summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-copy.c
blob: 9dad1cdc9400597a445c00581cc4eee3770bec54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
/* Copy propagation and SSA_NAME replacement support routines.
   Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "ggc.h"
#include "basic-block.h"
#include "output.h"
#include "expr.h"
#include "function.h"
#include "diagnostic.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-ssa-propagate.h"
#include "langhooks.h"
#include "cfgloop.h"

/* This file implements the copy propagation pass and provides a
   handful of interfaces for performing const/copy propagation and
   simple expression replacement which keep variable annotations
   up-to-date.

   We require that for any copy operation where the RHS and LHS have
   a non-null memory tag the memory tag be the same.   It is OK
   for one or both of the memory tags to be NULL.

   We also require tracking if a variable is dereferenced in a load or
   store operation.

   We enforce these requirements by having all copy propagation and
   replacements of one SSA_NAME with a different SSA_NAME to use the
   APIs defined in this file.  */

/* Return true if we may propagate ORIG into DEST, false otherwise.  */

bool
may_propagate_copy (tree dest, tree orig)
{
  tree type_d = TREE_TYPE (dest);
  tree type_o = TREE_TYPE (orig);

  /* If ORIG flows in from an abnormal edge, it cannot be propagated.  */
  if (TREE_CODE (orig) == SSA_NAME
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
    return false;

  /* If DEST is an SSA_NAME that flows from an abnormal edge, then it
     cannot be replaced.  */
  if (TREE_CODE (dest) == SSA_NAME
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
    return false;
  
  /* Do not copy between types for which we *do* need a conversion.  */
  if (!useless_type_conversion_p (type_d, type_o))
    return false;

  /* Propagating virtual operands is always ok.  */
  if (TREE_CODE (dest) == SSA_NAME && !is_gimple_reg (dest))
    {
      /* But only between virtual operands.  */
      gcc_assert (TREE_CODE (orig) == SSA_NAME && !is_gimple_reg (orig));

      return true;
    }

  /* Anything else is OK.  */
  return true;
}

/* Like may_propagate_copy, but use as the destination expression
   the principal expression (typically, the RHS) contained in
   statement DEST.  This is more efficient when working with the
   gimple tuples representation.  */

bool
may_propagate_copy_into_stmt (gimple dest, tree orig)
{
  tree type_d;
  tree type_o;

  /* If the statement is a switch or a single-rhs assignment,
     then the expression to be replaced by the propagation may
     be an SSA_NAME.  Fortunately, there is an explicit tree
     for the expression, so we delegate to may_propagate_copy.  */

  if (gimple_assign_single_p (dest))
    return may_propagate_copy (gimple_assign_rhs1 (dest), orig);
  else if (gimple_code (dest) == GIMPLE_SWITCH)
    return may_propagate_copy (gimple_switch_index (dest), orig);

  /* In other cases, the expression is not materialized, so there
     is no destination to pass to may_propagate_copy.  On the other
     hand, the expression cannot be an SSA_NAME, so the analysis
     is much simpler.  */

  if (TREE_CODE (orig) == SSA_NAME
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
    return false;

  if (is_gimple_assign (dest))
    type_d = TREE_TYPE (gimple_assign_lhs (dest));
  else if (gimple_code (dest) == GIMPLE_COND)
    type_d = boolean_type_node;
  else if (is_gimple_call (dest)
           && gimple_call_lhs (dest) != NULL_TREE)
    type_d = TREE_TYPE (gimple_call_lhs (dest));
  else
    gcc_unreachable ();

  type_o = TREE_TYPE (orig);

  if (!useless_type_conversion_p (type_d, type_o))
    return false;

  return true;
}

/* Similarly, but we know that we're propagating into an ASM_EXPR.  */

bool
may_propagate_copy_into_asm (tree dest)
{
  /* Hard register operands of asms are special.  Do not bypass.  */
  return !(TREE_CODE (dest) == SSA_NAME
	   && TREE_CODE (SSA_NAME_VAR (dest)) == VAR_DECL
	   && DECL_HARD_REGISTER (SSA_NAME_VAR (dest)));
}


/* Given two SSA_NAMEs pointers ORIG and NEW such that we are copy
   propagating NEW into ORIG, consolidate aliasing information so that
   they both share the same memory tags.  */

void
merge_alias_info (tree orig_name, tree new_name)
{
  gcc_assert (POINTER_TYPE_P (TREE_TYPE (orig_name))
	      && POINTER_TYPE_P (TREE_TYPE (new_name)));

#if defined ENABLE_CHECKING
  gcc_assert (useless_type_conversion_p (TREE_TYPE (orig_name),
					 TREE_TYPE (new_name)));
#endif

  /* Check that flow-sensitive information is compatible.  Notice that
     we may not merge flow-sensitive information here.  This function
     is called when propagating equivalences dictated by the IL, like
     a copy operation P_i = Q_j, and from equivalences dictated by
     control-flow, like if (P_i == Q_j).
     
     In the former case, P_i and Q_j are equivalent in every block
     dominated by the assignment, so their flow-sensitive information
     is always the same.  However, in the latter case, the pointers
     P_i and Q_j are only equivalent in one of the sub-graphs out of
     the predicate, so their flow-sensitive information is not the
     same in every block dominated by the predicate.

     Since we cannot distinguish one case from another in this
     function, we cannot merge flow-sensitive information by
     intersecting.  Instead the only thing we can do is to _not_
     merge flow-sensitive information.

     ???  At some point we should enhance this machinery to distinguish
     both cases in the caller.  */
}


/* Common code for propagate_value and replace_exp.

   Replace use operand OP_P with VAL.  FOR_PROPAGATION indicates if the
   replacement is done to propagate a value or not.  */

static void
replace_exp_1 (use_operand_p op_p, tree val,
    	       bool for_propagation ATTRIBUTE_UNUSED)
{
  tree op = USE_FROM_PTR (op_p);

#if defined ENABLE_CHECKING
  gcc_assert (!(for_propagation
		&& TREE_CODE (op) == SSA_NAME
		&& TREE_CODE (val) == SSA_NAME
		&& !may_propagate_copy (op, val)));
#endif

  if (TREE_CODE (val) == SSA_NAME)
    {
      if (TREE_CODE (op) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (op)))
	merge_alias_info (op, val);
      SET_USE (op_p, val);
    }
  else
    SET_USE (op_p, unsave_expr_now (val));
}


/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
   into the operand pointed to by OP_P.

   Use this version for const/copy propagation as it will perform additional
   checks to ensure validity of the const/copy propagation.  */

void
propagate_value (use_operand_p op_p, tree val)
{
  replace_exp_1 (op_p, val, true);
}

/* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).

   Use this version when not const/copy propagating values.  For example,
   PRE uses this version when building expressions as they would appear
   in specific blocks taking into account actions of PHI nodes.  */

void
replace_exp (use_operand_p op_p, tree val)
{
  replace_exp_1 (op_p, val, false);
}


/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
   into the tree pointed to by OP_P.

   Use this version for const/copy propagation when SSA operands are not
   available.  It will perform the additional checks to ensure validity of
   the const/copy propagation, but will not update any operand information.
   Be sure to mark the stmt as modified.  */

void
propagate_tree_value (tree *op_p, tree val)
{
#if defined ENABLE_CHECKING
  gcc_assert (!(TREE_CODE (val) == SSA_NAME
                && *op_p
		&& TREE_CODE (*op_p) == SSA_NAME
		&& !may_propagate_copy (*op_p, val)));
#endif

  if (TREE_CODE (val) == SSA_NAME)
    {
      if (*op_p && TREE_CODE (*op_p) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (*op_p)))
	merge_alias_info (*op_p, val);
      *op_p = val;
    }
  else
    *op_p = unsave_expr_now (val);
}


/* Like propagate_tree_value, but use as the operand to replace
   the principal expression (typically, the RHS) contained in the
   statement referenced by iterator GSI.  Note that it is not
   always possible to update the statement in-place, so a new
   statement may be created to replace the original.  */

void
propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val)
{
  gimple stmt = gsi_stmt (*gsi);

  if (is_gimple_assign (stmt))
    {
      tree expr = NULL_TREE;
      if (gimple_assign_single_p (stmt))
        expr = gimple_assign_rhs1 (stmt);
      propagate_tree_value (&expr, val);
      gimple_assign_set_rhs_from_tree (gsi, expr);
      stmt = gsi_stmt (*gsi);
    }
  else if (gimple_code (stmt) == GIMPLE_COND)
    {
      tree lhs = NULL_TREE;
      tree rhs = fold_convert (TREE_TYPE (val), integer_zero_node);
      propagate_tree_value (&lhs, val);
      gimple_cond_set_code (stmt, NE_EXPR);
      gimple_cond_set_lhs (stmt, lhs);
      gimple_cond_set_rhs (stmt, rhs);
    }
  else if (is_gimple_call (stmt)
           && gimple_call_lhs (stmt) != NULL_TREE)
    {
      gimple new_stmt;

      tree expr = NULL_TREE;
      propagate_tree_value (&expr, val);
      new_stmt = gimple_build_assign (gimple_call_lhs (stmt), expr);
      move_ssa_defining_stmt_for_defs (new_stmt, stmt);
      gsi_replace (gsi, new_stmt, false);
    }
  else if (gimple_code (stmt) == GIMPLE_SWITCH)
    propagate_tree_value (gimple_switch_index_ptr (stmt), val);
  else
    gcc_unreachable ();
}

/*---------------------------------------------------------------------------
				Copy propagation
---------------------------------------------------------------------------*/
/* During propagation, we keep chains of variables that are copies of
   one another.  If variable X_i is a copy of X_j and X_j is a copy of
   X_k, COPY_OF will contain:

   	COPY_OF[i].VALUE = X_j
	COPY_OF[j].VALUE = X_k
	COPY_OF[k].VALUE = X_k

   After propagation, the copy-of value for each variable X_i is
   converted into the final value by walking the copy-of chains and
   updating COPY_OF[i].VALUE to be the last element of the chain.  */
static prop_value_t *copy_of;

/* Used in set_copy_of_val to determine if the last link of a copy-of
   chain has changed.  */
static tree *cached_last_copy_of;


/* Return true if this statement may generate a useful copy.  */

static bool
stmt_may_generate_copy (gimple stmt)
{
  if (gimple_code (stmt) == GIMPLE_PHI)
    return !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt));

  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return false;

  /* If the statement has volatile operands, it won't generate a
     useful copy.  */
  if (gimple_has_volatile_ops (stmt))
    return false;

  /* Statements with loads and/or stores will never generate a useful copy.  */
  if (gimple_vuse (stmt))
    return false;

  /* Otherwise, the only statements that generate useful copies are
     assignments whose RHS is just an SSA name that doesn't flow
     through abnormal edges.  */
  return (gimple_assign_rhs_code (stmt) == SSA_NAME
	  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt)));
}


/* Return the copy-of value for VAR.  */

static inline prop_value_t *
get_copy_of_val (tree var)
{
  prop_value_t *val = &copy_of[SSA_NAME_VERSION (var)];

  if (val->value == NULL_TREE
      && !stmt_may_generate_copy (SSA_NAME_DEF_STMT (var)))
    {
      /* If the variable will never generate a useful copy relation,
	 make it its own copy.  */
      val->value = var;
    }

  return val;
}


/* Return last link in the copy-of chain for VAR.  */

static tree
get_last_copy_of (tree var)
{
  tree last;
  int i;

  /* Traverse COPY_OF starting at VAR until we get to the last
     link in the chain.  Since it is possible to have cycles in PHI
     nodes, the copy-of chain may also contain cycles.
     
     To avoid infinite loops and to avoid traversing lengthy copy-of
     chains, we artificially limit the maximum number of chains we are
     willing to traverse.

     The value 5 was taken from a compiler and runtime library
     bootstrap and a mixture of C and C++ code from various sources.
     More than 82% of all copy-of chains were shorter than 5 links.  */
#define LIMIT	5

  last = var;
  for (i = 0; i < LIMIT; i++)
    {
      tree copy = copy_of[SSA_NAME_VERSION (last)].value;
      if (copy == NULL_TREE || copy == last)
	break;
      last = copy;
    }

  /* If we have reached the limit, then we are either in a copy-of
     cycle or the copy-of chain is too long.  In this case, just
     return VAR so that it is not considered a copy of anything.  */
  return (i < LIMIT ? last : var);
}


/* Set FIRST to be the first variable in the copy-of chain for DEST.
   If DEST's copy-of value or its copy-of chain has changed, return
   true.

   MEM_REF is the memory reference where FIRST is stored.  This is
   used when DEST is a non-register and we are copy propagating loads
   and stores.  */

static inline bool
set_copy_of_val (tree dest, tree first)
{
  unsigned int dest_ver = SSA_NAME_VERSION (dest);
  tree old_first, old_last, new_last;
  
  /* Set FIRST to be the first link in COPY_OF[DEST].  If that
     changed, return true.  */
  old_first = copy_of[dest_ver].value;
  copy_of[dest_ver].value = first;

  if (old_first != first)
    return true;

  /* If FIRST and OLD_FIRST are the same, we need to check whether the
     copy-of chain starting at FIRST ends in a different variable.  If
     the copy-of chain starting at FIRST ends up in a different
     variable than the last cached value we had for DEST, then return
     true because DEST is now a copy of a different variable.

     This test is necessary because even though the first link in the
     copy-of chain may not have changed, if any of the variables in
     the copy-of chain changed its final value, DEST will now be the
     copy of a different variable, so we have to do another round of
     propagation for everything that depends on DEST.  */
  old_last = cached_last_copy_of[dest_ver];
  new_last = get_last_copy_of (dest);
  cached_last_copy_of[dest_ver] = new_last;

  return (old_last != new_last);
}


/* Dump the copy-of value for variable VAR to FILE.  */

static void
dump_copy_of (FILE *file, tree var)
{
  tree val;
  sbitmap visited;

  print_generic_expr (file, var, dump_flags);

  if (TREE_CODE (var) != SSA_NAME)
    return;
    
  visited = sbitmap_alloc (num_ssa_names);
  sbitmap_zero (visited);
  SET_BIT (visited, SSA_NAME_VERSION (var));
  
  fprintf (file, " copy-of chain: ");

  val = var;
  print_generic_expr (file, val, 0);
  fprintf (file, " ");
  while (copy_of[SSA_NAME_VERSION (val)].value)
    {
      fprintf (file, "-> ");
      val = copy_of[SSA_NAME_VERSION (val)].value;
      print_generic_expr (file, val, 0);
      fprintf (file, " ");
      if (TEST_BIT (visited, SSA_NAME_VERSION (val)))
        break;
      SET_BIT (visited, SSA_NAME_VERSION (val));
    }

  val = get_copy_of_val (var)->value;
  if (val == NULL_TREE)
    fprintf (file, "[UNDEFINED]");
  else if (val != var)
    fprintf (file, "[COPY]");
  else
    fprintf (file, "[NOT A COPY]");
  
  sbitmap_free (visited);
}


/* Evaluate the RHS of STMT.  If it produces a valid copy, set the LHS
   value and store the LHS into *RESULT_P.  If STMT generates more
   than one name (i.e., STMT is an aliased store), it is enough to
   store the first name in the VDEF list into *RESULT_P.  After
   all, the names generated will be VUSEd in the same statements.  */

static enum ssa_prop_result
copy_prop_visit_assignment (gimple stmt, tree *result_p)
{
  tree lhs, rhs;
  prop_value_t *rhs_val;

  lhs = gimple_assign_lhs (stmt);
  rhs = gimple_assign_rhs1 (stmt);
  

  gcc_assert (gimple_assign_rhs_code (stmt) == SSA_NAME);

  rhs_val = get_copy_of_val (rhs);

  if (TREE_CODE (lhs) == SSA_NAME)
    {
      /* Straight copy between two SSA names.  First, make sure that
	 we can propagate the RHS into uses of LHS.  */
      if (!may_propagate_copy (lhs, rhs))
	return SSA_PROP_VARYING;

      /* Notice that in the case of assignments, we make the LHS be a
	 copy of RHS's value, not of RHS itself.  This avoids keeping
	 unnecessary copy-of chains (assignments cannot be in a cycle
	 like PHI nodes), speeding up the propagation process.
	 This is different from what we do in copy_prop_visit_phi_node. 
	 In those cases, we are interested in the copy-of chains.  */
      *result_p = lhs;
      if (set_copy_of_val (*result_p, rhs_val->value))
	return SSA_PROP_INTERESTING;
      else
	return SSA_PROP_NOT_INTERESTING;
    }

  return SSA_PROP_VARYING;
}


/* Visit the GIMPLE_COND STMT.  Return SSA_PROP_INTERESTING
   if it can determine which edge will be taken.  Otherwise, return
   SSA_PROP_VARYING.  */

static enum ssa_prop_result
copy_prop_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
{
  enum ssa_prop_result retval = SSA_PROP_VARYING;

  tree op0 = gimple_cond_lhs (stmt);
  tree op1 = gimple_cond_rhs (stmt);

  /* The only conditionals that we may be able to compute statically
     are predicates involving two SSA_NAMEs.  */
  if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
    {
      op0 = get_last_copy_of (op0);
      op1 = get_last_copy_of (op1);

      /* See if we can determine the predicate's value.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Trying to determine truth value of ");
	  fprintf (dump_file, "predicate ");
	  print_gimple_stmt (dump_file, stmt, 0, 0);
	}

      /* We can fold COND and get a useful result only when we have
	 the same SSA_NAME on both sides of a comparison operator.  */
      if (op0 == op1)
	{
	  tree folded_cond = fold_binary (gimple_cond_code (stmt),
                                          boolean_type_node, op0, op1);
	  if (folded_cond)
	    {
	      basic_block bb = gimple_bb (stmt);
	      *taken_edge_p = find_taken_edge (bb, folded_cond);
	      if (*taken_edge_p)
		retval = SSA_PROP_INTERESTING;
	    }
	}
    }

  if (dump_file && (dump_flags & TDF_DETAILS) && *taken_edge_p)
    fprintf (dump_file, "\nConditional will always take edge %d->%d\n",
	     (*taken_edge_p)->src->index, (*taken_edge_p)->dest->index);

  return retval;
}


/* Evaluate statement STMT.  If the statement produces a new output
   value, return SSA_PROP_INTERESTING and store the SSA_NAME holding
   the new value in *RESULT_P.

   If STMT is a conditional branch and we can determine its truth
   value, set *TAKEN_EDGE_P accordingly.

   If the new value produced by STMT is varying, return
   SSA_PROP_VARYING.  */

static enum ssa_prop_result
copy_prop_visit_stmt (gimple stmt, edge *taken_edge_p, tree *result_p)
{
  enum ssa_prop_result retval;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nVisiting statement:\n");
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
      fprintf (dump_file, "\n");
    }

  if (gimple_assign_single_p (stmt)
      && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
      && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
    {
      /* If the statement is a copy assignment, evaluate its RHS to
	 see if the lattice value of its output has changed.  */
      retval = copy_prop_visit_assignment (stmt, result_p);
    }
  else if (gimple_code (stmt) == GIMPLE_COND)
    {
      /* See if we can determine which edge goes out of a conditional
	 jump.  */
      retval = copy_prop_visit_cond_stmt (stmt, taken_edge_p);
    }
  else
    retval = SSA_PROP_VARYING;

  if (retval == SSA_PROP_VARYING)
    {
      tree def;
      ssa_op_iter i;

      /* Any other kind of statement is not interesting for constant
	 propagation and, therefore, not worth simulating.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "No interesting values produced.\n");

      /* The assignment is not a copy operation.  Don't visit this
	 statement again and mark all the definitions in the statement
	 to be copies of nothing.  */
      FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_ALL_DEFS)
	set_copy_of_val (def, def);
    }

  return retval;
}


/* Visit PHI node PHI.  If all the arguments produce the same value,
   set it to be the value of the LHS of PHI.  */

static enum ssa_prop_result
copy_prop_visit_phi_node (gimple phi)
{
  enum ssa_prop_result retval;
  unsigned i;
  prop_value_t phi_val = { 0, NULL_TREE };

  tree lhs = gimple_phi_result (phi);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nVisiting PHI node: ");
      print_gimple_stmt (dump_file, phi, 0, dump_flags);
      fprintf (dump_file, "\n\n");
    }

  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
      prop_value_t *arg_val;
      tree arg = gimple_phi_arg_def (phi, i);
      edge e = gimple_phi_arg_edge (phi, i);

      /* We don't care about values flowing through non-executable
	 edges.  */
      if (!(e->flags & EDGE_EXECUTABLE))
	continue;

      /* Constants in the argument list never generate a useful copy.
	 Similarly, names that flow through abnormal edges cannot be
	 used to derive copies.  */
      if (TREE_CODE (arg) != SSA_NAME || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (arg))
	{
	  phi_val.value = lhs;
	  break;
	}

      /* Avoid copy propagation from an inner into an outer loop.
	 Otherwise, this may move loop variant variables outside of
	 their loops and prevent coalescing opportunities.  If the
	 value was loop invariant, it will be hoisted by LICM and
	 exposed for copy propagation.  Not a problem for virtual
	 operands though.  */
      if (is_gimple_reg (lhs)
	  && loop_depth_of_name (arg) > loop_depth_of_name (lhs))
	{
	  phi_val.value = lhs;
	  break;
	}

      /* If the LHS appears in the argument list, ignore it.  It is
	 irrelevant as a copy.  */
      if (arg == lhs || get_last_copy_of (arg) == lhs)
	continue;

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "\tArgument #%d: ", i);
	  dump_copy_of (dump_file, arg);
	  fprintf (dump_file, "\n");
	}

      arg_val = get_copy_of_val (arg);

      /* If the LHS didn't have a value yet, make it a copy of the
	 first argument we find.  Notice that while we make the LHS be
	 a copy of the argument itself, we take the memory reference
	 from the argument's value so that we can compare it to the
	 memory reference of all the other arguments.  */
      if (phi_val.value == NULL_TREE)
	{
	  phi_val.value = arg_val->value ? arg_val->value : arg;
	  continue;
	}

      /* If PHI_VAL and ARG don't have a common copy-of chain, then
	 this PHI node cannot be a copy operation.  Also, if we are
	 copy propagating stores and these two arguments came from
	 different memory references, they cannot be considered
	 copies.  */
      if (get_last_copy_of (phi_val.value) != get_last_copy_of (arg))
	{
	  phi_val.value = lhs;
	  break;
	}
    }

  if (phi_val.value &&  may_propagate_copy (lhs, phi_val.value)
      && set_copy_of_val (lhs, phi_val.value))
    retval = (phi_val.value != lhs) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
  else
    retval = SSA_PROP_NOT_INTERESTING;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nPHI node ");
      dump_copy_of (dump_file, lhs);
      fprintf (dump_file, "\nTelling the propagator to ");
      if (retval == SSA_PROP_INTERESTING)
	fprintf (dump_file, "add SSA edges out of this PHI and continue.");
      else if (retval == SSA_PROP_VARYING)
	fprintf (dump_file, "add SSA edges out of this PHI and never visit again.");
      else
	fprintf (dump_file, "do nothing with SSA edges and keep iterating.");
      fprintf (dump_file, "\n\n");
    }

  return retval;
}


/* Initialize structures used for copy propagation.   PHIS_ONLY is true
   if we should only consider PHI nodes as generating copy propagation
   opportunities.  */

static void
init_copy_prop (void)
{
  basic_block bb;

  copy_of = XCNEWVEC (prop_value_t, num_ssa_names);

  cached_last_copy_of = XCNEWVEC (tree, num_ssa_names);

  FOR_EACH_BB (bb)
    {
      gimple_stmt_iterator si;
      int depth = bb->loop_depth;

      for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
	{
	  gimple stmt = gsi_stmt (si);
	  ssa_op_iter iter;
          tree def;

	  /* The only statements that we care about are those that may
	     generate useful copies.  We also need to mark conditional
	     jumps so that their outgoing edges are added to the work
	     lists of the propagator.

	     Avoid copy propagation from an inner into an outer loop.
	     Otherwise, this may move loop variant variables outside of
	     their loops and prevent coalescing opportunities.  If the
	     value was loop invariant, it will be hoisted by LICM and
	     exposed for copy propagation.  */
	  if (stmt_ends_bb_p (stmt))
            prop_set_simulate_again (stmt, true);
	  else if (stmt_may_generate_copy (stmt)
                   /* Since we are iterating over the statements in
                      BB, not the phi nodes, STMT will always be an
                      assignment.  */
                   && loop_depth_of_name (gimple_assign_rhs1 (stmt)) <= depth)
            prop_set_simulate_again (stmt, true);
	  else
            prop_set_simulate_again (stmt, false);

	  /* Mark all the outputs of this statement as not being
	     the copy of anything.  */
	  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
            if (!prop_simulate_again_p (stmt))
	      set_copy_of_val (def, def);
	    else
	      cached_last_copy_of[SSA_NAME_VERSION (def)] = def;
	}

      for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
	{
          gimple phi = gsi_stmt (si);
          tree def;

	  def = gimple_phi_result (phi);
	  if (!is_gimple_reg (def)
	      /* In loop-closed SSA form do not copy-propagate through
	         PHI nodes.  Technically this is only needed for loop
		 exit PHIs, but this is difficult to query.  */
	      || (current_loops
		  && gimple_phi_num_args (phi) == 1
		  && loops_state_satisfies_p (LOOP_CLOSED_SSA)))
            prop_set_simulate_again (phi, false);
	  else
            prop_set_simulate_again (phi, true);

	  if (!prop_simulate_again_p (phi))
	    set_copy_of_val (def, def);
	  else
	    cached_last_copy_of[SSA_NAME_VERSION (def)] = def;
	}
    }
}


/* Deallocate memory used in copy propagation and do final
   substitution.  */

static void
fini_copy_prop (void)
{
  size_t i;
  prop_value_t *tmp;
  
  /* Set the final copy-of value for each variable by traversing the
     copy-of chains.  */
  tmp = XCNEWVEC (prop_value_t, num_ssa_names);
  for (i = 1; i < num_ssa_names; i++)
    {
      tree var = ssa_name (i);
      if (var && copy_of[i].value && copy_of[i].value != var)
	tmp[i].value = get_last_copy_of (var);
    }

  substitute_and_fold (tmp, false);

  free (cached_last_copy_of);
  free (copy_of);
  free (tmp);
}


/* Main entry point to the copy propagator.

   PHIS_ONLY is true if we should only consider PHI nodes as generating
   copy propagation opportunities. 

   The algorithm propagates the value COPY-OF using ssa_propagate.  For
   every variable X_i, COPY-OF(X_i) indicates which variable is X_i created
   from.  The following example shows how the algorithm proceeds at a
   high level:

	    1	a_24 = x_1
	    2	a_2 = PHI <a_24, x_1>
	    3	a_5 = PHI <a_2>
	    4	x_1 = PHI <x_298, a_5, a_2>

   The end result should be that a_2, a_5, a_24 and x_1 are a copy of
   x_298.  Propagation proceeds as follows.

   Visit #1: a_24 is copy-of x_1.  Value changed.
   Visit #2: a_2 is copy-of x_1.  Value changed.
   Visit #3: a_5 is copy-of x_1.  Value changed.
   Visit #4: x_1 is copy-of x_298.  Value changed.
   Visit #1: a_24 is copy-of x_298.  Value changed.
   Visit #2: a_2 is copy-of x_298.  Value changed.
   Visit #3: a_5 is copy-of x_298.  Value changed.
   Visit #4: x_1 is copy-of x_298.  Stable state reached.
   
   When visiting PHI nodes, we only consider arguments that flow
   through edges marked executable by the propagation engine.  So,
   when visiting statement #2 for the first time, we will only look at
   the first argument (a_24) and optimistically assume that its value
   is the copy of a_24 (x_1).

   The problem with this approach is that it may fail to discover copy
   relations in PHI cycles.  Instead of propagating copy-of
   values, we actually propagate copy-of chains.  For instance:

   		A_3 = B_1;
		C_9 = A_3;
		D_4 = C_9;
		X_i = D_4;

   In this code fragment, COPY-OF (X_i) = { D_4, C_9, A_3, B_1 }.
   Obviously, we are only really interested in the last value of the
   chain, however the propagator needs to access the copy-of chain
   when visiting PHI nodes.

   To represent the copy-of chain, we use the array COPY_CHAINS, which
   holds the first link in the copy-of chain for every variable.
   If variable X_i is a copy of X_j, which in turn is a copy of X_k,
   the array will contain:

		COPY_CHAINS[i] = X_j
		COPY_CHAINS[j] = X_k
		COPY_CHAINS[k] = X_k

   Keeping copy-of chains instead of copy-of values directly becomes
   important when visiting PHI nodes.  Suppose that we had the
   following PHI cycle, such that x_52 is already considered a copy of
   x_53:

	    1	x_54 = PHI <x_53, x_52>
	    2	x_53 = PHI <x_898, x_54>
   
   Visit #1: x_54 is copy-of x_53 (because x_52 is copy-of x_53)
   Visit #2: x_53 is copy-of x_898 (because x_54 is a copy of x_53,
				    so it is considered irrelevant
				    as a copy).
   Visit #1: x_54 is copy-of nothing (x_53 is a copy-of x_898 and
				      x_52 is a copy of x_53, so
				      they don't match)
   Visit #2: x_53 is copy-of nothing

   This problem is avoided by keeping a chain of copies, instead of
   the final copy-of value.  Propagation will now only keep the first
   element of a variable's copy-of chain.  When visiting PHI nodes,
   arguments are considered equal if their copy-of chains end in the
   same variable.  So, as long as their copy-of chains overlap, we
   know that they will be a copy of the same variable, regardless of
   which variable that may be).
   
   Propagation would then proceed as follows (the notation a -> b
   means that a is a copy-of b):

   Visit #1: x_54 = PHI <x_53, x_52>
		x_53 -> x_53
		x_52 -> x_53
		Result: x_54 -> x_53.  Value changed.  Add SSA edges.

   Visit #1: x_53 = PHI <x_898, x_54>
   		x_898 -> x_898
		x_54 -> x_53
		Result: x_53 -> x_898.  Value changed.  Add SSA edges.

   Visit #2: x_54 = PHI <x_53, x_52>
   		x_53 -> x_898
		x_52 -> x_53 -> x_898
		Result: x_54 -> x_898.  Value changed.  Add SSA edges.

   Visit #2: x_53 = PHI <x_898, x_54>
   		x_898 -> x_898
		x_54 -> x_898
		Result: x_53 -> x_898.  Value didn't change.  Stable state

   Once the propagator stabilizes, we end up with the desired result
   x_53 and x_54 are both copies of x_898.  */

static unsigned int
execute_copy_prop (void)
{
  init_copy_prop ();
  ssa_propagate (copy_prop_visit_stmt, copy_prop_visit_phi_node);
  fini_copy_prop ();
  return 0;
}

static bool
gate_copy_prop (void)
{
  return flag_tree_copy_prop != 0;
}

struct gimple_opt_pass pass_copy_prop =
{
 {
  GIMPLE_PASS,
  "copyprop",				/* name */
  gate_copy_prop,			/* gate */
  execute_copy_prop,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_COPY_PROP,			/* tv_id */
  PROP_ssa | PROP_cfg,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_cleanup_cfg
    | TODO_dump_func
    | TODO_ggc_collect
    | TODO_verify_ssa
    | TODO_update_ssa			/* todo_flags_finish */
 }
};