summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-dce.c
blob: bf69bbf26b27e7cbbd6078bd83442d93b21726c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
/* Dead code elimination pass for the GNU compiler.
   Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
   Free Software Foundation, Inc.
   Contributed by Ben Elliston <bje@redhat.com>
   and Andrew MacLeod <amacleod@redhat.com>
   Adapted to use control dependence by Steven Bosscher, SUSE Labs.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Dead code elimination.

   References:

     Building an Optimizing Compiler,
     Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.

     Advanced Compiler Design and Implementation,
     Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.

   Dead-code elimination is the removal of statements which have no
   impact on the program's output.  "Dead statements" have no impact
   on the program's output, while "necessary statements" may have
   impact on the output.

   The algorithm consists of three phases:
   1. Marking as necessary all statements known to be necessary,
      e.g. most function calls, writing a value to memory, etc;
   2. Propagating necessary statements, e.g., the statements
      giving values to operands in necessary statements; and
   3. Removing dead statements.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"

#include "tree.h"
#include "tree-pretty-print.h"
#include "gimple-pretty-print.h"
#include "basic-block.h"
#include "tree-flow.h"
#include "gimple.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "timevar.h"
#include "flags.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"

static struct stmt_stats
{
  int total;
  int total_phis;
  int removed;
  int removed_phis;
} stats;

#define STMT_NECESSARY GF_PLF_1

static VEC(gimple,heap) *worklist;

/* Vector indicating an SSA name has already been processed and marked
   as necessary.  */
static sbitmap processed;

/* Vector indicating that the last statement of a basic block has already
   been marked as necessary.  */
static sbitmap last_stmt_necessary;

/* Vector indicating that BB contains statements that are live.  */
static sbitmap bb_contains_live_stmts;

/* Before we can determine whether a control branch is dead, we need to
   compute which blocks are control dependent on which edges.

   We expect each block to be control dependent on very few edges so we
   use a bitmap for each block recording its edges.  An array holds the
   bitmap.  The Ith bit in the bitmap is set if that block is dependent
   on the Ith edge.  */
static bitmap *control_dependence_map;

/* Vector indicating that a basic block has already had all the edges
   processed that it is control dependent on.  */
static sbitmap visited_control_parents;

/* TRUE if this pass alters the CFG (by removing control statements).
   FALSE otherwise.

   If this pass alters the CFG, then it will arrange for the dominators
   to be recomputed.  */
static bool cfg_altered;

/* Execute code that follows the macro for each edge (given number
   EDGE_NUMBER within the CODE) for which the block with index N is
   control dependent.  */
#define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER)	\
  EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0,	\
			    (EDGE_NUMBER), (BI))


/* Indicate block BB is control dependent on an edge with index EDGE_INDEX.  */
static inline void
set_control_dependence_map_bit (basic_block bb, int edge_index)
{
  if (bb == ENTRY_BLOCK_PTR)
    return;
  gcc_assert (bb != EXIT_BLOCK_PTR);
  bitmap_set_bit (control_dependence_map[bb->index], edge_index);
}

/* Clear all control dependences for block BB.  */
static inline void
clear_control_dependence_bitmap (basic_block bb)
{
  bitmap_clear (control_dependence_map[bb->index]);
}


/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
   This function is necessary because some blocks have negative numbers.  */

static inline basic_block
find_pdom (basic_block block)
{
  gcc_assert (block != ENTRY_BLOCK_PTR);

  if (block == EXIT_BLOCK_PTR)
    return EXIT_BLOCK_PTR;
  else
    {
      basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
      if (! bb)
	return EXIT_BLOCK_PTR;
      return bb;
    }
}


/* Determine all blocks' control dependences on the given edge with edge_list
   EL index EDGE_INDEX, ala Morgan, Section 3.6.  */

static void
find_control_dependence (struct edge_list *el, int edge_index)
{
  basic_block current_block;
  basic_block ending_block;

  gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);

  if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
    ending_block = single_succ (ENTRY_BLOCK_PTR);
  else
    ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));

  for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
       current_block != ending_block && current_block != EXIT_BLOCK_PTR;
       current_block = find_pdom (current_block))
    {
      edge e = INDEX_EDGE (el, edge_index);

      /* For abnormal edges, we don't make current_block control
	 dependent because instructions that throw are always necessary
	 anyway.  */
      if (e->flags & EDGE_ABNORMAL)
	continue;

      set_control_dependence_map_bit (current_block, edge_index);
    }
}


/* Record all blocks' control dependences on all edges in the edge
   list EL, ala Morgan, Section 3.6.  */

static void
find_all_control_dependences (struct edge_list *el)
{
  int i;

  for (i = 0; i < NUM_EDGES (el); ++i)
    find_control_dependence (el, i);
}

/* If STMT is not already marked necessary, mark it, and add it to the
   worklist if ADD_TO_WORKLIST is true.  */

static inline void
mark_stmt_necessary (gimple stmt, bool add_to_worklist)
{
  gcc_assert (stmt);

  if (gimple_plf (stmt, STMT_NECESSARY))
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Marking useful stmt: ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  gimple_set_plf (stmt, STMT_NECESSARY, true);
  if (add_to_worklist)
    VEC_safe_push (gimple, heap, worklist, stmt);
  if (bb_contains_live_stmts && !is_gimple_debug (stmt))
    SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
}


/* Mark the statement defining operand OP as necessary.  */

static inline void
mark_operand_necessary (tree op)
{
  gimple stmt;
  int ver;

  gcc_assert (op);

  ver = SSA_NAME_VERSION (op);
  if (TEST_BIT (processed, ver))
    {
      stmt = SSA_NAME_DEF_STMT (op);
      gcc_assert (gimple_nop_p (stmt)
		  || gimple_plf (stmt, STMT_NECESSARY));
      return;
    }
  SET_BIT (processed, ver);

  stmt = SSA_NAME_DEF_STMT (op);
  gcc_assert (stmt);

  if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "marking necessary through ");
      print_generic_expr (dump_file, op, 0);
      fprintf (dump_file, " stmt ");
      print_gimple_stmt (dump_file, stmt, 0, 0);
    }

  gimple_set_plf (stmt, STMT_NECESSARY, true);
  if (bb_contains_live_stmts)
    SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
  VEC_safe_push (gimple, heap, worklist, stmt);
}


/* Mark STMT as necessary if it obviously is.  Add it to the worklist if
   it can make other statements necessary.

   If AGGRESSIVE is false, control statements are conservatively marked as
   necessary.  */

static void
mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
{
  /* With non-call exceptions, we have to assume that all statements could
     throw.  If a statement may throw, it is inherently necessary.  */
  if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
    {
      mark_stmt_necessary (stmt, true);
      return;
    }

  /* Statements that are implicitly live.  Most function calls, asm
     and return statements are required.  Labels and GIMPLE_BIND nodes
     are kept because they are control flow, and we have no way of
     knowing whether they can be removed.  DCE can eliminate all the
     other statements in a block, and CFG can then remove the block
     and labels.  */
  switch (gimple_code (stmt))
    {
    case GIMPLE_PREDICT:
    case GIMPLE_LABEL:
      mark_stmt_necessary (stmt, false);
      return;

    case GIMPLE_ASM:
    case GIMPLE_RESX:
    case GIMPLE_RETURN:
      mark_stmt_necessary (stmt, true);
      return;

    case GIMPLE_CALL:
      /* Most, but not all function calls are required.  Function calls that
	 produce no result and have no side effects (i.e. const pure
	 functions) are unnecessary.  */
      if (gimple_has_side_effects (stmt))
	{
	  mark_stmt_necessary (stmt, true);
	  return;
	}
      if (!gimple_call_lhs (stmt))
        return;
      break;

    case GIMPLE_DEBUG:
      /* Debug temps without a value are not useful.  ??? If we could
	 easily locate the debug temp bind stmt for a use thereof,
	 would could refrain from marking all debug temps here, and
	 mark them only if they're used.  */
      if (!gimple_debug_bind_p (stmt)
	  || gimple_debug_bind_has_value_p (stmt)
	  || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
	mark_stmt_necessary (stmt, false);
      return;

    case GIMPLE_GOTO:
      gcc_assert (!simple_goto_p (stmt));
      mark_stmt_necessary (stmt, true);
      return;

    case GIMPLE_COND:
      gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
      /* Fall through.  */

    case GIMPLE_SWITCH:
      if (! aggressive)
	mark_stmt_necessary (stmt, true);
      break;

    default:
      break;
    }

  /* If the statement has volatile operands, it needs to be preserved.
     Same for statements that can alter control flow in unpredictable
     ways.  */
  if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
    {
      mark_stmt_necessary (stmt, true);
      return;
    }

  if (is_hidden_global_store (stmt))
    {
      mark_stmt_necessary (stmt, true);
      return;
    }

  return;
}


/* Mark the last statement of BB as necessary.  */

static void
mark_last_stmt_necessary (basic_block bb)
{
  gimple stmt = last_stmt (bb);

  SET_BIT (last_stmt_necessary, bb->index);
  SET_BIT (bb_contains_live_stmts, bb->index);

  /* We actually mark the statement only if it is a control statement.  */
  if (stmt && is_ctrl_stmt (stmt))
    mark_stmt_necessary (stmt, true);
}


/* Mark control dependent edges of BB as necessary.  We have to do this only
   once for each basic block so we set the appropriate bit after we're done.

   When IGNORE_SELF is true, ignore BB in the list of control dependences.  */

static void
mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
					bool ignore_self)
{
  bitmap_iterator bi;
  unsigned edge_number;
  bool skipped = false;

  gcc_assert (bb != EXIT_BLOCK_PTR);

  if (bb == ENTRY_BLOCK_PTR)
    return;

  EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
    {
      basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);

      if (ignore_self && cd_bb == bb)
	{
	  skipped = true;
	  continue;
	}

      if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
	mark_last_stmt_necessary (cd_bb);
    }

  if (!skipped)
    SET_BIT (visited_control_parents, bb->index);
}


/* Find obviously necessary statements.  These are things like most function
   calls, and stores to file level variables.

   If EL is NULL, control statements are conservatively marked as
   necessary.  Otherwise it contains the list of edges used by control
   dependence analysis.  */

static void
find_obviously_necessary_stmts (struct edge_list *el)
{
  basic_block bb;
  gimple_stmt_iterator gsi;
  edge e;
  gimple phi, stmt;
  int flags;

  FOR_EACH_BB (bb)
    {
      /* PHI nodes are never inherently necessary.  */
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  phi = gsi_stmt (gsi);
	  gimple_set_plf (phi, STMT_NECESSARY, false);
	}

      /* Check all statements in the block.  */
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  stmt = gsi_stmt (gsi);
	  gimple_set_plf (stmt, STMT_NECESSARY, false);
	  mark_stmt_if_obviously_necessary (stmt, el != NULL);
	}
    }

  /* Pure and const functions are finite and thus have no infinite loops in
     them.  */
  flags = flags_from_decl_or_type (current_function_decl);
  if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
    return;

  /* Prevent the empty possibly infinite loops from being removed.  */
  if (el)
    {
      loop_iterator li;
      struct loop *loop;
      scev_initialize ();
      if (mark_irreducible_loops ())
	FOR_EACH_BB (bb)
	  {
	    edge_iterator ei;
	    FOR_EACH_EDGE (e, ei, bb->succs)
	      if ((e->flags & EDGE_DFS_BACK)
		  && (e->flags & EDGE_IRREDUCIBLE_LOOP))
		{
	          if (dump_file)
	            fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
		    	     e->src->index, e->dest->index);
		  mark_control_dependent_edges_necessary (e->dest, el, false);
		}
	  }

      FOR_EACH_LOOP (li, loop, 0)
	if (!finite_loop_p (loop))
	  {
	    if (dump_file)
	      fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
	    mark_control_dependent_edges_necessary (loop->latch, el, false);
	  }
      scev_finalize ();
    }
}


/* Return true if REF is based on an aliased base, otherwise false.  */

static bool
ref_may_be_aliased (tree ref)
{
  gcc_assert (TREE_CODE (ref) != WITH_SIZE_EXPR);
  while (handled_component_p (ref))
    ref = TREE_OPERAND (ref, 0);
  if (TREE_CODE (ref) == MEM_REF
      && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
    ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
  return !(DECL_P (ref)
	   && !may_be_aliased (ref));
}

static bitmap visited = NULL;
static unsigned int longest_chain = 0;
static unsigned int total_chain = 0;
static unsigned int nr_walks = 0;
static bool chain_ovfl = false;

/* Worker for the walker that marks reaching definitions of REF,
   which is based on a non-aliased decl, necessary.  It returns
   true whenever the defining statement of the current VDEF is
   a kill for REF, as no dominating may-defs are necessary for REF
   anymore.  DATA points to the basic-block that contains the
   stmt that refers to REF.  */

static bool
mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
{
  gimple def_stmt = SSA_NAME_DEF_STMT (vdef);

  /* All stmts we visit are necessary.  */
  mark_operand_necessary (vdef);

  /* If the stmt lhs kills ref, then we can stop walking.  */
  if (gimple_has_lhs (def_stmt)
      && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
      /* The assignment is not necessarily carried out if it can throw
         and we can catch it in the current function where we could inspect
	 the previous value.
         ???  We only need to care about the RHS throwing.  For aggregate
	 assignments or similar calls and non-call exceptions the LHS
	 might throw as well.  */
      && !stmt_can_throw_internal (def_stmt))
    {
      tree base, lhs = gimple_get_lhs (def_stmt);
      HOST_WIDE_INT size, offset, max_size;
      ao_ref_base (ref);
      base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
      /* We can get MEM[symbol: sZ, index: D.8862_1] here,
	 so base == refd->base does not always hold.  */
      if (base == ref->base)
	{
	  /* For a must-alias check we need to be able to constrain
	     the accesses properly.  */
	  if (size != -1 && size == max_size
	      && ref->max_size != -1)
	    {
	      if (offset <= ref->offset
		  && offset + size >= ref->offset + ref->max_size)
		return true;
	    }
	  /* Or they need to be exactly the same.  */
	  else if (ref->ref
		   /* Make sure there is no induction variable involved
		      in the references (gcc.c-torture/execute/pr42142.c).
		      The simplest way is to check if the kill dominates
		      the use.  */
		   && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
				      gimple_bb (def_stmt))
		   && operand_equal_p (ref->ref, lhs, 0))
	    return true;
	}
    }

  /* Otherwise keep walking.  */
  return false;
}

static void
mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
{
  unsigned int chain;
  ao_ref refd;
  gcc_assert (!chain_ovfl);
  ao_ref_init (&refd, ref);
  chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
			      mark_aliased_reaching_defs_necessary_1,
			      gimple_bb (stmt), NULL);
  if (chain > longest_chain)
    longest_chain = chain;
  total_chain += chain;
  nr_walks++;
}

/* Worker for the walker that marks reaching definitions of REF, which
   is not based on a non-aliased decl.  For simplicity we need to end
   up marking all may-defs necessary that are not based on a non-aliased
   decl.  The only job of this walker is to skip may-defs based on
   a non-aliased decl.  */

static bool
mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
				    tree vdef, void *data ATTRIBUTE_UNUSED)
{
  gimple def_stmt = SSA_NAME_DEF_STMT (vdef);

  /* We have to skip already visited (and thus necessary) statements
     to make the chaining work after we dropped back to simple mode.  */
  if (chain_ovfl
      && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
    {
      gcc_assert (gimple_nop_p (def_stmt)
		  || gimple_plf (def_stmt, STMT_NECESSARY));
      return false;
    }

  /* We want to skip stores to non-aliased variables.  */
  if (!chain_ovfl
      && gimple_assign_single_p (def_stmt))
    {
      tree lhs = gimple_assign_lhs (def_stmt);
      if (!ref_may_be_aliased (lhs))
	return false;
    }

  mark_operand_necessary (vdef);

  return false;
}

static void
mark_all_reaching_defs_necessary (gimple stmt)
{
  walk_aliased_vdefs (NULL, gimple_vuse (stmt),
		      mark_all_reaching_defs_necessary_1, NULL, &visited);
}

/* Return true for PHI nodes with one or identical arguments
   can be removed.  */
static bool
degenerate_phi_p (gimple phi)
{
  unsigned int i;
  tree op = gimple_phi_arg_def (phi, 0);
  for (i = 1; i < gimple_phi_num_args (phi); i++)
    if (gimple_phi_arg_def (phi, i) != op)
      return false;
  return true;
}

/* Propagate necessity using the operands of necessary statements.
   Process the uses on each statement in the worklist, and add all
   feeding statements which contribute to the calculation of this
   value to the worklist.

   In conservative mode, EL is NULL.  */

static void
propagate_necessity (struct edge_list *el)
{
  gimple stmt;
  bool aggressive = (el ? true : false);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nProcessing worklist:\n");

  while (VEC_length (gimple, worklist) > 0)
    {
      /* Take STMT from worklist.  */
      stmt = VEC_pop (gimple, worklist);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "processing: ");
	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	  fprintf (dump_file, "\n");
	}

      if (aggressive)
	{
	  /* Mark the last statement of the basic blocks on which the block
	     containing STMT is control dependent, but only if we haven't
	     already done so.  */
	  basic_block bb = gimple_bb (stmt);
	  if (bb != ENTRY_BLOCK_PTR
	      && !TEST_BIT (visited_control_parents, bb->index))
	    mark_control_dependent_edges_necessary (bb, el, false);
	}

      if (gimple_code (stmt) == GIMPLE_PHI
	  /* We do not process virtual PHI nodes nor do we track their
	     necessity.  */
	  && is_gimple_reg (gimple_phi_result (stmt)))
	{
	  /* PHI nodes are somewhat special in that each PHI alternative has
	     data and control dependencies.  All the statements feeding the
	     PHI node's arguments are always necessary.  In aggressive mode,
	     we also consider the control dependent edges leading to the
	     predecessor block associated with each PHI alternative as
	     necessary.  */
	  size_t k;

	  for (k = 0; k < gimple_phi_num_args (stmt); k++)
            {
	      tree arg = PHI_ARG_DEF (stmt, k);
	      if (TREE_CODE (arg) == SSA_NAME)
		mark_operand_necessary (arg);
	    }

	  /* For PHI operands it matters from where the control flow arrives
	     to the BB.  Consider the following example:

	     a=exp1;
	     b=exp2;
	     if (test)
		;
	     else
		;
	     c=PHI(a,b)

	     We need to mark control dependence of the empty basic blocks, since they
	     contains computation of PHI operands.

	     Doing so is too restrictive in the case the predecestor block is in
	     the loop. Consider:

	      if (b)
		{
		  int i;
		  for (i = 0; i<1000; ++i)
		    ;
		  j = 0;
		}
	      return j;

	     There is PHI for J in the BB containing return statement.
	     In this case the control dependence of predecestor block (that is
	     within the empty loop) also contains the block determining number
	     of iterations of the block that would prevent removing of empty
	     loop in this case.

	     This scenario can be avoided by splitting critical edges.
	     To save the critical edge splitting pass we identify how the control
	     dependence would look like if the edge was split.

	     Consider the modified CFG created from current CFG by splitting
	     edge B->C.  In the postdominance tree of modified CFG, C' is
	     always child of C.  There are two cases how chlids of C' can look
	     like:

		1) C' is leaf

		   In this case the only basic block C' is control dependent on is B.

		2) C' has single child that is B

		   In this case control dependence of C' is same as control
		   dependence of B in original CFG except for block B itself.
		   (since C' postdominate B in modified CFG)

	     Now how to decide what case happens?  There are two basic options:

		a) C postdominate B.  Then C immediately postdominate B and
		   case 2 happens iff there is no other way from B to C except
		   the edge B->C.

		   There is other way from B to C iff there is succesor of B that
		   is not postdominated by B.  Testing this condition is somewhat
		   expensive, because we need to iterate all succesors of B.
		   We are safe to assume that this does not happen: we will mark B
		   as needed when processing the other path from B to C that is
		   conrol dependent on B and marking control dependencies of B
		   itself is harmless because they will be processed anyway after
		   processing control statement in B.

		b) C does not postdominate B.  Always case 1 happens since there is
		   path from C to exit that does not go through B and thus also C'.  */

	  if (aggressive && !degenerate_phi_p (stmt))
	    {
	      for (k = 0; k < gimple_phi_num_args (stmt); k++)
		{
		  basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;

		  if (gimple_bb (stmt)
		      != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
		    {
		      if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
			mark_last_stmt_necessary (arg_bb);
		    }
		  else if (arg_bb != ENTRY_BLOCK_PTR
		           && !TEST_BIT (visited_control_parents,
					 arg_bb->index))
		    mark_control_dependent_edges_necessary (arg_bb, el, true);
		}
	    }
	}
      else
	{
	  /* Propagate through the operands.  Examine all the USE, VUSE and
	     VDEF operands in this statement.  Mark all the statements
	     which feed this statement's uses as necessary.  */
	  ssa_op_iter iter;
	  tree use;

	  FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
	    mark_operand_necessary (use);

	  use = gimple_vuse (stmt);
	  if (!use)
	    continue;

	  /* If we dropped to simple mode make all immediately
	     reachable definitions necessary.  */
	  if (chain_ovfl)
	    {
	      mark_all_reaching_defs_necessary (stmt);
	      continue;
	    }

	  /* For statements that may load from memory (have a VUSE) we
	     have to mark all reaching (may-)definitions as necessary.
	     We partition this task into two cases:
	      1) explicit loads based on decls that are not aliased
	      2) implicit loads (like calls) and explicit loads not
	         based on decls that are not aliased (like indirect
		 references or loads from globals)
	     For 1) we mark all reaching may-defs as necessary, stopping
	     at dominating kills.  For 2) we want to mark all dominating
	     references necessary, but non-aliased ones which we handle
	     in 1).  By keeping a global visited bitmap for references
	     we walk for 2) we avoid quadratic behavior for those.  */

	  if (is_gimple_call (stmt))
	    {
	      tree callee = gimple_call_fndecl (stmt);
	      unsigned i;

	      /* Calls to functions that are merely acting as barriers
		 or that only store to memory do not make any previous
		 stores necessary.  */
	      if (callee != NULL_TREE
		  && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
		  && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE
		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_ASSUME_ALIGNED))
		continue;

	      /* Calls implicitly load from memory, their arguments
	         in addition may explicitly perform memory loads.  */
	      mark_all_reaching_defs_necessary (stmt);
	      for (i = 0; i < gimple_call_num_args (stmt); ++i)
		{
		  tree arg = gimple_call_arg (stmt, i);
		  if (TREE_CODE (arg) == SSA_NAME
		      || is_gimple_min_invariant (arg))
		    continue;
		  if (TREE_CODE (arg) == WITH_SIZE_EXPR)
		    arg = TREE_OPERAND (arg, 0);
		  if (!ref_may_be_aliased (arg))
		    mark_aliased_reaching_defs_necessary (stmt, arg);
		}
	    }
	  else if (gimple_assign_single_p (stmt))
	    {
	      tree rhs;
	      bool rhs_aliased = false;
	      /* If this is a load mark things necessary.  */
	      rhs = gimple_assign_rhs1 (stmt);
	      if (TREE_CODE (rhs) != SSA_NAME
		  && !is_gimple_min_invariant (rhs))
		{
		  if (!ref_may_be_aliased (rhs))
		    mark_aliased_reaching_defs_necessary (stmt, rhs);
		  else
		    rhs_aliased = true;
		}
	      if (rhs_aliased)
		mark_all_reaching_defs_necessary (stmt);
	    }
	  else if (gimple_code (stmt) == GIMPLE_RETURN)
	    {
	      tree rhs = gimple_return_retval (stmt);
	      /* A return statement may perform a load.  */
	      if (rhs
		  && TREE_CODE (rhs) != SSA_NAME
		  && !is_gimple_min_invariant (rhs))
		{
		  if (!ref_may_be_aliased (rhs))
		    mark_aliased_reaching_defs_necessary (stmt, rhs);
		  else
		    mark_all_reaching_defs_necessary (stmt);
		}
	    }
	  else if (gimple_code (stmt) == GIMPLE_ASM)
	    {
	      unsigned i;
	      mark_all_reaching_defs_necessary (stmt);
	      /* Inputs may perform loads.  */
	      for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
		{
		  tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
		  if (TREE_CODE (op) != SSA_NAME
		      && !is_gimple_min_invariant (op)
		      && !ref_may_be_aliased (op))
		    mark_aliased_reaching_defs_necessary (stmt, op);
		}
	    }
	  else
	    gcc_unreachable ();

	  /* If we over-used our alias oracle budget drop to simple
	     mode.  The cost metric allows quadratic behavior
	     (number of uses times number of may-defs queries) up to
	     a constant maximal number of queries and after that falls back to
	     super-linear complexity.  */
	  if (/* Constant but quadratic for small functions.  */
	      total_chain > 128 * 128
	      /* Linear in the number of may-defs.  */
	      && total_chain > 32 * longest_chain
	      /* Linear in the number of uses.  */
	      && total_chain > nr_walks * 32)
	    {
	      chain_ovfl = true;
	      if (visited)
		bitmap_clear (visited);
	    }
	}
    }
}

/* Replace all uses of result of PHI by underlying variable and mark it
   for renaming.  */

void
mark_virtual_phi_result_for_renaming (gimple phi)
{
  bool used = false;
  imm_use_iterator iter;
  use_operand_p use_p;
  gimple stmt;
  tree result_ssa, result_var;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Marking result for renaming : ");
      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  result_ssa = gimple_phi_result (phi);
  result_var = SSA_NAME_VAR (result_ssa);
  FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
    {
      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
        SET_USE (use_p, result_var);
      update_stmt (stmt);
      used = true;
    }
  if (used)
    mark_sym_for_renaming (result_var);
}

/* Remove dead PHI nodes from block BB.  */

static bool
remove_dead_phis (basic_block bb)
{
  bool something_changed = false;
  gimple_seq phis;
  gimple phi;
  gimple_stmt_iterator gsi;
  phis = phi_nodes (bb);

  for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
    {
      stats.total_phis++;
      phi = gsi_stmt (gsi);

      /* We do not track necessity of virtual PHI nodes.  Instead do
         very simple dead PHI removal here.  */
      if (!is_gimple_reg (gimple_phi_result (phi)))
	{
	  /* Virtual PHI nodes with one or identical arguments
	     can be removed.  */
	  if (degenerate_phi_p (phi))
	    {
	      tree vdef = gimple_phi_result (phi);
	      tree vuse = gimple_phi_arg_def (phi, 0);

	      use_operand_p use_p;
	      imm_use_iterator iter;
	      gimple use_stmt;
	      FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
		FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
		  SET_USE (use_p, vuse);
	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
	          && TREE_CODE (vuse) == SSA_NAME)
		SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
	    }
	  else
	    gimple_set_plf (phi, STMT_NECESSARY, true);
	}

      if (!gimple_plf (phi, STMT_NECESSARY))
	{
	  something_changed = true;
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Deleting : ");
	      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
	      fprintf (dump_file, "\n");
	    }

	  remove_phi_node (&gsi, true);
	  stats.removed_phis++;
	  continue;
	}

      gsi_next (&gsi);
    }
  return something_changed;
}

/* Forward edge E to respective POST_DOM_BB and update PHIs.  */

static edge
forward_edge_to_pdom (edge e, basic_block post_dom_bb)
{
  gimple_stmt_iterator gsi;
  edge e2 = NULL;
  edge_iterator ei;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
	     e->dest->index, post_dom_bb->index);

  e2 = redirect_edge_and_branch (e, post_dom_bb);
  cfg_altered = true;

  /* If edge was already around, no updating is neccesary.  */
  if (e2 != e)
    return e2;

  if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
    {
      /* We are sure that for every live PHI we are seeing control dependent BB.
         This means that we can pick any edge to duplicate PHI args from.  */
      FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
	if (e2 != e)
	  break;
      for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
	{
	  gimple phi = gsi_stmt (gsi);
	  tree op;
	  source_location locus;

	  /* PHIs for virtuals have no control dependency relation on them.
	     We are lost here and must force renaming of the symbol.  */
	  if (!is_gimple_reg (gimple_phi_result (phi)))
	    {
	      mark_virtual_phi_result_for_renaming (phi);
	      remove_phi_node (&gsi, true);
	      continue;
	    }

	  /* Dead PHI do not imply control dependency.  */
          if (!gimple_plf (phi, STMT_NECESSARY))
	    {
	      gsi_next (&gsi);
	      continue;
	    }

	  op = gimple_phi_arg_def (phi, e2->dest_idx);
	  locus = gimple_phi_arg_location (phi, e2->dest_idx);
	  add_phi_arg (phi, op, e, locus);
	  /* The resulting PHI if not dead can only be degenerate.  */
	  gcc_assert (degenerate_phi_p (phi));
	  gsi_next (&gsi);
	}
    }
  return e;
}

/* Remove dead statement pointed to by iterator I.  Receives the basic block BB
   containing I so that we don't have to look it up.  */

static void
remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
{
  gimple stmt = gsi_stmt (*i);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Deleting : ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  stats.removed++;

  /* If we have determined that a conditional branch statement contributes
     nothing to the program, then we not only remove it, but we also change
     the flow graph so that the current block will simply fall-thru to its
     immediate post-dominator.  The blocks we are circumventing will be
     removed by cleanup_tree_cfg if this change in the flow graph makes them
     unreachable.  */
  if (is_ctrl_stmt (stmt))
    {
      basic_block post_dom_bb;
      edge e, e2;
      edge_iterator ei;

      post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);

      e = find_edge (bb, post_dom_bb);

      /* If edge is already there, try to use it.  This avoids need to update
         PHI nodes.  Also watch for cases where post dominator does not exists
	 or is exit block.  These can happen for infinite loops as we create
	 fake edges in the dominator tree.  */
      if (e)
        ;
      else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
	e = EDGE_SUCC (bb, 0);
      else
        e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
      gcc_assert (e);
      e->probability = REG_BR_PROB_BASE;
      e->count = bb->count;

      /* The edge is no longer associated with a conditional, so it does
	 not have TRUE/FALSE flags.  */
      e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);

      /* The lone outgoing edge from BB will be a fallthru edge.  */
      e->flags |= EDGE_FALLTHRU;

      /* Remove the remaining outgoing edges.  */
      for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
	if (e != e2)
	  {
	    cfg_altered = true;
            remove_edge (e2);
	  }
	else
	  ei_next (&ei);
    }

  unlink_stmt_vdef (stmt);
  gsi_remove (i, true);
  release_defs (stmt);
}

/* Eliminate unnecessary statements. Any instruction not marked as necessary
   contributes nothing to the program, and can be deleted.  */

static bool
eliminate_unnecessary_stmts (void)
{
  bool something_changed = false;
  basic_block bb;
  gimple_stmt_iterator gsi, psi;
  gimple stmt;
  tree call;
  VEC (basic_block, heap) *h;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nEliminating unnecessary statements:\n");

  clear_special_calls ();

  /* Walking basic blocks and statements in reverse order avoids
     releasing SSA names before any other DEFs that refer to them are
     released.  This helps avoid loss of debug information, as we get
     a chance to propagate all RHSs of removed SSAs into debug uses,
     rather than only the latest ones.  E.g., consider:

     x_3 = y_1 + z_2;
     a_5 = x_3 - b_4;
     # DEBUG a => a_5

     If we were to release x_3 before a_5, when we reached a_5 and
     tried to substitute it into the debug stmt, we'd see x_3 there,
     but x_3's DEF, type, etc would have already been disconnected.
     By going backwards, the debug stmt first changes to:

     # DEBUG a => x_3 - b_4

     and then to:

     # DEBUG a => y_1 + z_2 - b_4

     as desired.  */
  gcc_assert (dom_info_available_p (CDI_DOMINATORS));
  h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));

  while (VEC_length (basic_block, h))
    {
      bb = VEC_pop (basic_block, h);

      /* Remove dead statements.  */
      for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
	{
	  stmt = gsi_stmt (gsi);

	  psi = gsi;
	  gsi_prev (&psi);

	  stats.total++;

	  /* If GSI is not necessary then remove it.  */
	  if (!gimple_plf (stmt, STMT_NECESSARY))
	    {
	      if (!is_gimple_debug (stmt))
		something_changed = true;
	      remove_dead_stmt (&gsi, bb);
	    }
	  else if (is_gimple_call (stmt))
	    {
	      call = gimple_call_fndecl (stmt);
	      if (call)
		{
		  tree name;

		  /* When LHS of var = call (); is dead, simplify it into
		     call (); saving one operand.  */
		  name = gimple_call_lhs (stmt);
		  if (name && TREE_CODE (name) == SSA_NAME
		           && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
		    {
		      something_changed = true;
		      if (dump_file && (dump_flags & TDF_DETAILS))
			{
			  fprintf (dump_file, "Deleting LHS of call: ");
			  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
			  fprintf (dump_file, "\n");
			}

		      gimple_call_set_lhs (stmt, NULL_TREE);
		      maybe_clean_or_replace_eh_stmt (stmt, stmt);
		      update_stmt (stmt);
		      release_ssa_name (name);
		    }
		  notice_special_calls (stmt);
		}
	    }
	}
    }

  VEC_free (basic_block, heap, h);

  /* Since we don't track liveness of virtual PHI nodes, it is possible that we
     rendered some PHI nodes unreachable while they are still in use.
     Mark them for renaming.  */
  if (cfg_altered)
    {
      basic_block prev_bb;

      find_unreachable_blocks ();

      /* Delete all unreachable basic blocks in reverse dominator order.  */
      for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
	{
	  prev_bb = bb->prev_bb;

	  if (!TEST_BIT (bb_contains_live_stmts, bb->index)
	      || !(bb->flags & BB_REACHABLE))
	    {
	      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
		if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
		  {
		    bool found = false;
		    imm_use_iterator iter;

		    FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
		      {
			if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
			  continue;
			if (gimple_code (stmt) == GIMPLE_PHI
			    || gimple_plf (stmt, STMT_NECESSARY))
			  {
			    found = true;
			    BREAK_FROM_IMM_USE_STMT (iter);
			  }
		      }
		    if (found)
		      mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
		  }

	      if (!(bb->flags & BB_REACHABLE))
		{
		  /* Speed up the removal of blocks that don't
		     dominate others.  Walking backwards, this should
		     be the common case.  ??? Do we need to recompute
		     dominators because of cfg_altered?  */
		  if (!MAY_HAVE_DEBUG_STMTS
		      || !first_dom_son (CDI_DOMINATORS, bb))
		    delete_basic_block (bb);
		  else
		    {
		      h = get_all_dominated_blocks (CDI_DOMINATORS, bb);

		      while (VEC_length (basic_block, h))
			{
			  bb = VEC_pop (basic_block, h);
			  prev_bb = bb->prev_bb;
			  /* Rearrangements to the CFG may have failed
			     to update the dominators tree, so that
			     formerly-dominated blocks are now
			     otherwise reachable.  */
			  if (!!(bb->flags & BB_REACHABLE))
			    continue;
			  delete_basic_block (bb);
			}

		      VEC_free (basic_block, heap, h);
		    }
		}
	    }
	}
    }
  FOR_EACH_BB (bb)
    {
      /* Remove dead PHI nodes.  */
      something_changed |= remove_dead_phis (bb);
    }

  return something_changed;
}


/* Print out removed statement statistics.  */

static void
print_stats (void)
{
  float percg;

  percg = ((float) stats.removed / (float) stats.total) * 100;
  fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
	   stats.removed, stats.total, (int) percg);

  if (stats.total_phis == 0)
    percg = 0;
  else
    percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;

  fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
	   stats.removed_phis, stats.total_phis, (int) percg);
}

/* Initialization for this pass.  Set up the used data structures.  */

static void
tree_dce_init (bool aggressive)
{
  memset ((void *) &stats, 0, sizeof (stats));

  if (aggressive)
    {
      int i;

      control_dependence_map = XNEWVEC (bitmap, last_basic_block);
      for (i = 0; i < last_basic_block; ++i)
	control_dependence_map[i] = BITMAP_ALLOC (NULL);

      last_stmt_necessary = sbitmap_alloc (last_basic_block);
      sbitmap_zero (last_stmt_necessary);
      bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
      sbitmap_zero (bb_contains_live_stmts);
    }

  processed = sbitmap_alloc (num_ssa_names + 1);
  sbitmap_zero (processed);

  worklist = VEC_alloc (gimple, heap, 64);
  cfg_altered = false;
}

/* Cleanup after this pass.  */

static void
tree_dce_done (bool aggressive)
{
  if (aggressive)
    {
      int i;

      for (i = 0; i < last_basic_block; ++i)
	BITMAP_FREE (control_dependence_map[i]);
      free (control_dependence_map);

      sbitmap_free (visited_control_parents);
      sbitmap_free (last_stmt_necessary);
      sbitmap_free (bb_contains_live_stmts);
      bb_contains_live_stmts = NULL;
    }

  sbitmap_free (processed);

  VEC_free (gimple, heap, worklist);
}

/* Main routine to eliminate dead code.

   AGGRESSIVE controls the aggressiveness of the algorithm.
   In conservative mode, we ignore control dependence and simply declare
   all but the most trivially dead branches necessary.  This mode is fast.
   In aggressive mode, control dependences are taken into account, which
   results in more dead code elimination, but at the cost of some time.

   FIXME: Aggressive mode before PRE doesn't work currently because
	  the dominance info is not invalidated after DCE1.  This is
	  not an issue right now because we only run aggressive DCE
	  as the last tree SSA pass, but keep this in mind when you
	  start experimenting with pass ordering.  */

static unsigned int
perform_tree_ssa_dce (bool aggressive)
{
  struct edge_list *el = NULL;
  bool something_changed = 0;

  calculate_dominance_info (CDI_DOMINATORS);

  /* Preheaders are needed for SCEV to work.
     Simple lateches and recorded exits improve chances that loop will
     proved to be finite in testcases such as in loop-15.c and loop-24.c  */
  if (aggressive)
    loop_optimizer_init (LOOPS_NORMAL
			 | LOOPS_HAVE_RECORDED_EXITS);

  tree_dce_init (aggressive);

  if (aggressive)
    {
      /* Compute control dependence.  */
      timevar_push (TV_CONTROL_DEPENDENCES);
      calculate_dominance_info (CDI_POST_DOMINATORS);
      el = create_edge_list ();
      find_all_control_dependences (el);
      timevar_pop (TV_CONTROL_DEPENDENCES);

      visited_control_parents = sbitmap_alloc (last_basic_block);
      sbitmap_zero (visited_control_parents);

      mark_dfs_back_edges ();
    }

  find_obviously_necessary_stmts (el);

  if (aggressive)
    loop_optimizer_finalize ();

  longest_chain = 0;
  total_chain = 0;
  nr_walks = 0;
  chain_ovfl = false;
  visited = BITMAP_ALLOC (NULL);
  propagate_necessity (el);
  BITMAP_FREE (visited);

  something_changed |= eliminate_unnecessary_stmts ();
  something_changed |= cfg_altered;

  /* We do not update postdominators, so free them unconditionally.  */
  free_dominance_info (CDI_POST_DOMINATORS);

  /* If we removed paths in the CFG, then we need to update
     dominators as well.  I haven't investigated the possibility
     of incrementally updating dominators.  */
  if (cfg_altered)
    free_dominance_info (CDI_DOMINATORS);

  statistics_counter_event (cfun, "Statements deleted", stats.removed);
  statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);

  /* Debugging dumps.  */
  if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
    print_stats ();

  tree_dce_done (aggressive);

  free_edge_list (el);

  if (something_changed)
    return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
	    | TODO_remove_unused_locals);
  else
    return 0;
}

/* Pass entry points.  */
static unsigned int
tree_ssa_dce (void)
{
  return perform_tree_ssa_dce (/*aggressive=*/false);
}

static unsigned int
tree_ssa_dce_loop (void)
{
  unsigned int todo;
  todo = perform_tree_ssa_dce (/*aggressive=*/false);
  if (todo)
    {
      free_numbers_of_iterations_estimates ();
      scev_reset ();
    }
  return todo;
}

static unsigned int
tree_ssa_cd_dce (void)
{
  return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
}

static bool
gate_dce (void)
{
  return flag_tree_dce != 0;
}

struct gimple_opt_pass pass_dce =
{
 {
  GIMPLE_PASS,
  "dce",				/* name */
  gate_dce,				/* gate */
  tree_ssa_dce,				/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_DCE,				/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_verify_ssa	                /* todo_flags_finish */
 }
};

struct gimple_opt_pass pass_dce_loop =
{
 {
  GIMPLE_PASS,
  "dceloop",				/* name */
  gate_dce,				/* gate */
  tree_ssa_dce_loop,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_DCE,				/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_verify_ssa	                /* todo_flags_finish */
 }
};

struct gimple_opt_pass pass_cd_dce =
{
 {
  GIMPLE_PASS,
  "cddce",				/* name */
  gate_dce,				/* gate */
  tree_ssa_cd_dce,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_CD_DCE,			/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_verify_ssa
  | TODO_verify_flow			/* todo_flags_finish */
 }
};