_stmt);
	      else
		val = gimple_goto_dest  (use_stmt);

	      if (val && is_gimple_min_invariant (val))
		{
		  basic_block bb = gimple_bb (use_stmt);
		  edge te = find_taken_edge (bb, val);
		  edge_iterator ei;
		  edge e;
		  gimple_stmt_iterator gsi, psi;

		  /* Remove all outgoing edges except TE.  */
		  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));)
		    {
		      if (e != te)
			{
			  /* Mark all the PHI nodes at the destination of
			     the unexecutable edge as interesting.  */
                          for (psi = gsi_start_phis (e->dest);
                               !gsi_end_p (psi);
                               gsi_next (&psi))
                            {
                              gimple phi = gsi_stmt (psi);

			      tree result = gimple_phi_result (phi);
			      int version = SSA_NAME_VERSION (result);

			      bitmap_set_bit (interesting_names, version);
			    }

			  te->probability += e->probability;

			  te->count += e->count;
			  remove_edge (e);
			  cfg_altered = true;
			}
		      else
			ei_next (&ei);
		    }

		  gsi = gsi_last_bb (gimple_bb (use_stmt));
		  gsi_remove (&gsi, true);

		  /* And fixup the flags on the single remaining edge.  */
		  te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
		  te->flags &= ~EDGE_ABNORMAL;
		  te->flags |= EDGE_FALLTHRU;
		  if (te->probability > REG_BR_PROB_BASE)
		    te->probability = REG_BR_PROB_BASE;
	        }
	    }
	}

      /* Ensure there is nothing else to do. */
      gcc_assert (!all || has_zero_uses (lhs));

      /* If we were able to propagate away all uses of LHS, then
	 we can remove STMT.  */
      if (all)
	remove_stmt_or_phi (stmt);
    }
}

/* STMT is either a PHI node (potentially a degenerate PHI node) or
   a statement that is a trivial copy or constant initialization.

   Attempt to eliminate T by propagating its RHS into all uses of
   its LHS.  This may in turn set new bits in INTERESTING_NAMES
   for nodes we want to revisit later.

   All exit paths should clear INTERESTING_NAMES for the result
   of STMT.  */

static void
eliminate_const_or_copy (gimple stmt, bitmap interesting_names)
{
  tree lhs = get_lhs_or_phi_result (stmt);
  tree rhs;
  int version = SSA_NAME_VERSION (lhs);

  /* If the LHS of this statement or PHI has no uses, then we can
     just eliminate it.  This can occur if, for example, the PHI
     was created by block duplication due to threading and its only
     use was in the conditional at the end of the block which was
     deleted.  */
  if (has_zero_uses (lhs))
    {
      bitmap_clear_bit (interesting_names, version);
      remove_stmt_or_phi (stmt);
      return;
    }

  /* Get the RHS of the assignment or PHI node if the PHI is a
     degenerate.  */
  rhs = get_rhs_or_phi_arg (stmt);
  if (!rhs)
    {
      bitmap_clear_bit (interesting_names, version);
      return;
    }

  propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names);

  /* Note that STMT may well have been deleted by now, so do
     not access it, instead use the saved version # to clear
     T's entry in the worklist.  */
  bitmap_clear_bit (interesting_names, version);
}

/* The first phase in degenerate PHI elimination.

   Eliminate the degenerate PHIs in BB, then recurse on the
   dominator children of BB.  */

static void
eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names)
{
  gimple_stmt_iterator gsi;
  basic_block son;

  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi = gsi_stmt (gsi);

      eliminate_const_or_copy (phi, interesting_names);
    }

  /* Recurse into the dominator children of BB.  */
  for (son = first_dom_son (CDI_DOMINATORS, bb);
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
    eliminate_degenerate_phis_1 (son, interesting_names);
}


/* A very simple pass to eliminate degenerate PHI nodes from the
   IL.  This is meant to be fast enough to be able to be run several
   times in the optimization pipeline.

   Certain optimizations, particularly those which duplicate blocks
   or remove edges from the CFG can create or expose PHIs which are
   trivial copies or constant initializations.

   While we could pick up these optimizations in DOM or with the
   combination of copy-prop and CCP, those solutions are far too
   heavy-weight for our needs.

   This implementation has two phases so that we can efficiently
   eliminate the first order degenerate PHIs and second order
   degenerate PHIs.

   The first phase performs a dominator walk to identify and eliminate
   the vast majority of the degenerate PHIs.  When a degenerate PHI
   is identified and eliminated any affected statements or PHIs
   are put on a worklist.

   The second phase eliminates degenerate PHIs and trivial copies
   or constant initializations using the worklist.  This is how we
   pick up the secondary optimization opportunities with minimal
   cost.  */

static unsigned int
eliminate_degenerate_phis (void)
{
  bitmap interesting_names;
  bitmap interesting_names1;

  /* Bitmap of blocks which need EH information updated.  We can not
     update it on-the-fly as doing so invalidates the dominator tree.  */
  need_eh_cleanup = BITMAP_ALLOC (NULL);

  /* INTERESTING_NAMES is effectively our worklist, indexed by
     SSA_NAME_VERSION.

     A set bit indicates that the statement or PHI node which
     defines the SSA_NAME should be (re)examined to determine if
     it has become a degenerate PHI or trivial const/copy propagation
     opportunity.

     Experiments have show we generally get better compilation
     time behavior with bitmaps rather than sbitmaps.  */
  interesting_names = BITMAP_ALLOC (NULL);
  interesting_names1 = BITMAP_ALLOC (NULL);

  calculate_dominance_info (CDI_DOMINATORS);
  cfg_altered = false;

  /* First phase.  Eliminate degenerate PHIs via a dominator
     walk of the CFG.

     Experiments have indicated that we generally get better
     compile-time behavior by visiting blocks in the first
     phase in dominator order.  Presumably this is because walking
     in dominator order leaves fewer PHIs for later examination
     by the worklist phase.  */
  eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR, interesting_names);

  /* Second phase.  Eliminate second order degenerate PHIs as well
     as trivial copies or constant initializations identified by
     the first phase or this phase.  Basically we keep iterating
     until our set of INTERESTING_NAMEs is empty.   */
  while (!bitmap_empty_p (interesting_names))
    {
      unsigned int i;
      bitmap_iterator bi;

      /* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
	 changed during the loop.  Copy it to another bitmap and
	 use that.  */
      bitmap_copy (interesting_names1, interesting_names);

      EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi)
	{
	  tree name = ssa_name (i);

	  /* Ignore SSA_NAMEs that have been released because
	     their defining statement was deleted (unreachable).  */
	  if (name)
	    eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)),
				     interesting_names);
	}
    }

  if (cfg_altered)
    free_dominance_info (CDI_DOMINATORS);

  /* Propagation of const and copies may make some EH edges dead.  Purge
     such edges from the CFG as needed.  */
  if (!bitmap_empty_p (need_eh_cleanup))
    {
      gimple_purge_all_dead_eh_edges (need_eh_cleanup);
      BITMAP_FREE (need_eh_cleanup);
    }

  BITMAP_FREE (interesting_names);
  BITMAP_FREE (interesting_names1);
  return 0;
}

struct gimple_opt_pass pass_phi_only_cprop =
{
 {
  GIMPLE_PASS,
  "phicprop",                           /* name */
  gate_dominator,                       /* gate */
  eliminate_degenerate_phis,            /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_TREE_PHI_CPROP,                    /* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,                                    /* properties_provided */
  0,		                        /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_cleanup_cfg
    | TODO_dump_func
    | TODO_ggc_collect
    | TODO_verify_ssa
    | TODO_verify_stmts
    | TODO_update_ssa			/* todo_flags_finish */
 }
};