1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
/* Rename SSA copies.
Copyright (C) 2004, 2006, 2007, 2008 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "basic-block.h"
#include "function.h"
#include "diagnostic.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-inline.h"
#include "timevar.h"
#include "hashtab.h"
#include "tree-dump.h"
#include "tree-ssa-live.h"
#include "tree-pass.h"
#include "langhooks.h"
/* The following routines implement the SSA copy renaming phase.
This optimization looks for copies between 2 SSA_NAMES, either through a
direct copy, or an implicit one via a PHI node result and its arguments.
Each copy is examined to determine if it is possible to rename the base
variable of one of the operands to the same variable as the other operand.
i.e.
T.3_5 = <blah>
a_1 = T.3_5
If this copy couldn't be copy propagated, it could possibly remain in the
program throughout the optimization phases. After SSA->normal, it would
become:
T.3 = <blah>
a = T.3
Since T.3_5 is distinct from all other SSA versions of T.3, there is no
fundamental reason why the base variable needs to be T.3, subject to
certain restrictions. This optimization attempts to determine if we can
change the base variable on copies like this, and result in code such as:
a_5 = <blah>
a_1 = a_5
This gives the SSA->normal pass a shot at coalescing a_1 and a_5. If it is
possible, the copy goes away completely. If it isn't possible, a new temp
will be created for a_5, and you will end up with the exact same code:
a.8 = <blah>
a = a.8
The other benefit of performing this optimization relates to what variables
are chosen in copies. Gimplification of the program uses temporaries for
a lot of things. expressions like
a_1 = <blah>
<blah2> = a_1
get turned into
T.3_5 = <blah>
a_1 = T.3_5
<blah2> = a_1
Copy propagation is done in a forward direction, and if we can propagate
through the copy, we end up with:
T.3_5 = <blah>
<blah2> = T.3_5
The copy is gone, but so is all reference to the user variable 'a'. By
performing this optimization, we would see the sequence:
a_5 = <blah>
a_1 = a_5
<blah2> = a_1
which copy propagation would then turn into:
a_5 = <blah>
<blah2> = a_5
and so we still retain the user variable whenever possible. */
/* Coalesce the partitions in MAP representing VAR1 and VAR2 if it is valid.
Choose a representative for the partition, and send debug info to DEBUG. */
static bool
copy_rename_partition_coalesce (var_map map, tree var1, tree var2, FILE *debug)
{
int p1, p2, p3;
tree root1, root2;
tree rep1, rep2;
var_ann_t ann1, ann2, ann3;
bool ign1, ign2, abnorm;
gcc_assert (TREE_CODE (var1) == SSA_NAME);
gcc_assert (TREE_CODE (var2) == SSA_NAME);
register_ssa_partition (map, var1);
register_ssa_partition (map, var2);
p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
if (debug)
{
fprintf (debug, "Try : ");
print_generic_expr (debug, var1, TDF_SLIM);
fprintf (debug, "(P%d) & ", p1);
print_generic_expr (debug, var2, TDF_SLIM);
fprintf (debug, "(P%d)", p2);
}
gcc_assert (p1 != NO_PARTITION);
gcc_assert (p2 != NO_PARTITION);
rep1 = partition_to_var (map, p1);
rep2 = partition_to_var (map, p2);
root1 = SSA_NAME_VAR (rep1);
root2 = SSA_NAME_VAR (rep2);
ann1 = var_ann (root1);
ann2 = var_ann (root2);
if (p1 == p2)
{
if (debug)
fprintf (debug, " : Already coalesced.\n");
return false;
}
/* Don't coalesce if one of the variables occurs in an abnormal PHI. */
abnorm = (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rep1)
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rep2));
if (abnorm)
{
if (debug)
fprintf (debug, " : Abnormal PHI barrier. No coalesce.\n");
return false;
}
/* Partitions already have the same root, simply merge them. */
if (root1 == root2)
{
p1 = partition_union (map->var_partition, p1, p2);
if (debug)
fprintf (debug, " : Same root, coalesced --> P%d.\n", p1);
return false;
}
/* Never attempt to coalesce 2 difference parameters. */
if (TREE_CODE (root1) == PARM_DECL && TREE_CODE (root2) == PARM_DECL)
{
if (debug)
fprintf (debug, " : 2 different PARM_DECLS. No coalesce.\n");
return false;
}
if ((TREE_CODE (root1) == RESULT_DECL) != (TREE_CODE (root2) == RESULT_DECL))
{
if (debug)
fprintf (debug, " : One root a RESULT_DECL. No coalesce.\n");
return false;
}
ign1 = TREE_CODE (root1) == VAR_DECL && DECL_IGNORED_P (root1);
ign2 = TREE_CODE (root2) == VAR_DECL && DECL_IGNORED_P (root2);
/* Never attempt to coalesce 2 user variables unless one is an inline
variable. */
if (!ign1 && !ign2)
{
if (DECL_FROM_INLINE (root2))
ign2 = true;
else if (DECL_FROM_INLINE (root1))
ign1 = true;
else
{
if (debug)
fprintf (debug, " : 2 different USER vars. No coalesce.\n");
return false;
}
}
/* Don't coalesce if there are two different memory tags. */
if (ann1->symbol_mem_tag
&& ann2->symbol_mem_tag
&& ann1->symbol_mem_tag != ann2->symbol_mem_tag)
{
if (debug)
fprintf (debug, " : 2 memory tags. No coalesce.\n");
return false;
}
/* If both values have default defs, we can't coalesce. If only one has a
tag, make sure that variable is the new root partition. */
if (gimple_default_def (cfun, root1))
{
if (gimple_default_def (cfun, root2))
{
if (debug)
fprintf (debug, " : 2 default defs. No coalesce.\n");
return false;
}
else
{
ign2 = true;
ign1 = false;
}
}
else if (gimple_default_def (cfun, root2))
{
ign1 = true;
ign2 = false;
}
/* Don't coalesce if the two variables aren't type compatible. */
if (!types_compatible_p (TREE_TYPE (root1), TREE_TYPE (root2)))
{
if (debug)
fprintf (debug, " : Incompatible types. No coalesce.\n");
return false;
}
/* Don't coalesce if the aliasing sets of the types are different. */
if (POINTER_TYPE_P (TREE_TYPE (root1))
&& POINTER_TYPE_P (TREE_TYPE (root2))
&& ((get_alias_set (TREE_TYPE (TREE_TYPE (root1)))
!= get_alias_set (TREE_TYPE (TREE_TYPE (root2))))
|| ((DECL_P (root1) && !MTAG_P (root1))
&& (DECL_P (root2) && !MTAG_P (root2))
&& DECL_NO_TBAA_P (root1) != DECL_NO_TBAA_P (root2))))
{
if (debug)
fprintf (debug, " : 2 different aliasing sets. No coalesce.\n");
return false;
}
/* Merge the two partitions. */
p3 = partition_union (map->var_partition, p1, p2);
/* Set the root variable of the partition to the better choice, if there is
one. */
if (!ign2)
replace_ssa_name_symbol (partition_to_var (map, p3), root2);
else if (!ign1)
replace_ssa_name_symbol (partition_to_var (map, p3), root1);
/* Update the various flag widgitry of the current base representative. */
ann3 = var_ann (SSA_NAME_VAR (partition_to_var (map, p3)));
if (ann1->symbol_mem_tag)
ann3->symbol_mem_tag = ann1->symbol_mem_tag;
else
ann3->symbol_mem_tag = ann2->symbol_mem_tag;
if (debug)
{
fprintf (debug, " --> P%d ", p3);
print_generic_expr (debug, SSA_NAME_VAR (partition_to_var (map, p3)),
TDF_SLIM);
fprintf (debug, "\n");
}
return true;
}
/* This function will make a pass through the IL, and attempt to coalesce any
SSA versions which occur in PHI's or copies. Coalescing is accomplished by
changing the underlying root variable of all coalesced version. This will
then cause the SSA->normal pass to attempt to coalesce them all to the same
variable. */
static unsigned int
rename_ssa_copies (void)
{
var_map map;
basic_block bb;
block_stmt_iterator bsi;
tree phi, stmt, var, part_var;
unsigned x;
FILE *debug;
bool updated = false;
if (dump_file && (dump_flags & TDF_DETAILS))
debug = dump_file;
else
debug = NULL;
map = init_var_map (num_ssa_names + 1);
FOR_EACH_BB (bb)
{
/* Scan for real copies. */
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
stmt = bsi_stmt (bsi);
if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
{
tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
updated |= copy_rename_partition_coalesce (map, lhs, rhs, debug);
}
}
}
FOR_EACH_BB (bb)
{
/* Treat PHI nodes as copies between the result and each argument. */
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
int i;
tree res = PHI_RESULT (phi);
/* Do not process virtual SSA_NAMES. */
if (!is_gimple_reg (SSA_NAME_VAR (res)))
continue;
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
{
tree arg = PHI_ARG_DEF (phi, i);
if (TREE_CODE (arg) == SSA_NAME)
updated |= copy_rename_partition_coalesce (map, res, arg, debug);
}
}
}
if (debug)
dump_var_map (debug, map);
/* Now one more pass to make all elements of a partition share the same
root variable. */
for (x = 1; x <= num_ssa_names; x++)
{
part_var = partition_to_var (map, x);
if (!part_var)
continue;
var = map->partition_to_var[x];
if (debug)
{
if (SSA_NAME_VAR (var) != SSA_NAME_VAR (part_var))
{
fprintf (debug, "Coalesced ");
print_generic_expr (debug, var, TDF_SLIM);
fprintf (debug, " to ");
print_generic_expr (debug, part_var, TDF_SLIM);
fprintf (debug, "\n");
}
}
replace_ssa_name_symbol (var, SSA_NAME_VAR (part_var));
}
delete_var_map (map);
return updated ? TODO_remove_unused_locals : 0;
}
/* Return true if copy rename is to be performed. */
static bool
gate_copyrename (void)
{
return flag_tree_copyrename != 0;
}
struct gimple_opt_pass pass_rename_ssa_copies =
{
{
GIMPLE_PASS,
"copyrename", /* name */
gate_copyrename, /* gate */
rename_ssa_copies, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_COPY_RENAME, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
}
};
|